Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm
•KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux. [Display omitted] The krill herd (KH) algorithm is used to solve...
Saved in:
Published in | Applied thermal engineering Vol. 98; pp. 1104 - 1115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux.
[Display omitted]
The krill herd (KH) algorithm is used to solve the inverse geometry design of a two-dimensional radiative enclosure filling with participating media. This inverse design problem aims to satisfy a uniform distribution of radiative heat flux over the design surface. The forward radiative heat transfer problem in irregular enclosures is solved by using the discrete ordinate method with a body-fitted coordinate system. Consequently, five kinds of KH algorithms are utilized to optimize the geometric positions of the control points, and Akima cubic interpolation is used to approximate the changing boundary through these points. Retrieval results show that the KH algorithm can be applied successfully to inverse geometry design problems, and KH is proved to be more efficient than the micro genetic algorithm and particle swarm optimization algorithms. The influences of radiative properties of the media and the number of control points on the retrieval geometry design results are also investigated. |
---|---|
AbstractList | •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux.
[Display omitted]
The krill herd (KH) algorithm is used to solve the inverse geometry design of a two-dimensional radiative enclosure filling with participating media. This inverse design problem aims to satisfy a uniform distribution of radiative heat flux over the design surface. The forward radiative heat transfer problem in irregular enclosures is solved by using the discrete ordinate method with a body-fitted coordinate system. Consequently, five kinds of KH algorithms are utilized to optimize the geometric positions of the control points, and Akima cubic interpolation is used to approximate the changing boundary through these points. Retrieval results show that the KH algorithm can be applied successfully to inverse geometry design problems, and KH is proved to be more efficient than the micro genetic algorithm and particle swarm optimization algorithms. The influences of radiative properties of the media and the number of control points on the retrieval geometry design results are also investigated. |
Author | Ruan, Liming Zhao, Fangzhou Qi, Hong Sun, Shuangcheng Li, Bingxi |
Author_xml | – sequence: 1 givenname: Shuangcheng surname: Sun fullname: Sun, Shuangcheng – sequence: 2 givenname: Hong surname: Qi fullname: Qi, Hong email: qihong@hit.edu.cn – sequence: 3 givenname: Fangzhou surname: Zhao fullname: Zhao, Fangzhou – sequence: 4 givenname: Liming surname: Ruan fullname: Ruan, Liming email: ruanlm@hit.edu.cn – sequence: 5 givenname: Bingxi surname: Li fullname: Li, Bingxi |
BookMark | eNqNUMFOAjEU7AETQf2HHrwutrvYXRIvSkRJSLzouSndt8vDbrtpC4pfbxEveiKZ5CXz3kzezIgMrLNAyDVnY864uNmMVd-buAbfKQO2HeeJHTOeUA7IkBe302xScH5ORiFsGON5VU6GxC3sDnwA2oLrIPo9rSFga6lraPxwWY0d2IDOKkO163oDn9SrGlXEHVCw2riw9RDoNqBt6btHY2h6oqauj9jhVzp0lirTOo9x3V2Ss0aZAFe_84K8zR9fZ8_Z8uVpMbtfZrqYipiB4gUrRV5CBSCahk2LvNIrwVna5JyVqkkRtM5LwXUj2AoqMRWqqXI9OdDFBbk7-mrvQvDQyN5jp_xeciYPhcmN_FuYPBQmGU8ok_zhn1xj_IkSvUJzqsn8aAIp6A7By6AxVQY1etBR1g5PM_oGOQScDQ |
CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2017_05_023 crossref_primary_10_1115_1_4056371 crossref_primary_10_1016_j_applthermaleng_2021_117866 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124158 crossref_primary_10_1016_j_ijthermalsci_2018_11_014 crossref_primary_10_1016_j_applthermaleng_2017_11_045 crossref_primary_10_1007_s11042_017_4803_x crossref_primary_10_1016_j_ijthermalsci_2018_06_009 crossref_primary_10_1088_1674_1056_25_12_120201 crossref_primary_10_1016_j_rineng_2024_102728 crossref_primary_10_1007_s10765_018_2442_8 crossref_primary_10_1002_htj_21506 crossref_primary_10_1016_j_ijleo_2019_163720 crossref_primary_10_1016_j_infrared_2018_05_020 crossref_primary_10_1016_j_icheatmasstransfer_2017_07_010 crossref_primary_10_1299_jtst_2019jtst0001 crossref_primary_10_1080_17415977_2020_1719087 crossref_primary_10_1088_1674_1056_aba608 crossref_primary_10_1155_2020_1983460 crossref_primary_10_1016_j_ijthermalsci_2019_106069 crossref_primary_10_1016_j_jqsrt_2020_107431 crossref_primary_10_1007_s00500_023_08415_2 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126849 crossref_primary_10_2514_1_T5885 crossref_primary_10_1063_1_4973344 crossref_primary_10_1155_2021_8830431 crossref_primary_10_1016_j_applthermaleng_2018_02_038 crossref_primary_10_1016_j_infrared_2020_103287 crossref_primary_10_1016_j_infrared_2019_103080 crossref_primary_10_1016_j_ijthermalsci_2018_10_016 crossref_primary_10_1016_j_solener_2021_06_009 crossref_primary_10_46300_9104_2021_15_17 crossref_primary_10_1016_j_ijthermalsci_2021_106853 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119365 crossref_primary_10_1016_j_solmat_2024_113085 crossref_primary_10_1007_s10462_017_9559_1 |
Cites_doi | 10.1016/j.atmosres.2014.07.007 10.1115/1.1388298 10.1016/j.applthermaleng.2008.05.025 10.1016/j.neucom.2014.01.023 10.1016/j.ijheatmasstransfer.2007.09.037 10.1016/j.ijheatmasstransfer.2014.12.022 10.4319/lo.1989.34.4.0649 10.1016/j.enconman.2015.01.061 10.1016/j.applthermaleng.2013.08.027 10.1016/j.applthermaleng.2014.08.057 10.1080/10407780601115020 10.1016/j.ijthermalsci.2012.04.024 10.1016/j.applthermaleng.2014.11.008 10.1016/j.ijheatmasstransfer.2008.02.003 10.1115/1.1288774 10.1016/j.applthermaleng.2012.05.035 10.1115/1.1599369 10.1016/j.ijheatmasstransfer.2011.12.007 10.1016/j.ijheatmasstransfer.2015.05.015 10.1016/j.jqsrt.2008.01.011 10.1016/j.enconman.2005.11.006 10.1080/10407780903107303 10.1016/j.ijthermalsci.2011.12.011 10.1016/j.applthermaleng.2015.09.002 10.1016/S0022-4073(00)00045-5 10.1016/j.ijheatmasstransfer.2006.10.056 10.1016/j.ijthermalsci.2006.10.002 10.1016/j.cnsns.2012.05.010 10.1016/j.jqsrt.2007.07.013 10.1016/j.ijheatmasstransfer.2014.06.035 10.1016/j.ijthermalsci.2011.01.018 10.1016/j.applthermaleng.2012.01.027 10.1145/321607.321609 10.1016/j.ijthermalsci.2011.05.009 10.1115/1.2151198 10.1016/j.icheatmasstransfer.2011.09.015 10.1016/j.enconman.2014.06.096 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2016.01.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1115 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_01_017 S1359431116000727 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c396t-ea1307627e8ee6ff09328cb610ea12107af001cc2761cf60be8696af82c41cc23 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 22:56:39 EDT 2025 Tue Jul 01 02:27:14 EDT 2025 Fri Feb 23 02:33:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inverse geometry design Radiative enclosure Krill herd Optimization design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-ea1307627e8ee6ff09328cb610ea12107af001cc2761cf60be8696af82c41cc23 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2016_01_017 crossref_citationtrail_10_1016_j_applthermaleng_2016_01_017 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-05 |
PublicationDateYYYYMMDD | 2016-04-05 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hajimirza, Hitti, Heltzel, Howell (bib0155) 2012; 62 Kim, Baek (bib0015) 2007; 50 Wang, Li, Zhao, Hu, Wang (bib0070) 2015; 94 He, Qi, Yao, Ruan (bib0150) 2015; 88 Tan, Zhao, Liu (bib0060) 2011; 50 Das, Mishra, Ajith, Uppaluri (bib0105) 2008; 109 Abdul-Sater, Krishnamoorthy (bib0010) 2012; 61 Akima (bib0180) 1970; 17 Beck, Bieler, Thomas (bib0110) 2012; 38 Li, Lu, Shan, Zhang (bib0130) 2015; 91 Modest (bib0185) 1993 França, Ezekoye, Howell (bib0085) 2001; 123 Daun, França, Larsen, Leduc, Howell (bib0080) 2005; 128 Donera, Selçukb (bib0035) 2013; 50 Das (bib0160) 2014; 87 Qi, Ruan, Zhang, Wang, Tan (bib0090) 2007; 46 Badescu (bib0065) 2006; 47 Sarvari (bib0165) 2007; 52 Gandomi, Alavi (bib0170) 2012; 17 Udayraj, Mulani, Talukdar, Das, Alagirusamy (bib0145) 2015; 89 Byun, Baek, Kim (bib0195) 2000 Liu, Tan (bib0190) 2001; 68 Bordbar, Myöhänen, Hyppänen (bib0025) 2015; 76 Guo, Wang, Gandomi, Alavi, Duan (bib0175) 2014; 138 Price (bib0200) 1989; 34 Mirsephai, Mohammadzaheri, Chen, O'Neill (bib0120) 2012; 39 Safavinejada, Mansouria, Sakuraib, Maruyamab (bib0125) 2009; 29 Wang, Tan, Shuai, Tan, Chu (bib0040) 2014; 78 Qi, Ruan, Shi, An, Tan (bib0095) 2008; 109 Mishra, Behera, Garg, Mishra (bib0020) 2008; 51 Daun, Morton, Howell (bib0075) 2003; 125 Yuan, Shuai, Li, Liu, Tan (bib0135) 2014; 150 Liu (bib0115) 2012; 55 Qi, Niu, Gong, Ruan (bib0140) 2015; 83 Lee, Baek, Kim (bib0100) 2008; 51 Cui, Gao, Chen (bib0030) 2011; 50 Farahmand, Payan, Sarvari (bib0050) 2012; 60 Tan, Liu (bib0055) 2009; 56 Howell, Ezekoye, Morales (bib0045) 2000; 122 Price (10.1016/j.applthermaleng.2016.01.017_bib0200) 1989; 34 Qi (10.1016/j.applthermaleng.2016.01.017_bib0090) 2007; 46 Guo (10.1016/j.applthermaleng.2016.01.017_bib0175) 2014; 138 Farahmand (10.1016/j.applthermaleng.2016.01.017_bib0050) 2012; 60 França (10.1016/j.applthermaleng.2016.01.017_bib0085) 2001; 123 Cui (10.1016/j.applthermaleng.2016.01.017_bib0030) 2011; 50 Lee (10.1016/j.applthermaleng.2016.01.017_bib0100) 2008; 51 Donera (10.1016/j.applthermaleng.2016.01.017_bib0035) 2013; 50 Beck (10.1016/j.applthermaleng.2016.01.017_bib0110) 2012; 38 Liu (10.1016/j.applthermaleng.2016.01.017_bib0115) 2012; 55 Liu (10.1016/j.applthermaleng.2016.01.017_bib0190) 2001; 68 Udayraj (10.1016/j.applthermaleng.2016.01.017_bib0145) 2015; 89 Daun (10.1016/j.applthermaleng.2016.01.017_bib0075) 2003; 125 Mirsephai (10.1016/j.applthermaleng.2016.01.017_bib0120) 2012; 39 Hajimirza (10.1016/j.applthermaleng.2016.01.017_bib0155) 2012; 62 Mishra (10.1016/j.applthermaleng.2016.01.017_bib0020) 2008; 51 Bordbar (10.1016/j.applthermaleng.2016.01.017_bib0025) 2015; 76 Tan (10.1016/j.applthermaleng.2016.01.017_bib0060) 2011; 50 Howell (10.1016/j.applthermaleng.2016.01.017_bib0045) 2000; 122 Abdul-Sater (10.1016/j.applthermaleng.2016.01.017_bib0010) 2012; 61 Byun (10.1016/j.applthermaleng.2016.01.017_bib0195) 2000 Wang (10.1016/j.applthermaleng.2016.01.017_bib0040) 2014; 78 Das (10.1016/j.applthermaleng.2016.01.017_bib0105) 2008; 109 Qi (10.1016/j.applthermaleng.2016.01.017_bib0140) 2015; 83 Gandomi (10.1016/j.applthermaleng.2016.01.017_bib0170) 2012; 17 Qi (10.1016/j.applthermaleng.2016.01.017_bib0095) 2008; 109 Daun (10.1016/j.applthermaleng.2016.01.017_bib0080) 2005; 128 Safavinejada (10.1016/j.applthermaleng.2016.01.017_bib0125) 2009; 29 Kim (10.1016/j.applthermaleng.2016.01.017_bib0015) 2007; 50 He (10.1016/j.applthermaleng.2016.01.017_bib0150) 2015; 88 Das (10.1016/j.applthermaleng.2016.01.017_bib0160) 2014; 87 Wang (10.1016/j.applthermaleng.2016.01.017_bib0070) 2015; 94 Modest (10.1016/j.applthermaleng.2016.01.017_bib0185) 1993 Sarvari (10.1016/j.applthermaleng.2016.01.017_bib0165) 2007; 52 Tan (10.1016/j.applthermaleng.2016.01.017_bib0055) 2009; 56 Li (10.1016/j.applthermaleng.2016.01.017_bib0130) 2015; 91 Akima (10.1016/j.applthermaleng.2016.01.017_bib0180) 1970; 17 Yuan (10.1016/j.applthermaleng.2016.01.017_bib0135) 2014; 150 Badescu (10.1016/j.applthermaleng.2016.01.017_bib0065) 2006; 47 |
References_xml | – start-page: 119 year: 2000 end-page: 126 ident: bib0195 article-title: Prediction of radiative heat transfer in 2D enclosure with blocked-off, multi-block, and embedded boundary treatments – volume: 46 start-page: 649 year: 2007 end-page: 661 ident: bib0090 article-title: Inverse radiation analysis in a one-dimensional participating slab by the stochastic particle swarm optimizer algorithm publication-title: Int. J. Therm. Sci – year: 1993 ident: bib0185 article-title: Radiative Heat Transfer – volume: 50 start-page: 898 year: 2011 end-page: 905 ident: bib0030 article-title: Inverse radiation analysis in an absorbing, emitting and non-gray participating medium publication-title: Int. J. Therm. Sci – volume: 52 start-page: 127 year: 2007 end-page: 143 ident: bib0165 article-title: Optimal geometry design of radiative enclosures using the genetic algorithm publication-title: Numer. Heat Transf. A – volume: 61 start-page: 507 year: 2012 end-page: 518 ident: bib0010 article-title: An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames publication-title: Appl. Therm. Eng – volume: 83 start-page: 428 year: 2015 end-page: 440 ident: bib0140 article-title: Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem publication-title: Int. J. Heat Mass Transf – volume: 125 start-page: 845 year: 2003 end-page: 851 ident: bib0075 article-title: Geometric optimization of radiant enclosures containing specular surfaces publication-title: ASME J. Heat Transf – volume: 17 start-page: 4831 year: 2012 end-page: 4854 ident: bib0170 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul – volume: 109 start-page: 476 year: 2008 end-page: 493 ident: bib0095 article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem publication-title: J. Quant. Spectrosc. Radiat. Transf – volume: 29 start-page: 1075 year: 2009 end-page: 1085 ident: bib0125 article-title: Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm publication-title: Appl. Therm. Eng – volume: 78 start-page: 7 year: 2014 end-page: 16 ident: bib0040 article-title: Thermal performance analyses of porous media solar receiver with different irradiative transfer models publication-title: Int. J. Heat Mass Transf – volume: 123 start-page: 884 year: 2001 end-page: 891 ident: bib0085 article-title: Inverse boundary design combing radiation and convection heat transfer publication-title: ASME J. Heat Transf – volume: 51 start-page: 2772 year: 2008 end-page: 2783 ident: bib0100 article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm publication-title: Int. J. Heat Mass Transf – volume: 60 start-page: 61 year: 2012 end-page: 69 ident: bib0050 article-title: Geometric optimization of radiative enclosures using PSO algorithm publication-title: Int. J. Therm. Sci – volume: 128 start-page: 269 year: 2005 end-page: 282 ident: bib0080 article-title: Comparison of methods for inverse design of radiant enclosures publication-title: ASME J. Heat Transf – volume: 38 start-page: 168 year: 2012 end-page: 174 ident: bib0110 article-title: Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO) publication-title: Appl. Therm. Eng – volume: 94 start-page: 190 year: 2015 end-page: 197 ident: bib0070 article-title: Optimum structural design of a heat exchanger for gas-circulation systems publication-title: Energy Convers. Manag – volume: 138 start-page: 382 year: 2014 end-page: 402 ident: bib0175 article-title: A new improved krill herd algorithm for global numerical optimization publication-title: Neurocomputing – volume: 50 start-page: 2828 year: 2007 end-page: 2837 ident: bib0015 article-title: Inverse radiation-conduction design problem in a participating concentric cylindrical medium publication-title: Int. J. Heat Mass Transf – volume: 50 start-page: 89 year: 2013 end-page: 93 ident: bib0035 article-title: An application of Spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media publication-title: Appl. Therm. Eng – volume: 122 start-page: 492 year: 2000 end-page: 502 ident: bib0045 article-title: Inverse design model for radiative heat transfer publication-title: ASME J. Heat Transf – volume: 17 start-page: 589 year: 1970 end-page: 602 ident: bib0180 article-title: A new method of interpolation and smooth curve fitting based on local procedures publication-title: J. Assoc. Comput. Mach – volume: 91 start-page: 994 year: 2015 end-page: 1002 ident: bib0130 article-title: Parallel ant colony optimization for the determination of a point heat source position in a 2-D domain publication-title: Appl. Therm. Eng – volume: 34 start-page: 649 year: 1989 end-page: 659 ident: bib0200 article-title: Swimming behavior of krill in response to algal patches: a mesocosm study publication-title: Limnol. Oceanogr – volume: 51 start-page: 4447 year: 2008 end-page: 4460 ident: bib0020 article-title: Solidification of a 2-D semitransparent medium using the lattice Boltzmann method and the finite volume method publication-title: Int. J. Heat Mass Transf – volume: 76 start-page: 344 year: 2015 end-page: 356 ident: bib0025 article-title: Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace publication-title: Appl. Therm. Eng – volume: 55 start-page: 2062 year: 2012 end-page: 2068 ident: bib0115 article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux publication-title: Int. J. Heat Mass Transf – volume: 150 start-page: 1 year: 2014 end-page: 11 ident: bib0135 article-title: Using a new aerosol relative optical thickness concept to identify aerosol particle species publication-title: Atmos. Res – volume: 87 start-page: 96 year: 2014 end-page: 106 ident: bib0160 article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin publication-title: Energy Convers. Manag – volume: 47 start-page: 2397 year: 2006 end-page: 2413 ident: bib0065 article-title: Optimum fin geometry in flat plate solar collector systems publication-title: Energy Convers. Manag – volume: 39 start-page: 40 year: 2012 end-page: 45 ident: bib0120 article-title: An artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer publication-title: Int. Commun. Heat Mass Transf – volume: 68 start-page: 559 year: 2001 end-page: 573 ident: bib0190 article-title: Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries publication-title: J. Quant. Spectrosc. Radiat. Transf – volume: 50 start-page: 1820 year: 2011 end-page: 1831 ident: bib0060 article-title: Geometric optimization of a radiation-conduction heating device using meshless method publication-title: Int. J. Therm. Sci – volume: 109 start-page: 2060 year: 2008 end-page: 2077 ident: bib0105 article-title: An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm publication-title: J. Quant. Spectrosc. Radiat. Transf – volume: 62 start-page: 93 year: 2012 end-page: 102 ident: bib0155 article-title: Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance publication-title: Int. J. Therm. Sci – volume: 88 start-page: 306 year: 2015 end-page: 314 ident: bib0150 article-title: Inverse estimation of the particle size distribution using the fruit fly optimization algorithm publication-title: Appl. Therm. Eng – volume: 89 start-page: 359 year: 2015 end-page: 378 ident: bib0145 article-title: Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems publication-title: Int. J. Heat Mass Transf – volume: 56 start-page: 132 year: 2009 end-page: 152 ident: bib0055 article-title: Inverse geometry design of radiating enclosure filled with participating media using meshless method publication-title: Numer. Heat Transf. A – volume: 150 start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2016.01.017_bib0135 article-title: Using a new aerosol relative optical thickness concept to identify aerosol particle species publication-title: Atmos. Res doi: 10.1016/j.atmosres.2014.07.007 – volume: 123 start-page: 884 year: 2001 ident: 10.1016/j.applthermaleng.2016.01.017_bib0085 article-title: Inverse boundary design combing radiation and convection heat transfer publication-title: ASME J. Heat Transf doi: 10.1115/1.1388298 – volume: 29 start-page: 1075 issue: 5–6 year: 2009 ident: 10.1016/j.applthermaleng.2016.01.017_bib0125 article-title: Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2008.05.025 – volume: 138 start-page: 382 year: 2014 ident: 10.1016/j.applthermaleng.2016.01.017_bib0175 article-title: A new improved krill herd algorithm for global numerical optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.023 – volume: 51 start-page: 2772 issue: 11–12 year: 2008 ident: 10.1016/j.applthermaleng.2016.01.017_bib0100 article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2007.09.037 – volume: 83 start-page: 428 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0140 article-title: Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.12.022 – volume: 34 start-page: 649 year: 1989 ident: 10.1016/j.applthermaleng.2016.01.017_bib0200 article-title: Swimming behavior of krill in response to algal patches: a mesocosm study publication-title: Limnol. Oceanogr doi: 10.4319/lo.1989.34.4.0649 – volume: 94 start-page: 190 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0070 article-title: Optimum structural design of a heat exchanger for gas-circulation systems publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2015.01.061 – volume: 61 start-page: 507 issue: 2 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0010 article-title: An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2013.08.027 – start-page: 119 year: 2000 ident: 10.1016/j.applthermaleng.2016.01.017_bib0195 – volume: 88 start-page: 306 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0150 article-title: Inverse estimation of the particle size distribution using the fruit fly optimization algorithm publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2014.08.057 – volume: 52 start-page: 127 year: 2007 ident: 10.1016/j.applthermaleng.2016.01.017_bib0165 article-title: Optimal geometry design of radiative enclosures using the genetic algorithm publication-title: Numer. Heat Transf. A doi: 10.1080/10407780601115020 – volume: 60 start-page: 61 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0050 article-title: Geometric optimization of radiative enclosures using PSO algorithm publication-title: Int. J. Therm. Sci doi: 10.1016/j.ijthermalsci.2012.04.024 – volume: 76 start-page: 344 issue: 5 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0025 article-title: Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2014.11.008 – volume: 51 start-page: 4447 issue: 17–18 year: 2008 ident: 10.1016/j.applthermaleng.2016.01.017_bib0020 article-title: Solidification of a 2-D semitransparent medium using the lattice Boltzmann method and the finite volume method publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.02.003 – volume: 122 start-page: 492 issue: 3 year: 2000 ident: 10.1016/j.applthermaleng.2016.01.017_bib0045 article-title: Inverse design model for radiative heat transfer publication-title: ASME J. Heat Transf doi: 10.1115/1.1288774 – year: 1993 ident: 10.1016/j.applthermaleng.2016.01.017_bib0185 – volume: 50 start-page: 89 issue: 1 year: 2013 ident: 10.1016/j.applthermaleng.2016.01.017_bib0035 article-title: An application of Spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2012.05.035 – volume: 125 start-page: 845 year: 2003 ident: 10.1016/j.applthermaleng.2016.01.017_bib0075 article-title: Geometric optimization of radiant enclosures containing specular surfaces publication-title: ASME J. Heat Transf doi: 10.1115/1.1599369 – volume: 55 start-page: 2062 issue: 7 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0115 article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.12.007 – volume: 89 start-page: 359 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0145 article-title: Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.05.015 – volume: 109 start-page: 2060 issue: 11 year: 2008 ident: 10.1016/j.applthermaleng.2016.01.017_bib0105 article-title: An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm publication-title: J. Quant. Spectrosc. Radiat. Transf doi: 10.1016/j.jqsrt.2008.01.011 – volume: 47 start-page: 2397 year: 2006 ident: 10.1016/j.applthermaleng.2016.01.017_bib0065 article-title: Optimum fin geometry in flat plate solar collector systems publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2005.11.006 – volume: 56 start-page: 132 year: 2009 ident: 10.1016/j.applthermaleng.2016.01.017_bib0055 article-title: Inverse geometry design of radiating enclosure filled with participating media using meshless method publication-title: Numer. Heat Transf. A doi: 10.1080/10407780903107303 – volume: 62 start-page: 93 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0155 article-title: Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance publication-title: Int. J. Therm. Sci doi: 10.1016/j.ijthermalsci.2011.12.011 – volume: 91 start-page: 994 issue: 5 year: 2015 ident: 10.1016/j.applthermaleng.2016.01.017_bib0130 article-title: Parallel ant colony optimization for the determination of a point heat source position in a 2-D domain publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2015.09.002 – volume: 68 start-page: 559 year: 2001 ident: 10.1016/j.applthermaleng.2016.01.017_bib0190 article-title: Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries publication-title: J. Quant. Spectrosc. Radiat. Transf doi: 10.1016/S0022-4073(00)00045-5 – volume: 50 start-page: 2828 issue: 13 year: 2007 ident: 10.1016/j.applthermaleng.2016.01.017_bib0015 article-title: Inverse radiation-conduction design problem in a participating concentric cylindrical medium publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.10.056 – volume: 46 start-page: 649 year: 2007 ident: 10.1016/j.applthermaleng.2016.01.017_bib0090 article-title: Inverse radiation analysis in a one-dimensional participating slab by the stochastic particle swarm optimizer algorithm publication-title: Int. J. Therm. Sci doi: 10.1016/j.ijthermalsci.2006.10.002 – volume: 17 start-page: 4831 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0170 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 109 start-page: 476 year: 2008 ident: 10.1016/j.applthermaleng.2016.01.017_bib0095 article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem publication-title: J. Quant. Spectrosc. Radiat. Transf doi: 10.1016/j.jqsrt.2007.07.013 – volume: 78 start-page: 7 year: 2014 ident: 10.1016/j.applthermaleng.2016.01.017_bib0040 article-title: Thermal performance analyses of porous media solar receiver with different irradiative transfer models publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.035 – volume: 50 start-page: 898 issue: 6 year: 2011 ident: 10.1016/j.applthermaleng.2016.01.017_bib0030 article-title: Inverse radiation analysis in an absorbing, emitting and non-gray participating medium publication-title: Int. J. Therm. Sci doi: 10.1016/j.ijthermalsci.2011.01.018 – volume: 38 start-page: 168 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0110 article-title: Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO) publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2012.01.027 – volume: 17 start-page: 589 year: 1970 ident: 10.1016/j.applthermaleng.2016.01.017_bib0180 article-title: A new method of interpolation and smooth curve fitting based on local procedures publication-title: J. Assoc. Comput. Mach doi: 10.1145/321607.321609 – volume: 50 start-page: 1820 year: 2011 ident: 10.1016/j.applthermaleng.2016.01.017_bib0060 article-title: Geometric optimization of a radiation-conduction heating device using meshless method publication-title: Int. J. Therm. Sci doi: 10.1016/j.ijthermalsci.2011.05.009 – volume: 128 start-page: 269 year: 2005 ident: 10.1016/j.applthermaleng.2016.01.017_bib0080 article-title: Comparison of methods for inverse design of radiant enclosures publication-title: ASME J. Heat Transf doi: 10.1115/1.2151198 – volume: 39 start-page: 40 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2016.01.017_bib0120 article-title: An artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer publication-title: Int. Commun. Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2011.09.015 – volume: 87 start-page: 96 year: 2014 ident: 10.1016/j.applthermaleng.2016.01.017_bib0160 article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2014.06.096 |
SSID | ssj0012874 |
Score | 2.3516643 |
Snippet | •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1104 |
SubjectTerms | Inverse geometry design Krill herd Optimization design Radiative enclosure |
Title | Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.01.017 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_Inzx8hh17q2S9MGDzKGYyruooPdSpsmc9qto6uoF_923-vauYGHgdBL2ySkr-F9L-33vkdIw-OmDKVnGW7IYIPiSG0ArisjiFjoAEK7HsPk5Mc-7w3Y_dAZVkinzIVBWmXh-xc-PffWxZVmYc3mbDxuPlktRwD8WRZHoLMxo5wxF1f51feS5mGhnnu-6XKEga23SeOX44U_iTHOmgRYtgSJXjwX8czLl_0BUyvQ090ne0XMSNuLaR2Qipoekt0VJcEjkqBeRjpXdKSSicrSLxrl1AyaaJp9JEaEIv4LAQ6as8jVJ01RlgC9HYWnjhP8VDinyIMf0bd0HMcUphzRBHzKpEjWpEE8StJx9jI5JoPu7XOnZxS1FAzZEjwzVABgBY7PVZ5SXGsT4jZPhhA8wR3Y9rmBBmNJabvckpqbofK44IH2bMnwcuuEVKfJVJ0S6mmGWkYIdIox5ghooW3BhQgisxWIGrkuTefLQmgc613Efskoe_XXDe-j4X3TgsOtEWfZe7YQ3Niw3035lvy1BeQDNmw0wtm_RzgnO3iWE3ucC1LN0nd1CTFLFtbzRVknW-27h17_Bz_B8Zg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSCwHxCp2fIBjaJM6TiyEEGJRWS-AxC0kjl0KaYPSIOiFn-IHmUnTAhIHJISUkxNb1th5M5M8vwHY9EVVRcq3LS_imKC4yljo17UVxjxy0UN7PqfDyReXon7DT2_d2yF475-FIVplif09TC_QumyplNasPDWblSu75kp0f7YtyNE5XsmsPNPdF8zbOrsnh7jIW45zfHR9ULfK0gKWqkmRWzpE7EYc8LSvtTAG83rHVxHGEngHsyAvNIjfSjmY5SsjqpH2hRSh8R3FqbmG4w7DKEe4oLIJ228DXolNAvJFludKi6Y3BpufpDL6K02BXSukOinELBOFamhRL-0Hv_jF1x1Pw1QZpLL9nh1mYEi3Z2Hyi3ThHKQk0JF1NGvotKXzrMviggvCUsPyl9SKqWpAT_GDFbR1_coy0kEgeGVo5iSlb5MdRsT7BnvMmknCcMoxSxHEWuXpUBYmjTRr5vetebj5FwsvwEg7betFYL7hJJ5EnlVzzl2JTxhHCinDuFoL5RLs9E0XqFLZnApsJEGfwvYQfDd8QIYPqjZe3hK4g95PPYWPX_bb669S8G3HBuiMfjXC8p9H2IDx-vXFeXB-cnm2AhN0p2AVuaswkmfPeg0DpjxaLzYog7v_fiM-ANVcLOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+geometry+design+of+two-dimensional+complex+radiative+enclosures+using+krill+herd+optimization+algorithm&rft.jtitle=Applied+thermal+engineering&rft.au=Sun%2C+Shuangcheng&rft.au=Qi%2C+Hong&rft.au=Zhao%2C+Fangzhou&rft.au=Ruan%2C+Liming&rft.date=2016-04-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=98&rft.spage=1104&rft.epage=1115&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.01.017&rft.externalDocID=S1359431116000727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |