Pointwise chain recurrent maps of the tree

Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠  . Here n...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Australian Mathematical Society Vol. 69; no. 1; pp. 63 - 68
Main Authors Gengrong, Zhang, Fanping, Zeng
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠  . Here n denotes the number of endpoints of T and, an denotes the minimal common multiple of 2,3,…,n.
Bibliography:istex:A36105D592206A0DFEBCC5C63E682AA571DA1E43
ArticleID:03426
ark:/67375/6GQ-KTPHTT8M-T
PII:S0004972700034262
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700034262