Centre-of-Mass Like Superposition of Ornstein–Uhlenbeck Processes: A Pathway to Non-Autonomous Stochastic Differential Equations and to Fractional Diffusion

We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a p...

Full description

Saved in:
Bibliographic Details
Published inFractional calculus & applied analysis Vol. 21; no. 5; pp. 1420 - 1435
Main Authors D’Ovidio, Mirko, Vitali, Silvia, Sposini, Vittoria, Sliusarenko, Oleksii, Paradisi, Paolo, Castellani, Gastone, Gianni, Pagnini
Format Journal Article
LanguageEnglish
Published Warsaw Versita 25.10.2018
De Gruyter Open
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2018-0074