Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm

•KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux. [Display omitted] The krill herd (KH) algorithm is used to solve...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 98; pp. 1104 - 1115
Main Authors Sun, Shuangcheng, Qi, Hong, Zhao, Fangzhou, Ruan, Liming, Li, Bingxi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux. [Display omitted] The krill herd (KH) algorithm is used to solve the inverse geometry design of a two-dimensional radiative enclosure filling with participating media. This inverse design problem aims to satisfy a uniform distribution of radiative heat flux over the design surface. The forward radiative heat transfer problem in irregular enclosures is solved by using the discrete ordinate method with a body-fitted coordinate system. Consequently, five kinds of KH algorithms are utilized to optimize the geometric positions of the control points, and Akima cubic interpolation is used to approximate the changing boundary through these points. Retrieval results show that the KH algorithm can be applied successfully to inverse geometry design problems, and KH is proved to be more efficient than the micro genetic algorithm and particle swarm optimization algorithms. The influences of radiative properties of the media and the number of control points on the retrieval geometry design results are also investigated.
AbstractList •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design results.•The scattering property and emissivity mainly affect radiative heat flux. [Display omitted] The krill herd (KH) algorithm is used to solve the inverse geometry design of a two-dimensional radiative enclosure filling with participating media. This inverse design problem aims to satisfy a uniform distribution of radiative heat flux over the design surface. The forward radiative heat transfer problem in irregular enclosures is solved by using the discrete ordinate method with a body-fitted coordinate system. Consequently, five kinds of KH algorithms are utilized to optimize the geometric positions of the control points, and Akima cubic interpolation is used to approximate the changing boundary through these points. Retrieval results show that the KH algorithm can be applied successfully to inverse geometry design problems, and KH is proved to be more efficient than the micro genetic algorithm and particle swarm optimization algorithms. The influences of radiative properties of the media and the number of control points on the retrieval geometry design results are also investigated.
Author Ruan, Liming
Zhao, Fangzhou
Qi, Hong
Sun, Shuangcheng
Li, Bingxi
Author_xml – sequence: 1
  givenname: Shuangcheng
  surname: Sun
  fullname: Sun, Shuangcheng
– sequence: 2
  givenname: Hong
  surname: Qi
  fullname: Qi, Hong
  email: qihong@hit.edu.cn
– sequence: 3
  givenname: Fangzhou
  surname: Zhao
  fullname: Zhao, Fangzhou
– sequence: 4
  givenname: Liming
  surname: Ruan
  fullname: Ruan, Liming
  email: ruanlm@hit.edu.cn
– sequence: 5
  givenname: Bingxi
  surname: Li
  fullname: Li, Bingxi
BookMark eNqNUMFOAjEU7AETQf2HHrwutrvYXRIvSkRJSLzouSndt8vDbrtpC4pfbxEveiKZ5CXz3kzezIgMrLNAyDVnY864uNmMVd-buAbfKQO2HeeJHTOeUA7IkBe302xScH5ORiFsGON5VU6GxC3sDnwA2oLrIPo9rSFga6lraPxwWY0d2IDOKkO163oDn9SrGlXEHVCw2riw9RDoNqBt6btHY2h6oqauj9jhVzp0lirTOo9x3V2Ss0aZAFe_84K8zR9fZ8_Z8uVpMbtfZrqYipiB4gUrRV5CBSCahk2LvNIrwVna5JyVqkkRtM5LwXUj2AoqMRWqqXI9OdDFBbk7-mrvQvDQyN5jp_xeciYPhcmN_FuYPBQmGU8ok_zhn1xj_IkSvUJzqsn8aAIp6A7By6AxVQY1etBR1g5PM_oGOQScDQ
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2017_05_023
crossref_primary_10_1115_1_4056371
crossref_primary_10_1016_j_applthermaleng_2021_117866
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124158
crossref_primary_10_1016_j_ijthermalsci_2018_11_014
crossref_primary_10_1016_j_applthermaleng_2017_11_045
crossref_primary_10_1007_s11042_017_4803_x
crossref_primary_10_1016_j_ijthermalsci_2018_06_009
crossref_primary_10_1088_1674_1056_25_12_120201
crossref_primary_10_1016_j_rineng_2024_102728
crossref_primary_10_1007_s10765_018_2442_8
crossref_primary_10_1002_htj_21506
crossref_primary_10_1016_j_ijleo_2019_163720
crossref_primary_10_1016_j_infrared_2018_05_020
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_010
crossref_primary_10_1299_jtst_2019jtst0001
crossref_primary_10_1080_17415977_2020_1719087
crossref_primary_10_1088_1674_1056_aba608
crossref_primary_10_1155_2020_1983460
crossref_primary_10_1016_j_ijthermalsci_2019_106069
crossref_primary_10_1016_j_jqsrt_2020_107431
crossref_primary_10_1007_s00500_023_08415_2
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126849
crossref_primary_10_2514_1_T5885
crossref_primary_10_1063_1_4973344
crossref_primary_10_1155_2021_8830431
crossref_primary_10_1016_j_applthermaleng_2018_02_038
crossref_primary_10_1016_j_infrared_2020_103287
crossref_primary_10_1016_j_infrared_2019_103080
crossref_primary_10_1016_j_ijthermalsci_2018_10_016
crossref_primary_10_1016_j_solener_2021_06_009
crossref_primary_10_46300_9104_2021_15_17
crossref_primary_10_1016_j_ijthermalsci_2021_106853
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119365
crossref_primary_10_1016_j_solmat_2024_113085
crossref_primary_10_1007_s10462_017_9559_1
Cites_doi 10.1016/j.atmosres.2014.07.007
10.1115/1.1388298
10.1016/j.applthermaleng.2008.05.025
10.1016/j.neucom.2014.01.023
10.1016/j.ijheatmasstransfer.2007.09.037
10.1016/j.ijheatmasstransfer.2014.12.022
10.4319/lo.1989.34.4.0649
10.1016/j.enconman.2015.01.061
10.1016/j.applthermaleng.2013.08.027
10.1016/j.applthermaleng.2014.08.057
10.1080/10407780601115020
10.1016/j.ijthermalsci.2012.04.024
10.1016/j.applthermaleng.2014.11.008
10.1016/j.ijheatmasstransfer.2008.02.003
10.1115/1.1288774
10.1016/j.applthermaleng.2012.05.035
10.1115/1.1599369
10.1016/j.ijheatmasstransfer.2011.12.007
10.1016/j.ijheatmasstransfer.2015.05.015
10.1016/j.jqsrt.2008.01.011
10.1016/j.enconman.2005.11.006
10.1080/10407780903107303
10.1016/j.ijthermalsci.2011.12.011
10.1016/j.applthermaleng.2015.09.002
10.1016/S0022-4073(00)00045-5
10.1016/j.ijheatmasstransfer.2006.10.056
10.1016/j.ijthermalsci.2006.10.002
10.1016/j.cnsns.2012.05.010
10.1016/j.jqsrt.2007.07.013
10.1016/j.ijheatmasstransfer.2014.06.035
10.1016/j.ijthermalsci.2011.01.018
10.1016/j.applthermaleng.2012.01.027
10.1145/321607.321609
10.1016/j.ijthermalsci.2011.05.009
10.1115/1.2151198
10.1016/j.icheatmasstransfer.2011.09.015
10.1016/j.enconman.2014.06.096
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.01.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1115
ExternalDocumentID 10_1016_j_applthermaleng_2016_01_017
S1359431116000727
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c396t-ea1307627e8ee6ff09328cb610ea12107af001cc2761cf60be8696af82c41cc23
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 22:56:39 EDT 2025
Tue Jul 01 02:27:14 EDT 2025
Fri Feb 23 02:33:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inverse geometry design
Radiative enclosure
Krill herd
Optimization design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ea1307627e8ee6ff09328cb610ea12107af001cc2761cf60be8696af82c41cc23
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2016_01_017
crossref_citationtrail_10_1016_j_applthermaleng_2016_01_017
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-05
PublicationDateYYYYMMDD 2016-04-05
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hajimirza, Hitti, Heltzel, Howell (bib0155) 2012; 62
Kim, Baek (bib0015) 2007; 50
Wang, Li, Zhao, Hu, Wang (bib0070) 2015; 94
He, Qi, Yao, Ruan (bib0150) 2015; 88
Tan, Zhao, Liu (bib0060) 2011; 50
Das, Mishra, Ajith, Uppaluri (bib0105) 2008; 109
Abdul-Sater, Krishnamoorthy (bib0010) 2012; 61
Akima (bib0180) 1970; 17
Beck, Bieler, Thomas (bib0110) 2012; 38
Li, Lu, Shan, Zhang (bib0130) 2015; 91
Modest (bib0185) 1993
França, Ezekoye, Howell (bib0085) 2001; 123
Daun, França, Larsen, Leduc, Howell (bib0080) 2005; 128
Donera, Selçukb (bib0035) 2013; 50
Das (bib0160) 2014; 87
Qi, Ruan, Zhang, Wang, Tan (bib0090) 2007; 46
Badescu (bib0065) 2006; 47
Sarvari (bib0165) 2007; 52
Gandomi, Alavi (bib0170) 2012; 17
Udayraj, Mulani, Talukdar, Das, Alagirusamy (bib0145) 2015; 89
Byun, Baek, Kim (bib0195) 2000
Liu, Tan (bib0190) 2001; 68
Bordbar, Myöhänen, Hyppänen (bib0025) 2015; 76
Guo, Wang, Gandomi, Alavi, Duan (bib0175) 2014; 138
Price (bib0200) 1989; 34
Mirsephai, Mohammadzaheri, Chen, O'Neill (bib0120) 2012; 39
Safavinejada, Mansouria, Sakuraib, Maruyamab (bib0125) 2009; 29
Wang, Tan, Shuai, Tan, Chu (bib0040) 2014; 78
Qi, Ruan, Shi, An, Tan (bib0095) 2008; 109
Mishra, Behera, Garg, Mishra (bib0020) 2008; 51
Daun, Morton, Howell (bib0075) 2003; 125
Yuan, Shuai, Li, Liu, Tan (bib0135) 2014; 150
Liu (bib0115) 2012; 55
Qi, Niu, Gong, Ruan (bib0140) 2015; 83
Lee, Baek, Kim (bib0100) 2008; 51
Cui, Gao, Chen (bib0030) 2011; 50
Farahmand, Payan, Sarvari (bib0050) 2012; 60
Tan, Liu (bib0055) 2009; 56
Howell, Ezekoye, Morales (bib0045) 2000; 122
Price (10.1016/j.applthermaleng.2016.01.017_bib0200) 1989; 34
Qi (10.1016/j.applthermaleng.2016.01.017_bib0090) 2007; 46
Guo (10.1016/j.applthermaleng.2016.01.017_bib0175) 2014; 138
Farahmand (10.1016/j.applthermaleng.2016.01.017_bib0050) 2012; 60
França (10.1016/j.applthermaleng.2016.01.017_bib0085) 2001; 123
Cui (10.1016/j.applthermaleng.2016.01.017_bib0030) 2011; 50
Lee (10.1016/j.applthermaleng.2016.01.017_bib0100) 2008; 51
Donera (10.1016/j.applthermaleng.2016.01.017_bib0035) 2013; 50
Beck (10.1016/j.applthermaleng.2016.01.017_bib0110) 2012; 38
Liu (10.1016/j.applthermaleng.2016.01.017_bib0115) 2012; 55
Liu (10.1016/j.applthermaleng.2016.01.017_bib0190) 2001; 68
Udayraj (10.1016/j.applthermaleng.2016.01.017_bib0145) 2015; 89
Daun (10.1016/j.applthermaleng.2016.01.017_bib0075) 2003; 125
Mirsephai (10.1016/j.applthermaleng.2016.01.017_bib0120) 2012; 39
Hajimirza (10.1016/j.applthermaleng.2016.01.017_bib0155) 2012; 62
Mishra (10.1016/j.applthermaleng.2016.01.017_bib0020) 2008; 51
Bordbar (10.1016/j.applthermaleng.2016.01.017_bib0025) 2015; 76
Tan (10.1016/j.applthermaleng.2016.01.017_bib0060) 2011; 50
Howell (10.1016/j.applthermaleng.2016.01.017_bib0045) 2000; 122
Abdul-Sater (10.1016/j.applthermaleng.2016.01.017_bib0010) 2012; 61
Byun (10.1016/j.applthermaleng.2016.01.017_bib0195) 2000
Wang (10.1016/j.applthermaleng.2016.01.017_bib0040) 2014; 78
Das (10.1016/j.applthermaleng.2016.01.017_bib0105) 2008; 109
Qi (10.1016/j.applthermaleng.2016.01.017_bib0140) 2015; 83
Gandomi (10.1016/j.applthermaleng.2016.01.017_bib0170) 2012; 17
Qi (10.1016/j.applthermaleng.2016.01.017_bib0095) 2008; 109
Daun (10.1016/j.applthermaleng.2016.01.017_bib0080) 2005; 128
Safavinejada (10.1016/j.applthermaleng.2016.01.017_bib0125) 2009; 29
Kim (10.1016/j.applthermaleng.2016.01.017_bib0015) 2007; 50
He (10.1016/j.applthermaleng.2016.01.017_bib0150) 2015; 88
Das (10.1016/j.applthermaleng.2016.01.017_bib0160) 2014; 87
Wang (10.1016/j.applthermaleng.2016.01.017_bib0070) 2015; 94
Modest (10.1016/j.applthermaleng.2016.01.017_bib0185) 1993
Sarvari (10.1016/j.applthermaleng.2016.01.017_bib0165) 2007; 52
Tan (10.1016/j.applthermaleng.2016.01.017_bib0055) 2009; 56
Li (10.1016/j.applthermaleng.2016.01.017_bib0130) 2015; 91
Akima (10.1016/j.applthermaleng.2016.01.017_bib0180) 1970; 17
Yuan (10.1016/j.applthermaleng.2016.01.017_bib0135) 2014; 150
Badescu (10.1016/j.applthermaleng.2016.01.017_bib0065) 2006; 47
References_xml – start-page: 119
  year: 2000
  end-page: 126
  ident: bib0195
  article-title: Prediction of radiative heat transfer in 2D enclosure with blocked-off, multi-block, and embedded boundary treatments
– volume: 46
  start-page: 649
  year: 2007
  end-page: 661
  ident: bib0090
  article-title: Inverse radiation analysis in a one-dimensional participating slab by the stochastic particle swarm optimizer algorithm
  publication-title: Int. J. Therm. Sci
– year: 1993
  ident: bib0185
  article-title: Radiative Heat Transfer
– volume: 50
  start-page: 898
  year: 2011
  end-page: 905
  ident: bib0030
  article-title: Inverse radiation analysis in an absorbing, emitting and non-gray participating medium
  publication-title: Int. J. Therm. Sci
– volume: 52
  start-page: 127
  year: 2007
  end-page: 143
  ident: bib0165
  article-title: Optimal geometry design of radiative enclosures using the genetic algorithm
  publication-title: Numer. Heat Transf. A
– volume: 61
  start-page: 507
  year: 2012
  end-page: 518
  ident: bib0010
  article-title: An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames
  publication-title: Appl. Therm. Eng
– volume: 83
  start-page: 428
  year: 2015
  end-page: 440
  ident: bib0140
  article-title: Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem
  publication-title: Int. J. Heat Mass Transf
– volume: 125
  start-page: 845
  year: 2003
  end-page: 851
  ident: bib0075
  article-title: Geometric optimization of radiant enclosures containing specular surfaces
  publication-title: ASME J. Heat Transf
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4854
  ident: bib0170
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul
– volume: 109
  start-page: 476
  year: 2008
  end-page: 493
  ident: bib0095
  article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem
  publication-title: J. Quant. Spectrosc. Radiat. Transf
– volume: 29
  start-page: 1075
  year: 2009
  end-page: 1085
  ident: bib0125
  article-title: Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm
  publication-title: Appl. Therm. Eng
– volume: 78
  start-page: 7
  year: 2014
  end-page: 16
  ident: bib0040
  article-title: Thermal performance analyses of porous media solar receiver with different irradiative transfer models
  publication-title: Int. J. Heat Mass Transf
– volume: 123
  start-page: 884
  year: 2001
  end-page: 891
  ident: bib0085
  article-title: Inverse boundary design combing radiation and convection heat transfer
  publication-title: ASME J. Heat Transf
– volume: 51
  start-page: 2772
  year: 2008
  end-page: 2783
  ident: bib0100
  article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm
  publication-title: Int. J. Heat Mass Transf
– volume: 60
  start-page: 61
  year: 2012
  end-page: 69
  ident: bib0050
  article-title: Geometric optimization of radiative enclosures using PSO algorithm
  publication-title: Int. J. Therm. Sci
– volume: 128
  start-page: 269
  year: 2005
  end-page: 282
  ident: bib0080
  article-title: Comparison of methods for inverse design of radiant enclosures
  publication-title: ASME J. Heat Transf
– volume: 38
  start-page: 168
  year: 2012
  end-page: 174
  ident: bib0110
  article-title: Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)
  publication-title: Appl. Therm. Eng
– volume: 94
  start-page: 190
  year: 2015
  end-page: 197
  ident: bib0070
  article-title: Optimum structural design of a heat exchanger for gas-circulation systems
  publication-title: Energy Convers. Manag
– volume: 138
  start-page: 382
  year: 2014
  end-page: 402
  ident: bib0175
  article-title: A new improved krill herd algorithm for global numerical optimization
  publication-title: Neurocomputing
– volume: 50
  start-page: 2828
  year: 2007
  end-page: 2837
  ident: bib0015
  article-title: Inverse radiation-conduction design problem in a participating concentric cylindrical medium
  publication-title: Int. J. Heat Mass Transf
– volume: 50
  start-page: 89
  year: 2013
  end-page: 93
  ident: bib0035
  article-title: An application of Spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media
  publication-title: Appl. Therm. Eng
– volume: 122
  start-page: 492
  year: 2000
  end-page: 502
  ident: bib0045
  article-title: Inverse design model for radiative heat transfer
  publication-title: ASME J. Heat Transf
– volume: 17
  start-page: 589
  year: 1970
  end-page: 602
  ident: bib0180
  article-title: A new method of interpolation and smooth curve fitting based on local procedures
  publication-title: J. Assoc. Comput. Mach
– volume: 91
  start-page: 994
  year: 2015
  end-page: 1002
  ident: bib0130
  article-title: Parallel ant colony optimization for the determination of a point heat source position in a 2-D domain
  publication-title: Appl. Therm. Eng
– volume: 34
  start-page: 649
  year: 1989
  end-page: 659
  ident: bib0200
  article-title: Swimming behavior of krill in response to algal patches: a mesocosm study
  publication-title: Limnol. Oceanogr
– volume: 51
  start-page: 4447
  year: 2008
  end-page: 4460
  ident: bib0020
  article-title: Solidification of a 2-D semitransparent medium using the lattice Boltzmann method and the finite volume method
  publication-title: Int. J. Heat Mass Transf
– volume: 76
  start-page: 344
  year: 2015
  end-page: 356
  ident: bib0025
  article-title: Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace
  publication-title: Appl. Therm. Eng
– volume: 55
  start-page: 2062
  year: 2012
  end-page: 2068
  ident: bib0115
  article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux
  publication-title: Int. J. Heat Mass Transf
– volume: 150
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0135
  article-title: Using a new aerosol relative optical thickness concept to identify aerosol particle species
  publication-title: Atmos. Res
– volume: 87
  start-page: 96
  year: 2014
  end-page: 106
  ident: bib0160
  article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin
  publication-title: Energy Convers. Manag
– volume: 47
  start-page: 2397
  year: 2006
  end-page: 2413
  ident: bib0065
  article-title: Optimum fin geometry in flat plate solar collector systems
  publication-title: Energy Convers. Manag
– volume: 39
  start-page: 40
  year: 2012
  end-page: 45
  ident: bib0120
  article-title: An artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer
  publication-title: Int. Commun. Heat Mass Transf
– volume: 68
  start-page: 559
  year: 2001
  end-page: 573
  ident: bib0190
  article-title: Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries
  publication-title: J. Quant. Spectrosc. Radiat. Transf
– volume: 50
  start-page: 1820
  year: 2011
  end-page: 1831
  ident: bib0060
  article-title: Geometric optimization of a radiation-conduction heating device using meshless method
  publication-title: Int. J. Therm. Sci
– volume: 109
  start-page: 2060
  year: 2008
  end-page: 2077
  ident: bib0105
  article-title: An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm
  publication-title: J. Quant. Spectrosc. Radiat. Transf
– volume: 62
  start-page: 93
  year: 2012
  end-page: 102
  ident: bib0155
  article-title: Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance
  publication-title: Int. J. Therm. Sci
– volume: 88
  start-page: 306
  year: 2015
  end-page: 314
  ident: bib0150
  article-title: Inverse estimation of the particle size distribution using the fruit fly optimization algorithm
  publication-title: Appl. Therm. Eng
– volume: 89
  start-page: 359
  year: 2015
  end-page: 378
  ident: bib0145
  article-title: Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems
  publication-title: Int. J. Heat Mass Transf
– volume: 56
  start-page: 132
  year: 2009
  end-page: 152
  ident: bib0055
  article-title: Inverse geometry design of radiating enclosure filled with participating media using meshless method
  publication-title: Numer. Heat Transf. A
– volume: 150
  start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0135
  article-title: Using a new aerosol relative optical thickness concept to identify aerosol particle species
  publication-title: Atmos. Res
  doi: 10.1016/j.atmosres.2014.07.007
– volume: 123
  start-page: 884
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0085
  article-title: Inverse boundary design combing radiation and convection heat transfer
  publication-title: ASME J. Heat Transf
  doi: 10.1115/1.1388298
– volume: 29
  start-page: 1075
  issue: 5–6
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0125
  article-title: Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2008.05.025
– volume: 138
  start-page: 382
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0175
  article-title: A new improved krill herd algorithm for global numerical optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.023
– volume: 51
  start-page: 2772
  issue: 11–12
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0100
  article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2007.09.037
– volume: 83
  start-page: 428
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0140
  article-title: Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.12.022
– volume: 34
  start-page: 649
  year: 1989
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0200
  article-title: Swimming behavior of krill in response to algal patches: a mesocosm study
  publication-title: Limnol. Oceanogr
  doi: 10.4319/lo.1989.34.4.0649
– volume: 94
  start-page: 190
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0070
  article-title: Optimum structural design of a heat exchanger for gas-circulation systems
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2015.01.061
– volume: 61
  start-page: 507
  issue: 2
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0010
  article-title: An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2013.08.027
– start-page: 119
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0195
– volume: 88
  start-page: 306
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0150
  article-title: Inverse estimation of the particle size distribution using the fruit fly optimization algorithm
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2014.08.057
– volume: 52
  start-page: 127
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0165
  article-title: Optimal geometry design of radiative enclosures using the genetic algorithm
  publication-title: Numer. Heat Transf. A
  doi: 10.1080/10407780601115020
– volume: 60
  start-page: 61
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0050
  article-title: Geometric optimization of radiative enclosures using PSO algorithm
  publication-title: Int. J. Therm. Sci
  doi: 10.1016/j.ijthermalsci.2012.04.024
– volume: 76
  start-page: 344
  issue: 5
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0025
  article-title: Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2014.11.008
– volume: 51
  start-page: 4447
  issue: 17–18
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0020
  article-title: Solidification of a 2-D semitransparent medium using the lattice Boltzmann method and the finite volume method
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.02.003
– volume: 122
  start-page: 492
  issue: 3
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0045
  article-title: Inverse design model for radiative heat transfer
  publication-title: ASME J. Heat Transf
  doi: 10.1115/1.1288774
– year: 1993
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0185
– volume: 50
  start-page: 89
  issue: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0035
  article-title: An application of Spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2012.05.035
– volume: 125
  start-page: 845
  year: 2003
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0075
  article-title: Geometric optimization of radiant enclosures containing specular surfaces
  publication-title: ASME J. Heat Transf
  doi: 10.1115/1.1599369
– volume: 55
  start-page: 2062
  issue: 7
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0115
  article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.12.007
– volume: 89
  start-page: 359
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0145
  article-title: Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.05.015
– volume: 109
  start-page: 2060
  issue: 11
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0105
  article-title: An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm
  publication-title: J. Quant. Spectrosc. Radiat. Transf
  doi: 10.1016/j.jqsrt.2008.01.011
– volume: 47
  start-page: 2397
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0065
  article-title: Optimum fin geometry in flat plate solar collector systems
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2005.11.006
– volume: 56
  start-page: 132
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0055
  article-title: Inverse geometry design of radiating enclosure filled with participating media using meshless method
  publication-title: Numer. Heat Transf. A
  doi: 10.1080/10407780903107303
– volume: 62
  start-page: 93
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0155
  article-title: Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance
  publication-title: Int. J. Therm. Sci
  doi: 10.1016/j.ijthermalsci.2011.12.011
– volume: 91
  start-page: 994
  issue: 5
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0130
  article-title: Parallel ant colony optimization for the determination of a point heat source position in a 2-D domain
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2015.09.002
– volume: 68
  start-page: 559
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0190
  article-title: Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries
  publication-title: J. Quant. Spectrosc. Radiat. Transf
  doi: 10.1016/S0022-4073(00)00045-5
– volume: 50
  start-page: 2828
  issue: 13
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0015
  article-title: Inverse radiation-conduction design problem in a participating concentric cylindrical medium
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.10.056
– volume: 46
  start-page: 649
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0090
  article-title: Inverse radiation analysis in a one-dimensional participating slab by the stochastic particle swarm optimizer algorithm
  publication-title: Int. J. Therm. Sci
  doi: 10.1016/j.ijthermalsci.2006.10.002
– volume: 17
  start-page: 4831
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0170
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 109
  start-page: 476
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0095
  article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem
  publication-title: J. Quant. Spectrosc. Radiat. Transf
  doi: 10.1016/j.jqsrt.2007.07.013
– volume: 78
  start-page: 7
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0040
  article-title: Thermal performance analyses of porous media solar receiver with different irradiative transfer models
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.035
– volume: 50
  start-page: 898
  issue: 6
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0030
  article-title: Inverse radiation analysis in an absorbing, emitting and non-gray participating medium
  publication-title: Int. J. Therm. Sci
  doi: 10.1016/j.ijthermalsci.2011.01.018
– volume: 38
  start-page: 168
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0110
  article-title: Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2012.01.027
– volume: 17
  start-page: 589
  year: 1970
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0180
  article-title: A new method of interpolation and smooth curve fitting based on local procedures
  publication-title: J. Assoc. Comput. Mach
  doi: 10.1145/321607.321609
– volume: 50
  start-page: 1820
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0060
  article-title: Geometric optimization of a radiation-conduction heating device using meshless method
  publication-title: Int. J. Therm. Sci
  doi: 10.1016/j.ijthermalsci.2011.05.009
– volume: 128
  start-page: 269
  year: 2005
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0080
  article-title: Comparison of methods for inverse design of radiant enclosures
  publication-title: ASME J. Heat Transf
  doi: 10.1115/1.2151198
– volume: 39
  start-page: 40
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0120
  article-title: An artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer
  publication-title: Int. Commun. Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2011.09.015
– volume: 87
  start-page: 96
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.01.017_bib0160
  article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2014.06.096
SSID ssj0012874
Score 2.3516643
Snippet •KH achieves better performance in solving the inverse geometry design problems.•The extinction coefficient has significant impact on the inverse design...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1104
SubjectTerms Inverse geometry design
Krill herd
Optimization design
Radiative enclosure
Title Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.01.017
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_Inzx8hh17q2S9MGDzKGYyruooPdSpsmc9qto6uoF_923-vauYGHgdBL2ySkr-F9L-33vkdIw-OmDKVnGW7IYIPiSG0ArisjiFjoAEK7HsPk5Mc-7w3Y_dAZVkinzIVBWmXh-xc-PffWxZVmYc3mbDxuPlktRwD8WRZHoLMxo5wxF1f51feS5mGhnnu-6XKEga23SeOX44U_iTHOmgRYtgSJXjwX8czLl_0BUyvQ090ne0XMSNuLaR2Qipoekt0VJcEjkqBeRjpXdKSSicrSLxrl1AyaaJp9JEaEIv4LAQ6as8jVJ01RlgC9HYWnjhP8VDinyIMf0bd0HMcUphzRBHzKpEjWpEE8StJx9jI5JoPu7XOnZxS1FAzZEjwzVABgBY7PVZ5SXGsT4jZPhhA8wR3Y9rmBBmNJabvckpqbofK44IH2bMnwcuuEVKfJVJ0S6mmGWkYIdIox5ghooW3BhQgisxWIGrkuTefLQmgc613Efskoe_XXDe-j4X3TgsOtEWfZe7YQ3Niw3035lvy1BeQDNmw0wtm_RzgnO3iWE3ucC1LN0nd1CTFLFtbzRVknW-27h17_Bz_B8Zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSCwHxCp2fIBjaJM6TiyEEGJRWS-AxC0kjl0KaYPSIOiFn-IHmUnTAhIHJISUkxNb1th5M5M8vwHY9EVVRcq3LS_imKC4yljo17UVxjxy0UN7PqfDyReXon7DT2_d2yF475-FIVplif09TC_QumyplNasPDWblSu75kp0f7YtyNE5XsmsPNPdF8zbOrsnh7jIW45zfHR9ULfK0gKWqkmRWzpE7EYc8LSvtTAG83rHVxHGEngHsyAvNIjfSjmY5SsjqpH2hRSh8R3FqbmG4w7DKEe4oLIJ228DXolNAvJFludKi6Y3BpufpDL6K02BXSukOinELBOFamhRL-0Hv_jF1x1Pw1QZpLL9nh1mYEi3Z2Hyi3ThHKQk0JF1NGvotKXzrMviggvCUsPyl9SKqWpAT_GDFbR1_coy0kEgeGVo5iSlb5MdRsT7BnvMmknCcMoxSxHEWuXpUBYmjTRr5vetebj5FwsvwEg7betFYL7hJJ5EnlVzzl2JTxhHCinDuFoL5RLs9E0XqFLZnApsJEGfwvYQfDd8QIYPqjZe3hK4g95PPYWPX_bb669S8G3HBuiMfjXC8p9H2IDx-vXFeXB-cnm2AhN0p2AVuaswkmfPeg0DpjxaLzYog7v_fiM-ANVcLOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+geometry+design+of+two-dimensional+complex+radiative+enclosures+using+krill+herd+optimization+algorithm&rft.jtitle=Applied+thermal+engineering&rft.au=Sun%2C+Shuangcheng&rft.au=Qi%2C+Hong&rft.au=Zhao%2C+Fangzhou&rft.au=Ruan%2C+Liming&rft.date=2016-04-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=98&rft.spage=1104&rft.epage=1115&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.01.017&rft.externalDocID=S1359431116000727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon