A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen red...
Saved in:
Published in | Advances in colloid and interface science Vol. 287; p. 102331 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8686 1873-3727 1873-3727 |
DOI | 10.1016/j.cis.2020.102331 |
Cover
Loading…
Abstract | Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
This review analyzes the recent developments of electrochemical synthesis of H2O2 in terms of both catalysts' design and evaluation perspectives while predicting the direction of future growth. [Display omitted]
•Trends in 2 electron ORR and WOR catalysts are critically analyzed.•Ambiguities in evaluation perspectives are criticized and alternatives are proposed.•Fundamentals of oxygen interfacial electrochemistry is elaborated to understand the trends.•Advantages of 2 electron WOR over 2 electron ORR in H2O2 electrosynthesis is emphasized.•Need for electrolyte engineering strategies to improve productivity and selectivity is discussed. |
---|---|
AbstractList | Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives. Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives. This review analyzes the recent developments of electrochemical synthesis of H2O2 in terms of both catalysts' design and evaluation perspectives while predicting the direction of future growth. [Display omitted] •Trends in 2 electron ORR and WOR catalysts are critically analyzed.•Ambiguities in evaluation perspectives are criticized and alternatives are proposed.•Fundamentals of oxygen interfacial electrochemistry is elaborated to understand the trends.•Advantages of 2 electron WOR over 2 electron ORR in H2O2 electrosynthesis is emphasized.•Need for electrolyte engineering strategies to improve productivity and selectivity is discussed. Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives. |
ArticleNumber | 102331 |
Author | Anantharaj, Sengeni Pitchaimuthu, Sudhagar Noda, Suguru |
Author_xml | – sequence: 1 givenname: Sengeni surname: Anantharaj fullname: Anantharaj, Sengeni email: anantharaj1402@gmail.com, w.iac19088@kurenai.waseda.jp organization: Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan – sequence: 2 givenname: Sudhagar surname: Pitchaimuthu fullname: Pitchaimuthu, Sudhagar email: S.Pitchaimuthu@swansea.ac.uk organization: Multi-functional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Center, College of Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, Wales, United Kingdom – sequence: 3 givenname: Suguru surname: Noda fullname: Noda, Suguru email: noda@waseda.jp organization: Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33321333$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi0URC6BH0CDXNLs4Y_9OlFFEZBIkWjSW854NufTrr14fBfuH_Cz8XKBgiKNPSM97xTvc8HOQgzI2Hsp1lLI9tNuDZ7WSqhlV1rLV2wl-05XulPdGVsJIWTVt317zi6IdmVVTde8YedaayXLs2K_rnjCg8cnHkOZAEPmDg84xnkqM3EfOI4IOUXY4uTBjnx7dCk-YuAzpvjTO-R0DHmL5Ik_-bzllkPy-Q9riZBoOcXjsARoLsf8AYnb4DjlZDM-eqS37PVgR8J3z_8lu__65f76prr7_u32-uquAr1pcwUOoQZpO2ylaprNQzM47Ft0sgXX1dZBI5q6B0Clnd1stGsapRZA1UMn9CX7eDo7p_hjj5TN5AlwHG3AuCej6k60alOrtqAfntH9w4TOzMlPNh3N3_IKIE8ApEiUcPiHSGEWQWZniiCzCDInQSXT_ZcBn232MZQm_Phi8vMpiaWdYiwZAo8B0PniLRsX_Qvp32QVrao |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2021_06_158 crossref_primary_10_3390_molecules29112563 crossref_primary_10_1055_s_0043_1777426 crossref_primary_10_1016_j_memsci_2022_120983 crossref_primary_10_1016_j_apcata_2024_119803 crossref_primary_10_1016_j_jclepro_2022_134918 crossref_primary_10_1016_j_jwpe_2024_106492 crossref_primary_10_1021_acsanm_3c02364 crossref_primary_10_1016_j_electacta_2024_144533 crossref_primary_10_1088_2515_7655_acbabc crossref_primary_10_1002_tcr_202400259 crossref_primary_10_3390_c7030055 crossref_primary_10_1016_j_mtadv_2022_100280 crossref_primary_10_1007_s10008_024_06066_3 crossref_primary_10_1080_14328917_2025_2459774 crossref_primary_10_1149_1945_7111_acafa5 crossref_primary_10_1016_j_apcatb_2022_121731 crossref_primary_10_1002_ange_202304413 crossref_primary_10_1016_j_jallcom_2023_171264 crossref_primary_10_1016_j_apcatb_2021_120848 crossref_primary_10_1016_j_nanoen_2024_109671 crossref_primary_10_1021_acs_iecr_4c03408 crossref_primary_10_1007_s10098_022_02323_z crossref_primary_10_1016_j_jwpe_2021_102040 crossref_primary_10_1002_chem_202304065 crossref_primary_10_1016_j_electacta_2024_145097 crossref_primary_10_1007_s10800_023_02019_2 crossref_primary_10_1021_acsami_4c00042 crossref_primary_10_1016_j_electacta_2024_143872 crossref_primary_10_1016_j_electacta_2025_146049 crossref_primary_10_1039_D2CY00008C crossref_primary_10_1021_acsami_1c22641 crossref_primary_10_1016_j_jece_2022_107578 crossref_primary_10_1021_acsaem_1c02943 crossref_primary_10_1007_s00339_021_04574_x crossref_primary_10_1039_D3CC02513F crossref_primary_10_1002_ange_202110352 crossref_primary_10_1016_j_jcou_2023_102554 crossref_primary_10_1002_anie_202304413 crossref_primary_10_1016_j_apcatb_2023_122430 crossref_primary_10_1016_j_cej_2025_159609 crossref_primary_10_1002_chem_202403279 crossref_primary_10_1016_j_ces_2023_118647 crossref_primary_10_1007_s12274_021_4057_9 crossref_primary_10_1021_acsami_4c14391 crossref_primary_10_1021_acssuschemeng_0c07263 crossref_primary_10_1016_j_jmst_2024_03_058 crossref_primary_10_1002_jctb_7680 crossref_primary_10_1016_j_jece_2023_111384 crossref_primary_10_2139_ssrn_4122445 crossref_primary_10_1016_j_cej_2024_151640 crossref_primary_10_1007_s40820_023_01044_2 crossref_primary_10_3389_frsus_2022_799389 crossref_primary_10_1016_j_cej_2024_148919 crossref_primary_10_1016_j_chemosphere_2024_143022 crossref_primary_10_1016_j_pnsc_2022_09_005 crossref_primary_10_1002_ange_202406701 crossref_primary_10_1039_D2YA00076H crossref_primary_10_1002_cssc_202400660 crossref_primary_10_1016_j_apcatb_2022_121312 crossref_primary_10_3389_fchem_2022_1098209 crossref_primary_10_1002_anie_202110352 crossref_primary_10_1016_j_chemosphere_2024_141456 crossref_primary_10_1016_j_apcatb_2022_121737 crossref_primary_10_1016_j_mtener_2022_101092 crossref_primary_10_1016_j_seppur_2024_129290 crossref_primary_10_3390_polym15132859 crossref_primary_10_1039_D3IM00054K crossref_primary_10_1002_cey2_581 crossref_primary_10_1007_s11356_023_30407_w crossref_primary_10_1039_D2QM01294D crossref_primary_10_1002_anie_202406701 crossref_primary_10_1016_j_chemosphere_2022_134129 crossref_primary_10_1039_D2NJ01074G crossref_primary_10_1021_acsaem_4c02171 crossref_primary_10_1016_j_cej_2022_135619 |
Cites_doi | 10.1021/cs5008206 10.1021/jp207679e 10.1021/ja00298a008 10.1021/acsenergylett.8b02303 10.1002/cssc.201402315 10.1016/0013-4686(90)87004-L 10.1016/j.jinorgbio.2014.12.020 10.1007/s12274-017-1572-9 10.1007/s12678-017-0444-0 10.1016/j.elecom.2008.02.004 10.1038/s41570-019-0110-6 10.1016/j.ijhydene.2020.04.073 10.1021/acscatal.8b00217 10.1021/acscatal.8b04873 10.1038/s41563-019-0571-5 10.1021/jp1109702 10.1016/j.electacta.2008.02.012 10.1002/anie.201306588 10.1016/j.anaerobe.2010.06.006 10.1016/j.carbon.2015.09.002 10.1016/j.apcata.2011.09.030 10.1038/ncomms10922 10.1016/j.seppur.2015.10.048 10.1039/C5TA07075A 10.1002/anie.201509241 10.1039/C9NH00783K 10.1038/srep13801 10.1021/jp5113894 10.1016/j.ijhydene.2004.02.001 10.1016/j.chemosphere.2007.05.008 10.1021/acscatal.6b02899 10.1016/S0021-9517(02)00070-2 10.1021/acsami.0c01278 10.1002/anie.201207186 10.1038/s41467-017-00585-6 10.1039/C6CY02282K 10.1021/acs.inorgchem.7b02125 10.1021/jacs.8b02798 10.1002/cssc.200900246 10.1016/j.jelechem.2006.10.023 10.1021/jacs.7b09089 10.1016/j.jcat.2014.12.033 10.1039/C7EE03457A 10.1002/cssc.201402699 10.1016/j.jcat.2015.08.027 10.1039/C4CY00669K 10.1016/j.nanoen.2013.06.009 10.1016/j.mattod.2015.10.006 10.1021/nl500037x 10.1016/j.jconhyd.2006.11.004 10.1021/ac901291v 10.1016/j.jpowsour.2005.05.098 10.1021/acssuschemeng.7b02090 10.1002/smll.201905779 10.1021/jacs.9b05576 10.1021/jz301476w 10.1016/j.joule.2019.09.019 10.1021/ar400177c 10.1134/S1023193518030060 10.1039/c002416c 10.1002/cssc.201701266 10.1039/C9TA14037A 10.1016/j.pnsc.2015.11.008 10.1016/S1452-3981(23)17140-9 10.1007/s00217-007-0562-7 10.1021/acscatal.6b02479 10.1021/acs.inorgchem.7b02947 10.1016/j.jpowsour.2015.12.078 10.1016/j.cplett.2017.01.071 10.1021/acs.jpclett.6b02924 10.1016/j.cattod.2014.03.011 10.1016/j.electacta.2013.06.072 10.1038/s41929-019-0402-8 10.1016/j.electacta.2004.05.006 10.1002/smll.201303715 10.1021/ic9022486 10.1021/acssuschemeng.7b02517 10.1246/cl.2006.1330 10.1002/anie.200704431 10.1021/acsenergylett.9b00277 10.1126/science.1168980 10.1021/acs.jpclett.5b02178 10.1002/cctc.201900100 10.1021/jp8001564 10.1021/jp9064054 10.1021/ja061246s 10.1002/aenm.201801909 10.1002/anie.200503779 10.1038/nmat3795 10.3390/catal8090379 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cis.2020.102331 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
ExternalDocumentID | 33321333 10_1016_j_cis_2020_102331 S000186862030600X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c396t-cdec4c1a7e612559b5fde86ed16cd74adc50548cce23da993d552286ed24f703 |
IEDL.DBID | .~1 |
ISSN | 0001-8686 1873-3727 |
IngestDate | Fri Sep 05 09:10:03 EDT 2025 Wed Feb 19 02:29:12 EST 2025 Tue Jul 01 03:12:04 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Oct 01 07:16:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Water oxidation reaction H2O2 generation Oxygen reduction reaction Electrochemical synthesis HO generation |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-cdec4c1a7e612559b5fde86ed16cd74adc50548cce23da993d552286ed24f703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S000186862030600X-ga1_lrg.jpg |
PMID | 33321333 |
PQID | 2470629426 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2470629426 pubmed_primary_33321333 crossref_primary_10_1016_j_cis_2020_102331 crossref_citationtrail_10_1016_j_cis_2020_102331 elsevier_sciencedirect_doi_10_1016_j_cis_2020_102331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advances in colloid and interface science |
PublicationTitleAlternate | Adv Colloid Interface Sci |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bezerra, Zhang, Lee, Liu, Marques, Marques (bb0420) 2008; 53 Anantharaj, Noda (bb0165) 2020; 16 Li, Chen, Tian, Gong, Xu, Song (bb0300) 2017; 10 Shinagawa, Ng, Takanabe (bb0460) 2017; 10 Cao, Walter, Xu, Nasybulin, Bhattacharya, Bowden (bb0330) 2014; 7 Yamanaka, Murayama (bb0215) 2008; 47 Anantharaj, Aravindan (bb0170) 2019; 2 Cheng, Jiang (bb0280) 2015; 25 Li, An, Zhou, Li, Li, Feng (bb0075) 2016; 306 Ando, Tanaka (bb0135) 2004; 29 Fabbri, Habereder, Waltar, Kötz, Schmidt, Kotz (bb0455) 2014; 4 Baek, Gill, Abroshan, Park, Shi, Nørskov (bb0155) 2019; 4 Guo, Zhang, Sun (bb0260) 2013; 52 Carneiro, Paulo, Siaj, Tavares, Lanza (bb0430) 2015; 332 Anantharaj, Karthik, Kundu, Pitchiah, Kundu, Karthik (bb0245) 2015; 3 Rogers, Huang, Dickinson, Hardacre, Compton (bb0340) 2009; 113 Lewis, Ueura, Fukuta, Freakley, Kang, Wang (bb0055) 2019; 11 Zimmerman, Bayse, Ramoutar, Brumaghim (bb0475) 2015; 145 Perry, Pangotra, Vieira, Csepei, Sieber, Wang (bb0005) 2019; 3 Chen, Wang, Lei, Guo, Liu, Zhang (bb0225) 2017; 56 Katsounaros, Cherevko, Zeradjanin, Mayrhofer (bb0265) 2014; 53 Choi, Kim, Kwon, Cho, Yun, Kim (bb0380) 2016; 7 Xia, Lu, Xu (bb0320) 2015; 156 Yang, Tak, Kim, Soon, Lee (bb0390) 2017; 7 Park, Nabae, Hayakawa, Kakimoto (bb0100) 2014; 4 Long, Wang, Xiao, An, Yang (bb0310) 2015; 19 Forti, Rocha, Lanza, Bertazzoli (bb0435) 2007; 601 Viswanathan, Hansen, Rossmeisl, Nørskov (bb0355) 2012; 3 Murayama, Yamanaka (bb0220) 2011; 115 Otsuka, Yamanaka (bb0200) 1990; 35 Ranganathan, Sieber (bb0365) 2018; 8 Sun, Silvioli, Sahraie, Ju, Li, Zitolo (bb0105) 2019; 141 Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bb0180) 2016; 6 Jirkovský, Halasa, Schiffrin (bb0375) 2010; 12 Chen, Chen, Siahrostami, Higgins, Nordlund, Sokaras (bb0445) 2018; 140 Tiwari, Tiwari, Singh, Kim (bb0275) 2013; 2 Assumpão, Moraes, De Souza, Gaubeur, Oliveira, Antonin (bb0315) 2012; 411–412 Kelly, Shi, Back, Vallez, Park, Siahrostami (bb0145) 2019; 9 Choi, Kwon, Yook, Shin, Kim, Choi (bb0450) 2014; 118 Xu, Thomson (bb0465) 2007; 69 Kornienko, Kolyagin, Kornienko, Parfenov, Ponomarenko (bb0010) 2018; 54 Pizzutilo, Kasian, Choi, Cherevko, Hutchings, Mayrhofer (bb0370) 2017; 683 Xia, Back, Ringe, Jiang, Chen, Sun (bb0140) 2020; 3 Yamanaka, Onizawa, Suzuki, Hanaizumi, Nishimura, Takenaka (bb0400) 2012; 116 Edwards, Solsona, EN, Carley, Herzing, Kiely (bb0070) 2009; 323 Park, Abroshan, Shi, Jung, Siahrostami, Zheng (bb0150) 2019; 4 Iwasaki, Masuda, Ogihara, Yamanaka (bb0210) 2018; 9 Shinagawa, Garcia-Esparza, Takanabe (bb0235) 2015; 5 BBC NEWS | UK | England | London | M25 chaos after lorry explosion n.d. Edwards, Freakley, Carley, Kiely, Hutchings (bb0060) 2014; 47 Yang, Kim, Tak, Soon, Lee (bb0385) 2016; 55 Byeon, Cho, Kim, Chae, Park, Hong (bb0110) 2020; 5 Wang, Pegis, Mayer, Stahl (bb0415) 2017; 139 Viswanathan, Hansen, Nørskov (bb0360) 2015; 6 Wang, Hung, Shammas (bb0020) 2009 Anantharaj, Venkatesh, Salunke, Simha, Prabu, Kundu (bb0250) 2017; 5 Shen, Zhang, Xu, Wang, Ding, Li (bb0485) 2010; 16 Suk, Chung, Han, Oh, Choi (bb0090) 2019 Yamanaka, Ichihashi, Iwasaki, Nishimura, Murayama, Ueda (bb0405) 2013; 108 Verdaguer-Casadevall, Deiana, Karamad, Siahrostami, Malacrida, Hansen (bb0125) 2014; 14 Sánchez-Sánchez, Bard (bb0130) 2009; 81 Ziegelbauer, Olson, Pylypenko, Alamgir, Jaye, Atanassov (bb0410) 2008; 112 Jung, Shin, Lee, Efremov, Lee, Lee (bb0115) 2020 Karthik, Raja, Kumar, Phani, Liu, Guo (bb0195) 2014 Watts, Finn, Cutler, Schmidt, Teel (bb0470) 2007; 91 Wang (bb0255) 2005; 152 Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt (bb0350) 2015; 328 Anantharaj, Karthick, Kundu (bb0240) 2018; 57 Spellman (bb0025) 2013 Yang, Verdaguer-Casadevall, Arnarson, Silvioli, Čolić, Frydendal (bb0065) 2018; 8 Wilson, Zhang, Oloman, Wayner (bb0440) 2006; 1 Shi, Siahrostami, Li, Zhang, Chakthranont, Studt (bb0160) 2017; 8 Shao, Liu, Adzic (bb0335) 2006; 128 Edwards, Freakley, Lewis, Pritchard, Hutchings (bb0050) 2015; 248 Chen, Chen, Siahrostami, Kim, Nordlund, Sokaras (bb0095) 2018; 6 Brillas, Boye, Sirés, Garrido, Rodríguez, Arias (bb0325) 2004; 49 Song, Li, Zhang, Wang, Yan, Wang (bb0230) 2020; 12 Zhao, Zhao, Du, Zhao, Xiao, Hu (bb0480) 2008; 226 Li, Zhao, Chen, Wang, Wei, Huang (bb0285) 2019; 15 Anantharaj, Kundu, Noda (bb0185) 2020 Anantharaj, Karthik, Kundu (bb0190) 2017; 7 Lunsford (bb0045) 2003; 216 Perazzolo, Durante, Pilot, Paduano, Zheng, Rizzi (bb0085) 2015; 95 Bonakdarpour, Delacote, Yang, Wieckowski, Dahn (bb0425) 2008; 10 Anson, Ni, Saveant (bb0395) 1985; 107 Siahrostami, Li, Viswanathan, Nørskov (bb0270) 2017; 8 Jiang, Ni, Chen, Lu, Yang, Kong (bb0015) 2018; 8 Menezes, Indra, Sahraie, Bergmann, Strasser, Driess (bb0305) 2015; 8 Yamanaka, Tazawa, Murayama, Iwasaki, Takenaka (bb0205) 2010; 3 Anantharaj, Ede, Karthick, Sam Sankar, Sangeetha, Pitchiah (bb0175) 2018; 11 Yamanaka, Onizawa, Suzuki, Hanaizumi, Otsuka (bb0080) 2006; 35 Anantharaj, Noda (bb0290) 2020; 45 Gewirth, Thorum (bb0345) 2010; 49 Siahrostami, Verdaguer-Casadevall, Karamad, Deiana, Malacrida, Wickman (bb0120) 2013; 12 Murray, Voskian, Schreier, Hatton, Surendranath (bb0030) 2019; 3 (accessed March 28, 2020). Tian, Zhao, Yu, Kong, Huang, Zhang (bb0295) 2014; 10 Campos-Martin, Blanco-Brieva, Fierro (bb0035) 2006; 45 Spellman (10.1016/j.cis.2020.102331_bb0025) 2013 Choi (10.1016/j.cis.2020.102331_bb0450) 2014; 118 Rogers (10.1016/j.cis.2020.102331_bb0340) 2009; 113 Bezerra (10.1016/j.cis.2020.102331_bb0420) 2008; 53 Anantharaj (10.1016/j.cis.2020.102331_bb0165) 2020; 16 Sánchez-Sánchez (10.1016/j.cis.2020.102331_bb0130) 2009; 81 Chen (10.1016/j.cis.2020.102331_bb0095) 2018; 6 Zhao (10.1016/j.cis.2020.102331_bb0480) 2008; 226 Lewis (10.1016/j.cis.2020.102331_bb0055) 2019; 11 Tian (10.1016/j.cis.2020.102331_bb0295) 2014; 10 Verdaguer-Casadevall (10.1016/j.cis.2020.102331_bb0125) 2014; 14 Campos-Martin (10.1016/j.cis.2020.102331_bb0035) 2006; 45 Otsuka (10.1016/j.cis.2020.102331_bb0200) 1990; 35 Viswanathan (10.1016/j.cis.2020.102331_bb0355) 2012; 3 Yamanaka (10.1016/j.cis.2020.102331_bb0400) 2012; 116 Bonakdarpour (10.1016/j.cis.2020.102331_bb0425) 2008; 10 Medford (10.1016/j.cis.2020.102331_bb0350) 2015; 328 Li (10.1016/j.cis.2020.102331_bb0285) 2019; 15 Viswanathan (10.1016/j.cis.2020.102331_bb0360) 2015; 6 Katsounaros (10.1016/j.cis.2020.102331_bb0265) 2014; 53 Watts (10.1016/j.cis.2020.102331_bb0470) 2007; 91 Perry (10.1016/j.cis.2020.102331_bb0005) 2019; 3 Yamanaka (10.1016/j.cis.2020.102331_bb0405) 2013; 108 Anantharaj (10.1016/j.cis.2020.102331_bb0180) 2016; 6 10.1016/j.cis.2020.102331_bb0040 Assumpão (10.1016/j.cis.2020.102331_bb0315) 2012; 411–412 Kelly (10.1016/j.cis.2020.102331_bb0145) 2019; 9 Anantharaj (10.1016/j.cis.2020.102331_bb0290) 2020; 45 Guo (10.1016/j.cis.2020.102331_bb0260) 2013; 52 Li (10.1016/j.cis.2020.102331_bb0300) 2017; 10 Anantharaj (10.1016/j.cis.2020.102331_bb0245) 2015; 3 Gewirth (10.1016/j.cis.2020.102331_bb0345) 2010; 49 Zimmerman (10.1016/j.cis.2020.102331_bb0475) 2015; 145 Wang (10.1016/j.cis.2020.102331_bb0415) 2017; 139 Li (10.1016/j.cis.2020.102331_bb0075) 2016; 306 Menezes (10.1016/j.cis.2020.102331_bb0305) 2015; 8 Kornienko (10.1016/j.cis.2020.102331_bb0010) 2018; 54 Anantharaj (10.1016/j.cis.2020.102331_bb0240) 2018; 57 Forti (10.1016/j.cis.2020.102331_bb0435) 2007; 601 Jiang (10.1016/j.cis.2020.102331_bb0015) 2018; 8 Ando (10.1016/j.cis.2020.102331_bb0135) 2004; 29 Suk (10.1016/j.cis.2020.102331_bb0090) 2019 Lunsford (10.1016/j.cis.2020.102331_bb0045) 2003; 216 Cao (10.1016/j.cis.2020.102331_bb0330) 2014; 7 Brillas (10.1016/j.cis.2020.102331_bb0325) 2004; 49 Baek (10.1016/j.cis.2020.102331_bb0155) 2019; 4 Fabbri (10.1016/j.cis.2020.102331_bb0455) 2014; 4 Anantharaj (10.1016/j.cis.2020.102331_bb0190) 2017; 7 Anson (10.1016/j.cis.2020.102331_bb0395) 1985; 107 Anantharaj (10.1016/j.cis.2020.102331_bb0170) 2019; 2 Xu (10.1016/j.cis.2020.102331_bb0465) 2007; 69 Edwards (10.1016/j.cis.2020.102331_bb0070) 2009; 323 Chen (10.1016/j.cis.2020.102331_bb0445) 2018; 140 Park (10.1016/j.cis.2020.102331_bb0150) 2019; 4 Anantharaj (10.1016/j.cis.2020.102331_bb0175) 2018; 11 Siahrostami (10.1016/j.cis.2020.102331_bb0270) 2017; 8 Jung (10.1016/j.cis.2020.102331_bb0115) 2020 Pizzutilo (10.1016/j.cis.2020.102331_bb0370) 2017; 683 Shen (10.1016/j.cis.2020.102331_bb0485) 2010; 16 Shinagawa (10.1016/j.cis.2020.102331_bb0235) 2015; 5 Chen (10.1016/j.cis.2020.102331_bb0225) 2017; 56 Sun (10.1016/j.cis.2020.102331_bb0105) 2019; 141 Yang (10.1016/j.cis.2020.102331_bb0390) 2017; 7 Perazzolo (10.1016/j.cis.2020.102331_bb0085) 2015; 95 Jirkovský (10.1016/j.cis.2020.102331_bb0375) 2010; 12 Long (10.1016/j.cis.2020.102331_bb0310) 2015; 19 Karthik (10.1016/j.cis.2020.102331_bb0195) 2014 Park (10.1016/j.cis.2020.102331_bb0100) 2014; 4 Shinagawa (10.1016/j.cis.2020.102331_bb0460) 2017; 10 Ranganathan (10.1016/j.cis.2020.102331_bb0365) 2018; 8 Wang (10.1016/j.cis.2020.102331_bb0020) 2009 Xia (10.1016/j.cis.2020.102331_bb0320) 2015; 156 Shi (10.1016/j.cis.2020.102331_bb0160) 2017; 8 Cheng (10.1016/j.cis.2020.102331_bb0280) 2015; 25 Shao (10.1016/j.cis.2020.102331_bb0335) 2006; 128 Song (10.1016/j.cis.2020.102331_bb0230) 2020; 12 Yamanaka (10.1016/j.cis.2020.102331_bb0205) 2010; 3 Murray (10.1016/j.cis.2020.102331_bb0030) 2019; 3 Yamanaka (10.1016/j.cis.2020.102331_bb0215) 2008; 47 Anantharaj (10.1016/j.cis.2020.102331_bb0185) 2020 Ziegelbauer (10.1016/j.cis.2020.102331_bb0410) 2008; 112 Anantharaj (10.1016/j.cis.2020.102331_bb0250) 2017; 5 Siahrostami (10.1016/j.cis.2020.102331_bb0120) 2013; 12 Yang (10.1016/j.cis.2020.102331_bb0385) 2016; 55 Carneiro (10.1016/j.cis.2020.102331_bb0430) 2015; 332 Edwards (10.1016/j.cis.2020.102331_bb0050) 2015; 248 Choi (10.1016/j.cis.2020.102331_bb0380) 2016; 7 Wang (10.1016/j.cis.2020.102331_bb0255) 2005; 152 Wilson (10.1016/j.cis.2020.102331_bb0440) 2006; 1 Byeon (10.1016/j.cis.2020.102331_bb0110) 2020; 5 Edwards (10.1016/j.cis.2020.102331_bb0060) 2014; 47 Iwasaki (10.1016/j.cis.2020.102331_bb0210) 2018; 9 Murayama (10.1016/j.cis.2020.102331_bb0220) 2011; 115 Xia (10.1016/j.cis.2020.102331_bb0140) 2020; 3 Tiwari (10.1016/j.cis.2020.102331_bb0275) 2013; 2 Yang (10.1016/j.cis.2020.102331_bb0065) 2018; 8 Yamanaka (10.1016/j.cis.2020.102331_bb0080) 2006; 35 |
References_xml | – volume: 10 start-page: 4155 year: 2017 end-page: 4162 ident: bb0460 article-title: Electrolyte engineering towards efficient water splitting at mild pH publication-title: ChemSusChem – volume: 7 start-page: 882 year: 2017 end-page: 893 ident: bb0190 article-title: Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: a highly efficient OER electrocatalyst publication-title: Cat Sci Technol – volume: 139 start-page: 16458 year: 2017 end-page: 16461 ident: bb0415 article-title: Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts publication-title: J Am Chem Soc – volume: 10 start-page: 3629 year: 2017 end-page: 3637 ident: bb0300 article-title: Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction publication-title: Nano Res – volume: 56 start-page: 13368 year: 2017 end-page: 13375 ident: bb0225 article-title: Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle publication-title: Inorg Chem – volume: 10 start-page: 2251 year: 2014 end-page: 2259 ident: bb0295 article-title: Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction publication-title: Small – start-page: 923 year: 2013 ident: bb0025 article-title: Handbook of water and wastewater treatment plant operations – volume: 5 start-page: 832 year: 2020 end-page: 838 ident: bb0110 article-title: High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts publication-title: Nanoscale Horizons – volume: 118 start-page: 30063 year: 2014 end-page: 30070 ident: bb0450 article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated pt surface publication-title: J Phys Chem C – volume: 16 start-page: 380 year: 2010 end-page: 386 ident: bb0485 article-title: Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01 publication-title: Anaerobe – volume: 4 start-page: 352 year: 2019 end-page: 357 ident: bb0150 article-title: CaSnO 3 : an electrocatalyst for two-electron water oxidation reaction to form H 2 O 2 publication-title: ACS Energy Lett – volume: 69 start-page: 755 year: 2007 end-page: 762 ident: bb0465 article-title: An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids publication-title: Chemosphere – start-page: 4174 year: 2020 end-page: 4192 ident: bb0185 article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction publication-title: J Mater Chem A – volume: 152 start-page: 1 year: 2005 ident: bb0255 article-title: Recent development of non-platinum catalysts for oxygen reduction reaction publication-title: J Power Sources – volume: 81 start-page: 8094 year: 2009 end-page: 8100 ident: bb0130 article-title: Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy publication-title: Anal Chem – volume: 1 start-page: 99 year: 2006 end-page: 109 ident: bb0440 article-title: Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2 publication-title: Int J Electrochem Sci – volume: 3 start-page: 24463 year: 2015 end-page: 24478 ident: bb0245 article-title: Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities publication-title: J Mater Chem A – volume: 128 start-page: 7408 year: 2006 end-page: 7409 ident: bb0335 article-title: Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes publication-title: J Am Chem Soc – volume: 14 start-page: 1603 year: 2014 end-page: 1608 ident: bb0125 article-title: Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering publication-title: Nano Lett – volume: 45 start-page: 15763 year: 2020 end-page: 15784 ident: bb0290 article-title: Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: a review publication-title: Int J Hydrogen Energy – volume: 95 start-page: 949 year: 2015 end-page: 963 ident: bb0085 article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide publication-title: Carbon N Y – volume: 91 start-page: 312 year: 2007 end-page: 326 ident: bb0470 article-title: Enhanced stability of hydrogen peroxide in the presence of subsurface solids publication-title: J Contam Hydrol – volume: 35 start-page: 319 year: 1990 end-page: 322 ident: bb0200 article-title: One step synthesis of hydrogen peroxide through fuel cell reaction publication-title: Electrochim Acta – volume: 29 start-page: 1349 year: 2004 end-page: 1354 ident: bb0135 article-title: Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis publication-title: Int J Hydrogen Energy – volume: 11 start-page: 1673 year: 2019 end-page: 1680 ident: bb0055 article-title: The direct synthesis of H 2 O 2 using TS-1 supported catalysts publication-title: ChemCatChem – year: 2020 ident: bb0115 article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production publication-title: Nat Mater – volume: 115 start-page: 5792 year: 2011 end-page: 5799 ident: bb0220 article-title: Electrosynthesis of neutral H2O2 solution from O 2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell publication-title: J Phys Chem C – volume: 8 start-page: 17 year: 2018 end-page: 19 ident: bb0015 article-title: Selective electrochemical H2O2 production through two-electron oxygen electrochemistry publication-title: Adv Energy Mater – volume: 47 start-page: 845 year: 2014 end-page: 854 ident: bb0060 article-title: Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide publication-title: Acc Chem Res – volume: 45 start-page: 6962 year: 2006 end-page: 6984 ident: bb0035 article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process publication-title: Angew Chemie Int Ed – volume: 9 start-page: 236 year: 2018 end-page: 242 ident: bb0210 article-title: Direct synthesis of pure H2O2 aqueous solution by CoTPP/Ketjen-black electrocatalyst and the fuel cell reactor publication-title: Electrocatalysis – volume: 112 start-page: 8839 year: 2008 end-page: 8849 ident: bb0410 article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications publication-title: J Phys Chem C – volume: 8 start-page: 164 year: 2015 end-page: 167 ident: bb0305 article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions publication-title: ChemSusChem – volume: 601 start-page: 63 year: 2007 end-page: 67 ident: bb0435 article-title: Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone publication-title: J Electroanal Chem – volume: 145 start-page: 30 year: 2015 end-page: 40 ident: bb0475 article-title: Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding publication-title: J Inorg Biochem – volume: 8 start-page: 379 year: 2018 end-page: 400 ident: bb0365 article-title: Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review publication-title: Catalysts – volume: 6 start-page: 8069 year: 2016 end-page: 8097 ident: bb0180 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co and Ni: a review publication-title: ACS Catal – volume: 57 start-page: 3082 year: 2018 end-page: 3096 ident: bb0240 article-title: NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions publication-title: Inorg Chem – volume: 226 start-page: 499 year: 2008 end-page: 505 ident: bb0480 article-title: Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma publication-title: Eur Food Res Technol – year: 2014 ident: bb0195 article-title: Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2- on anodized Au surface: application to electrocatalysis of the oxygen evolution reaction publication-title: RSC Adv – volume: 108 start-page: 321 year: 2013 end-page: 329 ident: bb0405 article-title: Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation publication-title: Electrochim Acta – volume: 7 start-page: 1301 year: 2017 end-page: 1307 ident: bb0390 article-title: Support effect in single-atom platinum catalyst for electrochemical oxygen reduction publication-title: ACS Catal – volume: 53 start-page: 102 year: 2014 end-page: 121 ident: bb0265 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew Chemie Int Ed – volume: 5 start-page: 10072 year: 2017 end-page: 10083 ident: bb0250 article-title: High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal publication-title: ACS Sustain Chem Eng – volume: 4 start-page: 3749 year: 2014 end-page: 3754 ident: bb0100 article-title: Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon publication-title: ACS Catal – volume: 12 start-page: 1137 year: 2013 end-page: 1143 ident: bb0120 article-title: Enabling direct H2O2 production through rational electrocatalyst design publication-title: Nat Mater – volume: 4 start-page: 3800 year: 2014 end-page: 3821 ident: bb0455 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Cat Sci Technol – volume: 140 start-page: 7851 year: 2018 end-page: 7859 ident: bb0445 article-title: Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide publication-title: J Am Chem Soc – volume: 328 start-page: 36 year: 2015 end-page: 42 ident: bb0350 article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J Catal – volume: 8 start-page: 4064 year: 2018 end-page: 4081 ident: bb0065 article-title: Toward the decentralized electrochemical production of H2O2: a focus on the catalysis publication-title: ACS Catal – volume: 11 start-page: 744 year: 2018 end-page: 771 ident: bb0175 article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment publication-title: Energ Environ Sci – volume: 3 start-page: 59 year: 2010 end-page: 62 ident: bb0205 article-title: Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC) publication-title: ChemSusChem – volume: 332 start-page: 51 year: 2015 end-page: 61 ident: bb0430 article-title: Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration publication-title: J Catal – volume: 12 start-page: 17519 year: 2020 end-page: 17527 ident: bb0230 article-title: Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 1157 year: 2017 end-page: 1160 ident: bb0270 article-title: One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution publication-title: J Phys Chem Lett – volume: 6 start-page: 311 year: 2018 end-page: 317 ident: bb0095 article-title: Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide publication-title: ACS Sustain Chem Eng – volume: 683 start-page: 436 year: 2017 end-page: 442 ident: bb0370 article-title: Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production publication-title: Chem Phys Lett – volume: 9 start-page: 4593 year: 2019 end-page: 4599 ident: bb0145 article-title: ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide publication-title: ACS Catal – volume: 3 start-page: 2948 year: 2012 end-page: 2951 ident: bb0355 article-title: Unifying the 2e - and 4e - reduction of oxygen on metal surfaces publication-title: J Phys Chem Lett – volume: 4 start-page: 720 year: 2019 end-page: 728 ident: bb0155 article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2 publication-title: ACS Energy Lett – volume: 3 start-page: 125 year: 2020 end-page: 134 ident: bb0140 article-title: Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide publication-title: Nat Catal – volume: 16 year: 2020 ident: bb0165 article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony publication-title: Small – volume: 2 start-page: 553 year: 2013 end-page: 578 ident: bb0275 article-title: Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells publication-title: Nano Energy – volume: 12 start-page: 8042 year: 2010 end-page: 8052 ident: bb0375 article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles publication-title: Phys Chem Chem Phys – volume: 52 start-page: 8526 year: 2013 end-page: 8544 ident: bb0260 article-title: Tuning nanoparticle catalysis for the oxygen reduction reaction publication-title: Angew Chemie Int Ed – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: bb0380 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat Commun – volume: 10 start-page: 611 year: 2008 end-page: 615 ident: bb0425 article-title: Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction publication-title: Electrochem Commun – volume: 49 start-page: 3557 year: 2010 end-page: 3566 ident: bb0345 article-title: Electroreduction of dioxygen for fuel-cell applications: materials and challenges publication-title: Inorg Chem – volume: 107 start-page: 3442 year: 1985 end-page: 3450 ident: bb0395 article-title: Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalyzed by cobalt(II) Tetrakis(4-N-methylpyridyl)porphyrin publication-title: J Am Chem Soc – volume: 25 start-page: 545 year: 2015 end-page: 553 ident: bb0280 article-title: Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes publication-title: Prog Nat Sci Mater Int – volume: 2 start-page: 1902666 year: 2019 end-page: 1902695 ident: bb0170 article-title: Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis publication-title: Adv Energy Mater – volume: 15 year: 2019 ident: bb0285 article-title: Recent advances in the development of water oxidation electrocatalysts at mild pH publication-title: Small – volume: 216 start-page: 455 year: 2003 end-page: 460 ident: bb0045 article-title: The direct formation of H2O2 from H2 and O2 over palladium catalysts publication-title: J Catal – volume: 49 start-page: 4487 year: 2004 end-page: 4496 ident: bb0325 article-title: Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode publication-title: Electrochim Acta – volume: 8 start-page: 701 year: 2017 end-page: 712 ident: bb0160 article-title: Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide publication-title: Nat Commun – volume: 19 start-page: 213 year: 2015 end-page: 226 ident: bb0310 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater Today – volume: 323 start-page: 1037 year: 2009 end-page: 1041 ident: bb0070 article-title: Synthesis process publication-title: Science (80-) – volume: 306 start-page: 495 year: 2016 end-page: 502 ident: bb0075 article-title: A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems publication-title: J Power Sources – reference: (accessed March 28, 2020). – start-page: 0 year: 2019 end-page: 1 ident: bb0090 article-title: Selective H 2 O 2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts publication-title: Catal Today – volume: 53 start-page: 4937 year: 2008 ident: bb0420 article-title: A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction publication-title: Electrochim Acta – volume: 156 start-page: 553 year: 2015 end-page: 560 ident: bb0320 article-title: An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode publication-title: Sep Purif Technol – volume: 113 start-page: 17811 year: 2009 end-page: 17823 ident: bb0340 article-title: Investigating the mechanism and electrode kinetics of the oxygenlsuperoxide (O2IO2-) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298-318 K publication-title: J Phys Chem C – volume: 3 start-page: 2942 year: 2019 end-page: 2954 ident: bb0030 article-title: Electrosynthesis of hydrogen peroxide by phase-transfer catalysis publication-title: Joule – volume: 54 start-page: 258 year: 2018 end-page: 264 ident: bb0010 article-title: Electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode based on mesostructured carbon CMK-3 publication-title: Russ J Electrochem – volume: 141 start-page: 12372 year: 2019 end-page: 12381 ident: bb0105 article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts publication-title: J Am Chem Soc – volume: 3 start-page: 442 year: 2019 end-page: 458 ident: bb0005 article-title: Electrochemical synthesis of hydrogen peroxide from water and oxygen publication-title: Nat Rev Chem – volume: 248 start-page: 3 year: 2015 end-page: 9 ident: bb0050 article-title: Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen publication-title: Catal Today – volume: 55 start-page: 2058 year: 2016 end-page: 2062 ident: bb0385 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew Chemie Int Ed – volume: 7 start-page: 2436 year: 2014 end-page: 2440 ident: bb0330 article-title: The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries publication-title: ChemSusChem – volume: 6 start-page: 4224 year: 2015 end-page: 4228 ident: bb0360 article-title: Selective electrochemical generation of hydrogen peroxide from water oxidation publication-title: J Phys Chem Lett – year: 2009 ident: bb0020 article-title: Handbook of advanced industrial and hazardous wastes treatment – volume: 411–412 start-page: 1 year: 2012 end-page: 6 ident: bb0315 article-title: Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis publication-title: Appl Catal A Gen – reference: BBC NEWS | UK | England | London | M25 chaos after lorry explosion n.d. – volume: 47 start-page: 1900 year: 2008 end-page: 1902 ident: bb0215 article-title: Neutral H2O2 synthesis by electrolysis of water and O2 publication-title: Angew Chemie Int Ed – volume: 116 start-page: 4572 year: 2012 end-page: 4583 ident: bb0400 article-title: Study of direct synthesis of hydrogen peroxide acid solutions at a heat-treated MnCl-porphyrin/activated carbon cathode from H 2 and O 2 publication-title: J Phys Chem C – volume: 35 start-page: 1330 year: 2006 end-page: 1331 ident: bb0080 article-title: Electrocatalysis of heat-treated Mn-porphyrin/carbon cathode for synthesis of H2O2 acid solutions by H2/O2 fuel cell method publication-title: Chem Lett – volume: 5 start-page: 13801 year: 2015 end-page: 13821 ident: bb0235 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci Rep – volume: 4 start-page: 3749 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0100 article-title: Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon publication-title: ACS Catal doi: 10.1021/cs5008206 – volume: 116 start-page: 4572 year: 2012 ident: 10.1016/j.cis.2020.102331_bb0400 article-title: Study of direct synthesis of hydrogen peroxide acid solutions at a heat-treated MnCl-porphyrin/activated carbon cathode from H 2 and O 2 publication-title: J Phys Chem C doi: 10.1021/jp207679e – volume: 107 start-page: 3442 year: 1985 ident: 10.1016/j.cis.2020.102331_bb0395 article-title: Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalyzed by cobalt(II) Tetrakis(4-N-methylpyridyl)porphyrin publication-title: J Am Chem Soc doi: 10.1021/ja00298a008 – volume: 4 start-page: 352 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0150 article-title: CaSnO 3 : an electrocatalyst for two-electron water oxidation reaction to form H 2 O 2 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b02303 – volume: 7 start-page: 2436 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0330 article-title: The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries publication-title: ChemSusChem doi: 10.1002/cssc.201402315 – volume: 35 start-page: 319 year: 1990 ident: 10.1016/j.cis.2020.102331_bb0200 article-title: One step synthesis of hydrogen peroxide through fuel cell reaction publication-title: Electrochim Acta doi: 10.1016/0013-4686(90)87004-L – volume: 145 start-page: 30 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0475 article-title: Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2014.12.020 – volume: 10 start-page: 3629 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0300 article-title: Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction publication-title: Nano Res doi: 10.1007/s12274-017-1572-9 – volume: 9 start-page: 236 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0210 article-title: Direct synthesis of pure H2O2 aqueous solution by CoTPP/Ketjen-black electrocatalyst and the fuel cell reactor publication-title: Electrocatalysis doi: 10.1007/s12678-017-0444-0 – volume: 10 start-page: 611 year: 2008 ident: 10.1016/j.cis.2020.102331_bb0425 article-title: Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction publication-title: Electrochem Commun doi: 10.1016/j.elecom.2008.02.004 – volume: 3 start-page: 442 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0005 article-title: Electrochemical synthesis of hydrogen peroxide from water and oxygen publication-title: Nat Rev Chem doi: 10.1038/s41570-019-0110-6 – volume: 45 start-page: 15763 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0290 article-title: Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.073 – volume: 8 start-page: 4064 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0065 article-title: Toward the decentralized electrochemical production of H2O2: a focus on the catalysis publication-title: ACS Catal doi: 10.1021/acscatal.8b00217 – volume: 9 start-page: 4593 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0145 article-title: ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide publication-title: ACS Catal doi: 10.1021/acscatal.8b04873 – year: 2020 ident: 10.1016/j.cis.2020.102331_bb0115 article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production publication-title: Nat Mater doi: 10.1038/s41563-019-0571-5 – volume: 115 start-page: 5792 year: 2011 ident: 10.1016/j.cis.2020.102331_bb0220 article-title: Electrosynthesis of neutral H2O2 solution from O 2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell publication-title: J Phys Chem C doi: 10.1021/jp1109702 – volume: 53 start-page: 4937 year: 2008 ident: 10.1016/j.cis.2020.102331_bb0420 article-title: A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.02.012 – volume: 53 start-page: 102 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0265 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew Chemie Int Ed doi: 10.1002/anie.201306588 – volume: 16 start-page: 380 year: 2010 ident: 10.1016/j.cis.2020.102331_bb0485 article-title: Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01 publication-title: Anaerobe doi: 10.1016/j.anaerobe.2010.06.006 – volume: 95 start-page: 949 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0085 article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide publication-title: Carbon N Y doi: 10.1016/j.carbon.2015.09.002 – volume: 411–412 start-page: 1 year: 2012 ident: 10.1016/j.cis.2020.102331_bb0315 article-title: Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2011.09.030 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.cis.2020.102331_bb0380 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat Commun doi: 10.1038/ncomms10922 – volume: 156 start-page: 553 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0320 article-title: An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2015.10.048 – volume: 3 start-page: 24463 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0245 article-title: Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities publication-title: J Mater Chem A doi: 10.1039/C5TA07075A – volume: 55 start-page: 2058 year: 2016 ident: 10.1016/j.cis.2020.102331_bb0385 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew Chemie Int Ed doi: 10.1002/anie.201509241 – volume: 5 start-page: 832 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0110 article-title: High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts publication-title: Nanoscale Horizons doi: 10.1039/C9NH00783K – volume: 5 start-page: 13801 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0235 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci Rep doi: 10.1038/srep13801 – volume: 118 start-page: 30063 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0450 article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated pt surface publication-title: J Phys Chem C doi: 10.1021/jp5113894 – volume: 29 start-page: 1349 year: 2004 ident: 10.1016/j.cis.2020.102331_bb0135 article-title: Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2004.02.001 – year: 2009 ident: 10.1016/j.cis.2020.102331_bb0020 – volume: 69 start-page: 755 year: 2007 ident: 10.1016/j.cis.2020.102331_bb0465 article-title: An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.05.008 – volume: 15 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0285 article-title: Recent advances in the development of water oxidation electrocatalysts at mild pH publication-title: Small – volume: 7 start-page: 1301 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0390 article-title: Support effect in single-atom platinum catalyst for electrochemical oxygen reduction publication-title: ACS Catal doi: 10.1021/acscatal.6b02899 – volume: 216 start-page: 455 year: 2003 ident: 10.1016/j.cis.2020.102331_bb0045 article-title: The direct formation of H2O2 from H2 and O2 over palladium catalysts publication-title: J Catal doi: 10.1016/S0021-9517(02)00070-2 – volume: 12 start-page: 17519 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0230 article-title: Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c01278 – volume: 52 start-page: 8526 year: 2013 ident: 10.1016/j.cis.2020.102331_bb0260 article-title: Tuning nanoparticle catalysis for the oxygen reduction reaction publication-title: Angew Chemie Int Ed doi: 10.1002/anie.201207186 – volume: 8 start-page: 701 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0160 article-title: Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide publication-title: Nat Commun doi: 10.1038/s41467-017-00585-6 – volume: 7 start-page: 882 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0190 article-title: Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: a highly efficient OER electrocatalyst publication-title: Cat Sci Technol doi: 10.1039/C6CY02282K – volume: 56 start-page: 13368 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0225 article-title: Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.7b02125 – volume: 140 start-page: 7851 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0445 article-title: Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide publication-title: J Am Chem Soc doi: 10.1021/jacs.8b02798 – volume: 3 start-page: 59 year: 2010 ident: 10.1016/j.cis.2020.102331_bb0205 article-title: Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC) publication-title: ChemSusChem doi: 10.1002/cssc.200900246 – volume: 601 start-page: 63 year: 2007 ident: 10.1016/j.cis.2020.102331_bb0435 article-title: Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2006.10.023 – ident: 10.1016/j.cis.2020.102331_bb0040 – volume: 139 start-page: 16458 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0415 article-title: Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.7b09089 – volume: 328 start-page: 36 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0350 article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J Catal doi: 10.1016/j.jcat.2014.12.033 – volume: 11 start-page: 744 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0175 article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment publication-title: Energ Environ Sci doi: 10.1039/C7EE03457A – volume: 8 start-page: 164 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0305 article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions publication-title: ChemSusChem doi: 10.1002/cssc.201402699 – volume: 332 start-page: 51 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0430 article-title: Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration publication-title: J Catal doi: 10.1016/j.jcat.2015.08.027 – volume: 4 start-page: 3800 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0455 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Cat Sci Technol doi: 10.1039/C4CY00669K – volume: 2 start-page: 553 year: 2013 ident: 10.1016/j.cis.2020.102331_bb0275 article-title: Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.06.009 – volume: 19 start-page: 213 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0310 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater Today doi: 10.1016/j.mattod.2015.10.006 – volume: 14 start-page: 1603 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0125 article-title: Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering publication-title: Nano Lett doi: 10.1021/nl500037x – volume: 91 start-page: 312 year: 2007 ident: 10.1016/j.cis.2020.102331_bb0470 article-title: Enhanced stability of hydrogen peroxide in the presence of subsurface solids publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2006.11.004 – volume: 81 start-page: 8094 year: 2009 ident: 10.1016/j.cis.2020.102331_bb0130 article-title: Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy publication-title: Anal Chem doi: 10.1021/ac901291v – volume: 152 start-page: 1 year: 2005 ident: 10.1016/j.cis.2020.102331_bb0255 article-title: Recent development of non-platinum catalysts for oxygen reduction reaction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.05.098 – volume: 5 start-page: 10072 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0250 article-title: High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02090 – volume: 16 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0165 article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony publication-title: Small doi: 10.1002/smll.201905779 – volume: 141 start-page: 12372 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0105 article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.9b05576 – volume: 3 start-page: 2948 year: 2012 ident: 10.1016/j.cis.2020.102331_bb0355 article-title: Unifying the 2e - and 4e - reduction of oxygen on metal surfaces publication-title: J Phys Chem Lett doi: 10.1021/jz301476w – volume: 3 start-page: 2942 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0030 article-title: Electrosynthesis of hydrogen peroxide by phase-transfer catalysis publication-title: Joule doi: 10.1016/j.joule.2019.09.019 – start-page: 0 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0090 article-title: Selective H 2 O 2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts publication-title: Catal Today – volume: 47 start-page: 845 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0060 article-title: Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide publication-title: Acc Chem Res doi: 10.1021/ar400177c – volume: 54 start-page: 258 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0010 article-title: Electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode based on mesostructured carbon CMK-3 publication-title: Russ J Electrochem doi: 10.1134/S1023193518030060 – volume: 12 start-page: 8042 year: 2010 ident: 10.1016/j.cis.2020.102331_bb0375 article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles publication-title: Phys Chem Chem Phys doi: 10.1039/c002416c – volume: 10 start-page: 4155 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0460 article-title: Electrolyte engineering towards efficient water splitting at mild pH publication-title: ChemSusChem doi: 10.1002/cssc.201701266 – start-page: 4174 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0185 article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction publication-title: J Mater Chem A doi: 10.1039/C9TA14037A – volume: 25 start-page: 545 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0280 article-title: Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes publication-title: Prog Nat Sci Mater Int doi: 10.1016/j.pnsc.2015.11.008 – volume: 1 start-page: 99 year: 2006 ident: 10.1016/j.cis.2020.102331_bb0440 article-title: Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)17140-9 – volume: 226 start-page: 499 year: 2008 ident: 10.1016/j.cis.2020.102331_bb0480 article-title: Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma publication-title: Eur Food Res Technol doi: 10.1007/s00217-007-0562-7 – volume: 6 start-page: 8069 year: 2016 ident: 10.1016/j.cis.2020.102331_bb0180 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co and Ni: a review publication-title: ACS Catal doi: 10.1021/acscatal.6b02479 – volume: 57 start-page: 3082 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0240 article-title: NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.7b02947 – start-page: 923 year: 2013 ident: 10.1016/j.cis.2020.102331_bb0025 – volume: 306 start-page: 495 year: 2016 ident: 10.1016/j.cis.2020.102331_bb0075 article-title: A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.078 – volume: 683 start-page: 436 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0370 article-title: Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2017.01.071 – volume: 2 start-page: 1902666 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0170 article-title: Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis publication-title: Adv Energy Mater – volume: 8 start-page: 1157 year: 2017 ident: 10.1016/j.cis.2020.102331_bb0270 article-title: One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b02924 – volume: 248 start-page: 3 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0050 article-title: Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen publication-title: Catal Today doi: 10.1016/j.cattod.2014.03.011 – volume: 108 start-page: 321 year: 2013 ident: 10.1016/j.cis.2020.102331_bb0405 article-title: Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.06.072 – volume: 3 start-page: 125 year: 2020 ident: 10.1016/j.cis.2020.102331_bb0140 article-title: Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide publication-title: Nat Catal doi: 10.1038/s41929-019-0402-8 – volume: 49 start-page: 4487 year: 2004 ident: 10.1016/j.cis.2020.102331_bb0325 article-title: Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.05.006 – volume: 10 start-page: 2251 year: 2014 ident: 10.1016/j.cis.2020.102331_bb0295 article-title: Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction publication-title: Small doi: 10.1002/smll.201303715 – volume: 49 start-page: 3557 year: 2010 ident: 10.1016/j.cis.2020.102331_bb0345 article-title: Electroreduction of dioxygen for fuel-cell applications: materials and challenges publication-title: Inorg Chem doi: 10.1021/ic9022486 – volume: 6 start-page: 311 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0095 article-title: Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02517 – volume: 35 start-page: 1330 year: 2006 ident: 10.1016/j.cis.2020.102331_bb0080 article-title: Electrocatalysis of heat-treated Mn-porphyrin/carbon cathode for synthesis of H2O2 acid solutions by H2/O2 fuel cell method publication-title: Chem Lett doi: 10.1246/cl.2006.1330 – volume: 47 start-page: 1900 year: 2008 ident: 10.1016/j.cis.2020.102331_bb0215 article-title: Neutral H2O2 synthesis by electrolysis of water and O2 publication-title: Angew Chemie Int Ed doi: 10.1002/anie.200704431 – volume: 4 start-page: 720 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0155 article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b00277 – volume: 323 start-page: 1037 year: 2009 ident: 10.1016/j.cis.2020.102331_bb0070 article-title: Synthesis process publication-title: Science (80-) doi: 10.1126/science.1168980 – volume: 6 start-page: 4224 year: 2015 ident: 10.1016/j.cis.2020.102331_bb0360 article-title: Selective electrochemical generation of hydrogen peroxide from water oxidation publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b02178 – volume: 11 start-page: 1673 year: 2019 ident: 10.1016/j.cis.2020.102331_bb0055 article-title: The direct synthesis of H 2 O 2 using TS-1 supported catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201900100 – volume: 112 start-page: 8839 year: 2008 ident: 10.1016/j.cis.2020.102331_bb0410 article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications publication-title: J Phys Chem C doi: 10.1021/jp8001564 – volume: 113 start-page: 17811 year: 2009 ident: 10.1016/j.cis.2020.102331_bb0340 article-title: Investigating the mechanism and electrode kinetics of the oxygenlsuperoxide (O2IO2-) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298-318 K publication-title: J Phys Chem C doi: 10.1021/jp9064054 – volume: 128 start-page: 7408 year: 2006 ident: 10.1016/j.cis.2020.102331_bb0335 article-title: Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes publication-title: J Am Chem Soc doi: 10.1021/ja061246s – volume: 8 start-page: 17 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0015 article-title: Selective electrochemical H2O2 production through two-electron oxygen electrochemistry publication-title: Adv Energy Mater doi: 10.1002/aenm.201801909 – volume: 45 start-page: 6962 year: 2006 ident: 10.1016/j.cis.2020.102331_bb0035 article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process publication-title: Angew Chemie Int Ed doi: 10.1002/anie.200503779 – volume: 12 start-page: 1137 year: 2013 ident: 10.1016/j.cis.2020.102331_bb0120 article-title: Enabling direct H2O2 production through rational electrocatalyst design publication-title: Nat Mater doi: 10.1038/nmat3795 – year: 2014 ident: 10.1016/j.cis.2020.102331_bb0195 article-title: Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2- on anodized Au surface: application to electrocatalysis of the oxygen evolution reaction publication-title: RSC Adv – volume: 8 start-page: 379 year: 2018 ident: 10.1016/j.cis.2020.102331_bb0365 article-title: Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review publication-title: Catalysts doi: 10.3390/catal8090379 |
SSID | ssj0002575 |
Score | 2.5854893 |
SecondaryResourceType | review_article |
Snippet | Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102331 |
SubjectTerms | Electrocatalysis Electrochemical synthesis H2O2 generation Oxygen reduction reaction Water oxidation reaction |
Title | A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies |
URI | https://dx.doi.org/10.1016/j.cis.2020.102331 https://www.ncbi.nlm.nih.gov/pubmed/33321333 https://www.proquest.com/docview/2470629426 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1VrRBcUCkFlkJlJE6VQrOxk-weVyuqhRU9oFbdW-SMbRGEkqrZSuyFM5_dmdjeikN74JTIshMrM7Gf7TdvAD5i4XTtpnXi8olMlHOGfilXJtq43JmyUHZgE347LxaX6usqX-3APMbCMK0yjP1-TB9G61ByGr7m6XXTcIxvylrvRcawN01XHMGuStbP__TnnuZBLumzGNCymWvHk82B44UNK3ZnXsBAjh-amx7CnsMcdLYPzwN4FDPfvxewY9sDeOLTSW4O4Ok8Zm-j0oHaif1L-DsTPj5FdC3dMRtTmHuqUC-aVoRkOBjUA8SPjbnpyLUEy4j_bowV_aYlqNg3veCdW6EFhhwJQm-1PUXnuEEM3uyFbo3o11GM4hAuzj5fzBdJyL-QoJwW6wSNRYVjXVqGQfm0JuvZSWHNuEBTKm2Q4JOaINpMGk1Ax-SE5rhCphyNJK9gt-1a-wZEntk0r8doS0IMaKVOkaAkWnpMSYhpMoI0fvgKgzY5p8j4VUUS2k8q7yu2VeVtNYKTbZNrL8zxWGUVrVn9410VTRyPNfsQLV-R-fgoRbe2u6VKqkyLbErwZgSvvUtseyGlzGjlL9_-30uP4FnGvJlhm-cd7K5vbu17Aj7r-njw7GPYm31ZLs75uvx-tbwDYcIGKg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ShJJeQpq-Nn2p0FPBxGvJ9u5xWRo2TbKnLezNyCOJuhQ7xBvo_oP-7M5Y0pYekkNuRmhsoRmPPkkz3wB8xsLp2k3rxOUTmSjnDP1Srky0cbkzZaHsEE14vSwW39W3db7eg3nMheGwyuD7vU8fvHVoOQuzeXbTNJzjmzLXe5Ex7E3T9RM4YHYqMvaD2cXlYrlzyGSVvpAB7ZxZIF5uDmFe2DBpd-Y5DOT4vuXpPvg5LEPnx3AU8KOY-SE-hz3bnsBTX1FyewKH81jAjVqH6E7sX8CfmfApKqJr6YkDMoX5Fy3Ui6YVoR4OBgIB8WNrbjuyLsFM4r8bY0W_bQkt9k0v-PBWaIGhTILQO3pP0TkWiPmbvdCtEf0m8lG8hNX519V8kYQSDAnKabFJ0FhUONalZSSUT2tSoJ0U1owLNKXSBglBqQmizaTRhHVMToCOO2TKkTN5Bftt19o3IPLMpnk9RlsSaEArdYqEJtHSa0oCTZMRpHHiKwz05Fwl41cV49B-Untfsa4qr6sRfNmJ3Hhujoc6q6jN6j8Dq2jteEjsU9R8Rerj2xTd2u6OOqkyLbIpIZwRvPYmsRuFlDKjzb88fdxHP8LhYnV9VV1dLC_fwrOMw2iGU593sL-5vbPvCQdt6g_Bzv8CHP4HOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+recent+developments+in+electrochemical+hydrogen+peroxide+synthesis+with+a+critical+assessment+of+perspectives+and+strategies&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Anantharaj%2C+Sengeni&rft.au=Pitchaimuthu%2C+Sudhagar&rft.au=Noda%2C+Suguru&rft.date=2021-01-01&rft.eissn=1873-3727&rft.volume=287&rft.spage=102331&rft_id=info:doi/10.1016%2Fj.cis.2020.102331&rft_id=info%3Apmid%2F33321333&rft.externalDocID=33321333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |