A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies

Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen red...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 287; p. 102331
Main Authors Anantharaj, Sengeni, Pitchaimuthu, Sudhagar, Noda, Suguru
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0001-8686
1873-3727
1873-3727
DOI10.1016/j.cis.2020.102331

Cover

Loading…
Abstract Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives. This review analyzes the recent developments of electrochemical synthesis of H2O2 in terms of both catalysts' design and evaluation perspectives while predicting the direction of future growth. [Display omitted] •Trends in 2 electron ORR and WOR catalysts are critically analyzed.•Ambiguities in evaluation perspectives are criticized and alternatives are proposed.•Fundamentals of oxygen interfacial electrochemistry is elaborated to understand the trends.•Advantages of 2 electron WOR over 2 electron ORR in H2O2 electrosynthesis is emphasized.•Need for electrolyte engineering strategies to improve productivity and selectivity is discussed.
AbstractList Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives. This review analyzes the recent developments of electrochemical synthesis of H2O2 in terms of both catalysts' design and evaluation perspectives while predicting the direction of future growth. [Display omitted] •Trends in 2 electron ORR and WOR catalysts are critically analyzed.•Ambiguities in evaluation perspectives are criticized and alternatives are proposed.•Fundamentals of oxygen interfacial electrochemistry is elaborated to understand the trends.•Advantages of 2 electron WOR over 2 electron ORR in H2O2 electrosynthesis is emphasized.•Need for electrolyte engineering strategies to improve productivity and selectivity is discussed.
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
ArticleNumber 102331
Author Anantharaj, Sengeni
Pitchaimuthu, Sudhagar
Noda, Suguru
Author_xml – sequence: 1
  givenname: Sengeni
  surname: Anantharaj
  fullname: Anantharaj, Sengeni
  email: anantharaj1402@gmail.com, w.iac19088@kurenai.waseda.jp
  organization: Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
– sequence: 2
  givenname: Sudhagar
  surname: Pitchaimuthu
  fullname: Pitchaimuthu, Sudhagar
  email: S.Pitchaimuthu@swansea.ac.uk
  organization: Multi-functional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Center, College of Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, Wales, United Kingdom
– sequence: 3
  givenname: Suguru
  surname: Noda
  fullname: Noda, Suguru
  email: noda@waseda.jp
  organization: Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33321333$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URC6BH0CDXNLs4Y_9OlFFEZBIkWjSW854NufTrr14fBfuH_Cz8XKBgiKNPSM97xTvc8HOQgzI2Hsp1lLI9tNuDZ7WSqhlV1rLV2wl-05XulPdGVsJIWTVt317zi6IdmVVTde8YedaayXLs2K_rnjCg8cnHkOZAEPmDg84xnkqM3EfOI4IOUXY4uTBjnx7dCk-YuAzpvjTO-R0DHmL5Ik_-bzllkPy-Q9riZBoOcXjsARoLsf8AYnb4DjlZDM-eqS37PVgR8J3z_8lu__65f76prr7_u32-uquAr1pcwUOoQZpO2ylaprNQzM47Ft0sgXX1dZBI5q6B0Clnd1stGsapRZA1UMn9CX7eDo7p_hjj5TN5AlwHG3AuCej6k60alOrtqAfntH9w4TOzMlPNh3N3_IKIE8ApEiUcPiHSGEWQWZniiCzCDInQSXT_ZcBn232MZQm_Phi8vMpiaWdYiwZAo8B0PniLRsX_Qvp32QVrao
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_06_158
crossref_primary_10_3390_molecules29112563
crossref_primary_10_1055_s_0043_1777426
crossref_primary_10_1016_j_memsci_2022_120983
crossref_primary_10_1016_j_apcata_2024_119803
crossref_primary_10_1016_j_jclepro_2022_134918
crossref_primary_10_1016_j_jwpe_2024_106492
crossref_primary_10_1021_acsanm_3c02364
crossref_primary_10_1016_j_electacta_2024_144533
crossref_primary_10_1088_2515_7655_acbabc
crossref_primary_10_1002_tcr_202400259
crossref_primary_10_3390_c7030055
crossref_primary_10_1016_j_mtadv_2022_100280
crossref_primary_10_1007_s10008_024_06066_3
crossref_primary_10_1080_14328917_2025_2459774
crossref_primary_10_1149_1945_7111_acafa5
crossref_primary_10_1016_j_apcatb_2022_121731
crossref_primary_10_1002_ange_202304413
crossref_primary_10_1016_j_jallcom_2023_171264
crossref_primary_10_1016_j_apcatb_2021_120848
crossref_primary_10_1016_j_nanoen_2024_109671
crossref_primary_10_1021_acs_iecr_4c03408
crossref_primary_10_1007_s10098_022_02323_z
crossref_primary_10_1016_j_jwpe_2021_102040
crossref_primary_10_1002_chem_202304065
crossref_primary_10_1016_j_electacta_2024_145097
crossref_primary_10_1007_s10800_023_02019_2
crossref_primary_10_1021_acsami_4c00042
crossref_primary_10_1016_j_electacta_2024_143872
crossref_primary_10_1016_j_electacta_2025_146049
crossref_primary_10_1039_D2CY00008C
crossref_primary_10_1021_acsami_1c22641
crossref_primary_10_1016_j_jece_2022_107578
crossref_primary_10_1021_acsaem_1c02943
crossref_primary_10_1007_s00339_021_04574_x
crossref_primary_10_1039_D3CC02513F
crossref_primary_10_1002_ange_202110352
crossref_primary_10_1016_j_jcou_2023_102554
crossref_primary_10_1002_anie_202304413
crossref_primary_10_1016_j_apcatb_2023_122430
crossref_primary_10_1016_j_cej_2025_159609
crossref_primary_10_1002_chem_202403279
crossref_primary_10_1016_j_ces_2023_118647
crossref_primary_10_1007_s12274_021_4057_9
crossref_primary_10_1021_acsami_4c14391
crossref_primary_10_1021_acssuschemeng_0c07263
crossref_primary_10_1016_j_jmst_2024_03_058
crossref_primary_10_1002_jctb_7680
crossref_primary_10_1016_j_jece_2023_111384
crossref_primary_10_2139_ssrn_4122445
crossref_primary_10_1016_j_cej_2024_151640
crossref_primary_10_1007_s40820_023_01044_2
crossref_primary_10_3389_frsus_2022_799389
crossref_primary_10_1016_j_cej_2024_148919
crossref_primary_10_1016_j_chemosphere_2024_143022
crossref_primary_10_1016_j_pnsc_2022_09_005
crossref_primary_10_1002_ange_202406701
crossref_primary_10_1039_D2YA00076H
crossref_primary_10_1002_cssc_202400660
crossref_primary_10_1016_j_apcatb_2022_121312
crossref_primary_10_3389_fchem_2022_1098209
crossref_primary_10_1002_anie_202110352
crossref_primary_10_1016_j_chemosphere_2024_141456
crossref_primary_10_1016_j_apcatb_2022_121737
crossref_primary_10_1016_j_mtener_2022_101092
crossref_primary_10_1016_j_seppur_2024_129290
crossref_primary_10_3390_polym15132859
crossref_primary_10_1039_D3IM00054K
crossref_primary_10_1002_cey2_581
crossref_primary_10_1007_s11356_023_30407_w
crossref_primary_10_1039_D2QM01294D
crossref_primary_10_1002_anie_202406701
crossref_primary_10_1016_j_chemosphere_2022_134129
crossref_primary_10_1039_D2NJ01074G
crossref_primary_10_1021_acsaem_4c02171
crossref_primary_10_1016_j_cej_2022_135619
Cites_doi 10.1021/cs5008206
10.1021/jp207679e
10.1021/ja00298a008
10.1021/acsenergylett.8b02303
10.1002/cssc.201402315
10.1016/0013-4686(90)87004-L
10.1016/j.jinorgbio.2014.12.020
10.1007/s12274-017-1572-9
10.1007/s12678-017-0444-0
10.1016/j.elecom.2008.02.004
10.1038/s41570-019-0110-6
10.1016/j.ijhydene.2020.04.073
10.1021/acscatal.8b00217
10.1021/acscatal.8b04873
10.1038/s41563-019-0571-5
10.1021/jp1109702
10.1016/j.electacta.2008.02.012
10.1002/anie.201306588
10.1016/j.anaerobe.2010.06.006
10.1016/j.carbon.2015.09.002
10.1016/j.apcata.2011.09.030
10.1038/ncomms10922
10.1016/j.seppur.2015.10.048
10.1039/C5TA07075A
10.1002/anie.201509241
10.1039/C9NH00783K
10.1038/srep13801
10.1021/jp5113894
10.1016/j.ijhydene.2004.02.001
10.1016/j.chemosphere.2007.05.008
10.1021/acscatal.6b02899
10.1016/S0021-9517(02)00070-2
10.1021/acsami.0c01278
10.1002/anie.201207186
10.1038/s41467-017-00585-6
10.1039/C6CY02282K
10.1021/acs.inorgchem.7b02125
10.1021/jacs.8b02798
10.1002/cssc.200900246
10.1016/j.jelechem.2006.10.023
10.1021/jacs.7b09089
10.1016/j.jcat.2014.12.033
10.1039/C7EE03457A
10.1002/cssc.201402699
10.1016/j.jcat.2015.08.027
10.1039/C4CY00669K
10.1016/j.nanoen.2013.06.009
10.1016/j.mattod.2015.10.006
10.1021/nl500037x
10.1016/j.jconhyd.2006.11.004
10.1021/ac901291v
10.1016/j.jpowsour.2005.05.098
10.1021/acssuschemeng.7b02090
10.1002/smll.201905779
10.1021/jacs.9b05576
10.1021/jz301476w
10.1016/j.joule.2019.09.019
10.1021/ar400177c
10.1134/S1023193518030060
10.1039/c002416c
10.1002/cssc.201701266
10.1039/C9TA14037A
10.1016/j.pnsc.2015.11.008
10.1016/S1452-3981(23)17140-9
10.1007/s00217-007-0562-7
10.1021/acscatal.6b02479
10.1021/acs.inorgchem.7b02947
10.1016/j.jpowsour.2015.12.078
10.1016/j.cplett.2017.01.071
10.1021/acs.jpclett.6b02924
10.1016/j.cattod.2014.03.011
10.1016/j.electacta.2013.06.072
10.1038/s41929-019-0402-8
10.1016/j.electacta.2004.05.006
10.1002/smll.201303715
10.1021/ic9022486
10.1021/acssuschemeng.7b02517
10.1246/cl.2006.1330
10.1002/anie.200704431
10.1021/acsenergylett.9b00277
10.1126/science.1168980
10.1021/acs.jpclett.5b02178
10.1002/cctc.201900100
10.1021/jp8001564
10.1021/jp9064054
10.1021/ja061246s
10.1002/aenm.201801909
10.1002/anie.200503779
10.1038/nmat3795
10.3390/catal8090379
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cis.2020.102331
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
ExternalDocumentID 33321333
10_1016_j_cis_2020_102331
S000186862030600X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
PKN
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c396t-cdec4c1a7e612559b5fde86ed16cd74adc50548cce23da993d552286ed24f703
IEDL.DBID .~1
ISSN 0001-8686
1873-3727
IngestDate Fri Sep 05 09:10:03 EDT 2025
Wed Feb 19 02:29:12 EST 2025
Tue Jul 01 03:12:04 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Tue Oct 01 07:16:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Water oxidation reaction
H2O2 generation
Oxygen reduction reaction
Electrochemical synthesis
HO generation
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-cdec4c1a7e612559b5fde86ed16cd74adc50548cce23da993d552286ed24f703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S000186862030600X-ga1_lrg.jpg
PMID 33321333
PQID 2470629426
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2470629426
pubmed_primary_33321333
crossref_primary_10_1016_j_cis_2020_102331
crossref_citationtrail_10_1016_j_cis_2020_102331
elsevier_sciencedirect_doi_10_1016_j_cis_2020_102331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advances in colloid and interface science
PublicationTitleAlternate Adv Colloid Interface Sci
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bezerra, Zhang, Lee, Liu, Marques, Marques (bb0420) 2008; 53
Anantharaj, Noda (bb0165) 2020; 16
Li, Chen, Tian, Gong, Xu, Song (bb0300) 2017; 10
Shinagawa, Ng, Takanabe (bb0460) 2017; 10
Cao, Walter, Xu, Nasybulin, Bhattacharya, Bowden (bb0330) 2014; 7
Yamanaka, Murayama (bb0215) 2008; 47
Anantharaj, Aravindan (bb0170) 2019; 2
Cheng, Jiang (bb0280) 2015; 25
Li, An, Zhou, Li, Li, Feng (bb0075) 2016; 306
Ando, Tanaka (bb0135) 2004; 29
Fabbri, Habereder, Waltar, Kötz, Schmidt, Kotz (bb0455) 2014; 4
Baek, Gill, Abroshan, Park, Shi, Nørskov (bb0155) 2019; 4
Guo, Zhang, Sun (bb0260) 2013; 52
Carneiro, Paulo, Siaj, Tavares, Lanza (bb0430) 2015; 332
Anantharaj, Karthik, Kundu, Pitchiah, Kundu, Karthik (bb0245) 2015; 3
Rogers, Huang, Dickinson, Hardacre, Compton (bb0340) 2009; 113
Lewis, Ueura, Fukuta, Freakley, Kang, Wang (bb0055) 2019; 11
Zimmerman, Bayse, Ramoutar, Brumaghim (bb0475) 2015; 145
Perry, Pangotra, Vieira, Csepei, Sieber, Wang (bb0005) 2019; 3
Chen, Wang, Lei, Guo, Liu, Zhang (bb0225) 2017; 56
Katsounaros, Cherevko, Zeradjanin, Mayrhofer (bb0265) 2014; 53
Choi, Kim, Kwon, Cho, Yun, Kim (bb0380) 2016; 7
Xia, Lu, Xu (bb0320) 2015; 156
Yang, Tak, Kim, Soon, Lee (bb0390) 2017; 7
Park, Nabae, Hayakawa, Kakimoto (bb0100) 2014; 4
Long, Wang, Xiao, An, Yang (bb0310) 2015; 19
Forti, Rocha, Lanza, Bertazzoli (bb0435) 2007; 601
Viswanathan, Hansen, Rossmeisl, Nørskov (bb0355) 2012; 3
Murayama, Yamanaka (bb0220) 2011; 115
Otsuka, Yamanaka (bb0200) 1990; 35
Ranganathan, Sieber (bb0365) 2018; 8
Sun, Silvioli, Sahraie, Ju, Li, Zitolo (bb0105) 2019; 141
Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bb0180) 2016; 6
Jirkovský, Halasa, Schiffrin (bb0375) 2010; 12
Chen, Chen, Siahrostami, Higgins, Nordlund, Sokaras (bb0445) 2018; 140
Tiwari, Tiwari, Singh, Kim (bb0275) 2013; 2
Assumpão, Moraes, De Souza, Gaubeur, Oliveira, Antonin (bb0315) 2012; 411–412
Kelly, Shi, Back, Vallez, Park, Siahrostami (bb0145) 2019; 9
Choi, Kwon, Yook, Shin, Kim, Choi (bb0450) 2014; 118
Xu, Thomson (bb0465) 2007; 69
Kornienko, Kolyagin, Kornienko, Parfenov, Ponomarenko (bb0010) 2018; 54
Pizzutilo, Kasian, Choi, Cherevko, Hutchings, Mayrhofer (bb0370) 2017; 683
Xia, Back, Ringe, Jiang, Chen, Sun (bb0140) 2020; 3
Yamanaka, Onizawa, Suzuki, Hanaizumi, Nishimura, Takenaka (bb0400) 2012; 116
Edwards, Solsona, EN, Carley, Herzing, Kiely (bb0070) 2009; 323
Park, Abroshan, Shi, Jung, Siahrostami, Zheng (bb0150) 2019; 4
Iwasaki, Masuda, Ogihara, Yamanaka (bb0210) 2018; 9
Shinagawa, Garcia-Esparza, Takanabe (bb0235) 2015; 5
BBC NEWS | UK | England | London | M25 chaos after lorry explosion n.d.
Edwards, Freakley, Carley, Kiely, Hutchings (bb0060) 2014; 47
Yang, Kim, Tak, Soon, Lee (bb0385) 2016; 55
Byeon, Cho, Kim, Chae, Park, Hong (bb0110) 2020; 5
Wang, Pegis, Mayer, Stahl (bb0415) 2017; 139
Viswanathan, Hansen, Nørskov (bb0360) 2015; 6
Wang, Hung, Shammas (bb0020) 2009
Anantharaj, Venkatesh, Salunke, Simha, Prabu, Kundu (bb0250) 2017; 5
Shen, Zhang, Xu, Wang, Ding, Li (bb0485) 2010; 16
Suk, Chung, Han, Oh, Choi (bb0090) 2019
Yamanaka, Ichihashi, Iwasaki, Nishimura, Murayama, Ueda (bb0405) 2013; 108
Verdaguer-Casadevall, Deiana, Karamad, Siahrostami, Malacrida, Hansen (bb0125) 2014; 14
Sánchez-Sánchez, Bard (bb0130) 2009; 81
Ziegelbauer, Olson, Pylypenko, Alamgir, Jaye, Atanassov (bb0410) 2008; 112
Jung, Shin, Lee, Efremov, Lee, Lee (bb0115) 2020
Karthik, Raja, Kumar, Phani, Liu, Guo (bb0195) 2014
Watts, Finn, Cutler, Schmidt, Teel (bb0470) 2007; 91
Wang (bb0255) 2005; 152
Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt (bb0350) 2015; 328
Anantharaj, Karthick, Kundu (bb0240) 2018; 57
Spellman (bb0025) 2013
Yang, Verdaguer-Casadevall, Arnarson, Silvioli, Čolić, Frydendal (bb0065) 2018; 8
Wilson, Zhang, Oloman, Wayner (bb0440) 2006; 1
Shi, Siahrostami, Li, Zhang, Chakthranont, Studt (bb0160) 2017; 8
Shao, Liu, Adzic (bb0335) 2006; 128
Edwards, Freakley, Lewis, Pritchard, Hutchings (bb0050) 2015; 248
Chen, Chen, Siahrostami, Kim, Nordlund, Sokaras (bb0095) 2018; 6
Brillas, Boye, Sirés, Garrido, Rodríguez, Arias (bb0325) 2004; 49
Song, Li, Zhang, Wang, Yan, Wang (bb0230) 2020; 12
Zhao, Zhao, Du, Zhao, Xiao, Hu (bb0480) 2008; 226
Li, Zhao, Chen, Wang, Wei, Huang (bb0285) 2019; 15
Anantharaj, Kundu, Noda (bb0185) 2020
Anantharaj, Karthik, Kundu (bb0190) 2017; 7
Lunsford (bb0045) 2003; 216
Perazzolo, Durante, Pilot, Paduano, Zheng, Rizzi (bb0085) 2015; 95
Bonakdarpour, Delacote, Yang, Wieckowski, Dahn (bb0425) 2008; 10
Anson, Ni, Saveant (bb0395) 1985; 107
Siahrostami, Li, Viswanathan, Nørskov (bb0270) 2017; 8
Jiang, Ni, Chen, Lu, Yang, Kong (bb0015) 2018; 8
Menezes, Indra, Sahraie, Bergmann, Strasser, Driess (bb0305) 2015; 8
Yamanaka, Tazawa, Murayama, Iwasaki, Takenaka (bb0205) 2010; 3
Anantharaj, Ede, Karthick, Sam Sankar, Sangeetha, Pitchiah (bb0175) 2018; 11
Yamanaka, Onizawa, Suzuki, Hanaizumi, Otsuka (bb0080) 2006; 35
Anantharaj, Noda (bb0290) 2020; 45
Gewirth, Thorum (bb0345) 2010; 49
Siahrostami, Verdaguer-Casadevall, Karamad, Deiana, Malacrida, Wickman (bb0120) 2013; 12
Murray, Voskian, Schreier, Hatton, Surendranath (bb0030) 2019; 3
(accessed March 28, 2020).
Tian, Zhao, Yu, Kong, Huang, Zhang (bb0295) 2014; 10
Campos-Martin, Blanco-Brieva, Fierro (bb0035) 2006; 45
Spellman (10.1016/j.cis.2020.102331_bb0025) 2013
Choi (10.1016/j.cis.2020.102331_bb0450) 2014; 118
Rogers (10.1016/j.cis.2020.102331_bb0340) 2009; 113
Bezerra (10.1016/j.cis.2020.102331_bb0420) 2008; 53
Anantharaj (10.1016/j.cis.2020.102331_bb0165) 2020; 16
Sánchez-Sánchez (10.1016/j.cis.2020.102331_bb0130) 2009; 81
Chen (10.1016/j.cis.2020.102331_bb0095) 2018; 6
Zhao (10.1016/j.cis.2020.102331_bb0480) 2008; 226
Lewis (10.1016/j.cis.2020.102331_bb0055) 2019; 11
Tian (10.1016/j.cis.2020.102331_bb0295) 2014; 10
Verdaguer-Casadevall (10.1016/j.cis.2020.102331_bb0125) 2014; 14
Campos-Martin (10.1016/j.cis.2020.102331_bb0035) 2006; 45
Otsuka (10.1016/j.cis.2020.102331_bb0200) 1990; 35
Viswanathan (10.1016/j.cis.2020.102331_bb0355) 2012; 3
Yamanaka (10.1016/j.cis.2020.102331_bb0400) 2012; 116
Bonakdarpour (10.1016/j.cis.2020.102331_bb0425) 2008; 10
Medford (10.1016/j.cis.2020.102331_bb0350) 2015; 328
Li (10.1016/j.cis.2020.102331_bb0285) 2019; 15
Viswanathan (10.1016/j.cis.2020.102331_bb0360) 2015; 6
Katsounaros (10.1016/j.cis.2020.102331_bb0265) 2014; 53
Watts (10.1016/j.cis.2020.102331_bb0470) 2007; 91
Perry (10.1016/j.cis.2020.102331_bb0005) 2019; 3
Yamanaka (10.1016/j.cis.2020.102331_bb0405) 2013; 108
Anantharaj (10.1016/j.cis.2020.102331_bb0180) 2016; 6
10.1016/j.cis.2020.102331_bb0040
Assumpão (10.1016/j.cis.2020.102331_bb0315) 2012; 411–412
Kelly (10.1016/j.cis.2020.102331_bb0145) 2019; 9
Anantharaj (10.1016/j.cis.2020.102331_bb0290) 2020; 45
Guo (10.1016/j.cis.2020.102331_bb0260) 2013; 52
Li (10.1016/j.cis.2020.102331_bb0300) 2017; 10
Anantharaj (10.1016/j.cis.2020.102331_bb0245) 2015; 3
Gewirth (10.1016/j.cis.2020.102331_bb0345) 2010; 49
Zimmerman (10.1016/j.cis.2020.102331_bb0475) 2015; 145
Wang (10.1016/j.cis.2020.102331_bb0415) 2017; 139
Li (10.1016/j.cis.2020.102331_bb0075) 2016; 306
Menezes (10.1016/j.cis.2020.102331_bb0305) 2015; 8
Kornienko (10.1016/j.cis.2020.102331_bb0010) 2018; 54
Anantharaj (10.1016/j.cis.2020.102331_bb0240) 2018; 57
Forti (10.1016/j.cis.2020.102331_bb0435) 2007; 601
Jiang (10.1016/j.cis.2020.102331_bb0015) 2018; 8
Ando (10.1016/j.cis.2020.102331_bb0135) 2004; 29
Suk (10.1016/j.cis.2020.102331_bb0090) 2019
Lunsford (10.1016/j.cis.2020.102331_bb0045) 2003; 216
Cao (10.1016/j.cis.2020.102331_bb0330) 2014; 7
Brillas (10.1016/j.cis.2020.102331_bb0325) 2004; 49
Baek (10.1016/j.cis.2020.102331_bb0155) 2019; 4
Fabbri (10.1016/j.cis.2020.102331_bb0455) 2014; 4
Anantharaj (10.1016/j.cis.2020.102331_bb0190) 2017; 7
Anson (10.1016/j.cis.2020.102331_bb0395) 1985; 107
Anantharaj (10.1016/j.cis.2020.102331_bb0170) 2019; 2
Xu (10.1016/j.cis.2020.102331_bb0465) 2007; 69
Edwards (10.1016/j.cis.2020.102331_bb0070) 2009; 323
Chen (10.1016/j.cis.2020.102331_bb0445) 2018; 140
Park (10.1016/j.cis.2020.102331_bb0150) 2019; 4
Anantharaj (10.1016/j.cis.2020.102331_bb0175) 2018; 11
Siahrostami (10.1016/j.cis.2020.102331_bb0270) 2017; 8
Jung (10.1016/j.cis.2020.102331_bb0115) 2020
Pizzutilo (10.1016/j.cis.2020.102331_bb0370) 2017; 683
Shen (10.1016/j.cis.2020.102331_bb0485) 2010; 16
Shinagawa (10.1016/j.cis.2020.102331_bb0235) 2015; 5
Chen (10.1016/j.cis.2020.102331_bb0225) 2017; 56
Sun (10.1016/j.cis.2020.102331_bb0105) 2019; 141
Yang (10.1016/j.cis.2020.102331_bb0390) 2017; 7
Perazzolo (10.1016/j.cis.2020.102331_bb0085) 2015; 95
Jirkovský (10.1016/j.cis.2020.102331_bb0375) 2010; 12
Long (10.1016/j.cis.2020.102331_bb0310) 2015; 19
Karthik (10.1016/j.cis.2020.102331_bb0195) 2014
Park (10.1016/j.cis.2020.102331_bb0100) 2014; 4
Shinagawa (10.1016/j.cis.2020.102331_bb0460) 2017; 10
Ranganathan (10.1016/j.cis.2020.102331_bb0365) 2018; 8
Wang (10.1016/j.cis.2020.102331_bb0020) 2009
Xia (10.1016/j.cis.2020.102331_bb0320) 2015; 156
Shi (10.1016/j.cis.2020.102331_bb0160) 2017; 8
Cheng (10.1016/j.cis.2020.102331_bb0280) 2015; 25
Shao (10.1016/j.cis.2020.102331_bb0335) 2006; 128
Song (10.1016/j.cis.2020.102331_bb0230) 2020; 12
Yamanaka (10.1016/j.cis.2020.102331_bb0205) 2010; 3
Murray (10.1016/j.cis.2020.102331_bb0030) 2019; 3
Yamanaka (10.1016/j.cis.2020.102331_bb0215) 2008; 47
Anantharaj (10.1016/j.cis.2020.102331_bb0185) 2020
Ziegelbauer (10.1016/j.cis.2020.102331_bb0410) 2008; 112
Anantharaj (10.1016/j.cis.2020.102331_bb0250) 2017; 5
Siahrostami (10.1016/j.cis.2020.102331_bb0120) 2013; 12
Yang (10.1016/j.cis.2020.102331_bb0385) 2016; 55
Carneiro (10.1016/j.cis.2020.102331_bb0430) 2015; 332
Edwards (10.1016/j.cis.2020.102331_bb0050) 2015; 248
Choi (10.1016/j.cis.2020.102331_bb0380) 2016; 7
Wang (10.1016/j.cis.2020.102331_bb0255) 2005; 152
Wilson (10.1016/j.cis.2020.102331_bb0440) 2006; 1
Byeon (10.1016/j.cis.2020.102331_bb0110) 2020; 5
Edwards (10.1016/j.cis.2020.102331_bb0060) 2014; 47
Iwasaki (10.1016/j.cis.2020.102331_bb0210) 2018; 9
Murayama (10.1016/j.cis.2020.102331_bb0220) 2011; 115
Xia (10.1016/j.cis.2020.102331_bb0140) 2020; 3
Tiwari (10.1016/j.cis.2020.102331_bb0275) 2013; 2
Yang (10.1016/j.cis.2020.102331_bb0065) 2018; 8
Yamanaka (10.1016/j.cis.2020.102331_bb0080) 2006; 35
References_xml – volume: 10
  start-page: 4155
  year: 2017
  end-page: 4162
  ident: bb0460
  article-title: Electrolyte engineering towards efficient water splitting at mild pH
  publication-title: ChemSusChem
– volume: 7
  start-page: 882
  year: 2017
  end-page: 893
  ident: bb0190
  article-title: Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: a highly efficient OER electrocatalyst
  publication-title: Cat Sci Technol
– volume: 139
  start-page: 16458
  year: 2017
  end-page: 16461
  ident: bb0415
  article-title: Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 3629
  year: 2017
  end-page: 3637
  ident: bb0300
  article-title: Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction
  publication-title: Nano Res
– volume: 56
  start-page: 13368
  year: 2017
  end-page: 13375
  ident: bb0225
  article-title: Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle
  publication-title: Inorg Chem
– volume: 10
  start-page: 2251
  year: 2014
  end-page: 2259
  ident: bb0295
  article-title: Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction
  publication-title: Small
– start-page: 923
  year: 2013
  ident: bb0025
  article-title: Handbook of water and wastewater treatment plant operations
– volume: 5
  start-page: 832
  year: 2020
  end-page: 838
  ident: bb0110
  article-title: High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts
  publication-title: Nanoscale Horizons
– volume: 118
  start-page: 30063
  year: 2014
  end-page: 30070
  ident: bb0450
  article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated pt surface
  publication-title: J Phys Chem C
– volume: 16
  start-page: 380
  year: 2010
  end-page: 386
  ident: bb0485
  article-title: Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01
  publication-title: Anaerobe
– volume: 4
  start-page: 352
  year: 2019
  end-page: 357
  ident: bb0150
  article-title: CaSnO 3 : an electrocatalyst for two-electron water oxidation reaction to form H 2 O 2
  publication-title: ACS Energy Lett
– volume: 69
  start-page: 755
  year: 2007
  end-page: 762
  ident: bb0465
  article-title: An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids
  publication-title: Chemosphere
– start-page: 4174
  year: 2020
  end-page: 4192
  ident: bb0185
  article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 152
  start-page: 1
  year: 2005
  ident: bb0255
  article-title: Recent development of non-platinum catalysts for oxygen reduction reaction
  publication-title: J Power Sources
– volume: 81
  start-page: 8094
  year: 2009
  end-page: 8100
  ident: bb0130
  article-title: Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy
  publication-title: Anal Chem
– volume: 1
  start-page: 99
  year: 2006
  end-page: 109
  ident: bb0440
  article-title: Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2
  publication-title: Int J Electrochem Sci
– volume: 3
  start-page: 24463
  year: 2015
  end-page: 24478
  ident: bb0245
  article-title: Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities
  publication-title: J Mater Chem A
– volume: 128
  start-page: 7408
  year: 2006
  end-page: 7409
  ident: bb0335
  article-title: Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes
  publication-title: J Am Chem Soc
– volume: 14
  start-page: 1603
  year: 2014
  end-page: 1608
  ident: bb0125
  article-title: Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering
  publication-title: Nano Lett
– volume: 45
  start-page: 15763
  year: 2020
  end-page: 15784
  ident: bb0290
  article-title: Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: a review
  publication-title: Int J Hydrogen Energy
– volume: 95
  start-page: 949
  year: 2015
  end-page: 963
  ident: bb0085
  article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide
  publication-title: Carbon N Y
– volume: 91
  start-page: 312
  year: 2007
  end-page: 326
  ident: bb0470
  article-title: Enhanced stability of hydrogen peroxide in the presence of subsurface solids
  publication-title: J Contam Hydrol
– volume: 35
  start-page: 319
  year: 1990
  end-page: 322
  ident: bb0200
  article-title: One step synthesis of hydrogen peroxide through fuel cell reaction
  publication-title: Electrochim Acta
– volume: 29
  start-page: 1349
  year: 2004
  end-page: 1354
  ident: bb0135
  article-title: Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 1673
  year: 2019
  end-page: 1680
  ident: bb0055
  article-title: The direct synthesis of H 2 O 2 using TS-1 supported catalysts
  publication-title: ChemCatChem
– year: 2020
  ident: bb0115
  article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
  publication-title: Nat Mater
– volume: 115
  start-page: 5792
  year: 2011
  end-page: 5799
  ident: bb0220
  article-title: Electrosynthesis of neutral H2O2 solution from O 2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell
  publication-title: J Phys Chem C
– volume: 8
  start-page: 17
  year: 2018
  end-page: 19
  ident: bb0015
  article-title: Selective electrochemical H2O2 production through two-electron oxygen electrochemistry
  publication-title: Adv Energy Mater
– volume: 47
  start-page: 845
  year: 2014
  end-page: 854
  ident: bb0060
  article-title: Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide
  publication-title: Acc Chem Res
– volume: 45
  start-page: 6962
  year: 2006
  end-page: 6984
  ident: bb0035
  article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process
  publication-title: Angew Chemie Int Ed
– volume: 9
  start-page: 236
  year: 2018
  end-page: 242
  ident: bb0210
  article-title: Direct synthesis of pure H2O2 aqueous solution by CoTPP/Ketjen-black electrocatalyst and the fuel cell reactor
  publication-title: Electrocatalysis
– volume: 112
  start-page: 8839
  year: 2008
  end-page: 8849
  ident: bb0410
  article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications
  publication-title: J Phys Chem C
– volume: 8
  start-page: 164
  year: 2015
  end-page: 167
  ident: bb0305
  article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
  publication-title: ChemSusChem
– volume: 601
  start-page: 63
  year: 2007
  end-page: 67
  ident: bb0435
  article-title: Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone
  publication-title: J Electroanal Chem
– volume: 145
  start-page: 30
  year: 2015
  end-page: 40
  ident: bb0475
  article-title: Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding
  publication-title: J Inorg Biochem
– volume: 8
  start-page: 379
  year: 2018
  end-page: 400
  ident: bb0365
  article-title: Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review
  publication-title: Catalysts
– volume: 6
  start-page: 8069
  year: 2016
  end-page: 8097
  ident: bb0180
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co and Ni: a review
  publication-title: ACS Catal
– volume: 57
  start-page: 3082
  year: 2018
  end-page: 3096
  ident: bb0240
  article-title: NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions
  publication-title: Inorg Chem
– volume: 226
  start-page: 499
  year: 2008
  end-page: 505
  ident: bb0480
  article-title: Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma
  publication-title: Eur Food Res Technol
– year: 2014
  ident: bb0195
  article-title: Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2- on anodized Au surface: application to electrocatalysis of the oxygen evolution reaction
  publication-title: RSC Adv
– volume: 108
  start-page: 321
  year: 2013
  end-page: 329
  ident: bb0405
  article-title: Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation
  publication-title: Electrochim Acta
– volume: 7
  start-page: 1301
  year: 2017
  end-page: 1307
  ident: bb0390
  article-title: Support effect in single-atom platinum catalyst for electrochemical oxygen reduction
  publication-title: ACS Catal
– volume: 53
  start-page: 102
  year: 2014
  end-page: 121
  ident: bb0265
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew Chemie Int Ed
– volume: 5
  start-page: 10072
  year: 2017
  end-page: 10083
  ident: bb0250
  article-title: High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal
  publication-title: ACS Sustain Chem Eng
– volume: 4
  start-page: 3749
  year: 2014
  end-page: 3754
  ident: bb0100
  article-title: Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon
  publication-title: ACS Catal
– volume: 12
  start-page: 1137
  year: 2013
  end-page: 1143
  ident: bb0120
  article-title: Enabling direct H2O2 production through rational electrocatalyst design
  publication-title: Nat Mater
– volume: 4
  start-page: 3800
  year: 2014
  end-page: 3821
  ident: bb0455
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Cat Sci Technol
– volume: 140
  start-page: 7851
  year: 2018
  end-page: 7859
  ident: bb0445
  article-title: Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide
  publication-title: J Am Chem Soc
– volume: 328
  start-page: 36
  year: 2015
  end-page: 42
  ident: bb0350
  article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J Catal
– volume: 8
  start-page: 4064
  year: 2018
  end-page: 4081
  ident: bb0065
  article-title: Toward the decentralized electrochemical production of H2O2: a focus on the catalysis
  publication-title: ACS Catal
– volume: 11
  start-page: 744
  year: 2018
  end-page: 771
  ident: bb0175
  article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
  publication-title: Energ Environ Sci
– volume: 3
  start-page: 59
  year: 2010
  end-page: 62
  ident: bb0205
  article-title: Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC)
  publication-title: ChemSusChem
– volume: 332
  start-page: 51
  year: 2015
  end-page: 61
  ident: bb0430
  article-title: Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration
  publication-title: J Catal
– volume: 12
  start-page: 17519
  year: 2020
  end-page: 17527
  ident: bb0230
  article-title: Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 1157
  year: 2017
  end-page: 1160
  ident: bb0270
  article-title: One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution
  publication-title: J Phys Chem Lett
– volume: 6
  start-page: 311
  year: 2018
  end-page: 317
  ident: bb0095
  article-title: Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide
  publication-title: ACS Sustain Chem Eng
– volume: 683
  start-page: 436
  year: 2017
  end-page: 442
  ident: bb0370
  article-title: Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production
  publication-title: Chem Phys Lett
– volume: 9
  start-page: 4593
  year: 2019
  end-page: 4599
  ident: bb0145
  article-title: ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide
  publication-title: ACS Catal
– volume: 3
  start-page: 2948
  year: 2012
  end-page: 2951
  ident: bb0355
  article-title: Unifying the 2e - and 4e - reduction of oxygen on metal surfaces
  publication-title: J Phys Chem Lett
– volume: 4
  start-page: 720
  year: 2019
  end-page: 728
  ident: bb0155
  article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2
  publication-title: ACS Energy Lett
– volume: 3
  start-page: 125
  year: 2020
  end-page: 134
  ident: bb0140
  article-title: Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide
  publication-title: Nat Catal
– volume: 16
  year: 2020
  ident: bb0165
  article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony
  publication-title: Small
– volume: 2
  start-page: 553
  year: 2013
  end-page: 578
  ident: bb0275
  article-title: Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
  publication-title: Nano Energy
– volume: 12
  start-page: 8042
  year: 2010
  end-page: 8052
  ident: bb0375
  article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles
  publication-title: Phys Chem Chem Phys
– volume: 52
  start-page: 8526
  year: 2013
  end-page: 8544
  ident: bb0260
  article-title: Tuning nanoparticle catalysis for the oxygen reduction reaction
  publication-title: Angew Chemie Int Ed
– volume: 7
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0380
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat Commun
– volume: 10
  start-page: 611
  year: 2008
  end-page: 615
  ident: bb0425
  article-title: Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction
  publication-title: Electrochem Commun
– volume: 49
  start-page: 3557
  year: 2010
  end-page: 3566
  ident: bb0345
  article-title: Electroreduction of dioxygen for fuel-cell applications: materials and challenges
  publication-title: Inorg Chem
– volume: 107
  start-page: 3442
  year: 1985
  end-page: 3450
  ident: bb0395
  article-title: Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalyzed by cobalt(II) Tetrakis(4-N-methylpyridyl)porphyrin
  publication-title: J Am Chem Soc
– volume: 25
  start-page: 545
  year: 2015
  end-page: 553
  ident: bb0280
  article-title: Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes
  publication-title: Prog Nat Sci Mater Int
– volume: 2
  start-page: 1902666
  year: 2019
  end-page: 1902695
  ident: bb0170
  article-title: Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis
  publication-title: Adv Energy Mater
– volume: 15
  year: 2019
  ident: bb0285
  article-title: Recent advances in the development of water oxidation electrocatalysts at mild pH
  publication-title: Small
– volume: 216
  start-page: 455
  year: 2003
  end-page: 460
  ident: bb0045
  article-title: The direct formation of H2O2 from H2 and O2 over palladium catalysts
  publication-title: J Catal
– volume: 49
  start-page: 4487
  year: 2004
  end-page: 4496
  ident: bb0325
  article-title: Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode
  publication-title: Electrochim Acta
– volume: 8
  start-page: 701
  year: 2017
  end-page: 712
  ident: bb0160
  article-title: Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
  publication-title: Nat Commun
– volume: 19
  start-page: 213
  year: 2015
  end-page: 226
  ident: bb0310
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater Today
– volume: 323
  start-page: 1037
  year: 2009
  end-page: 1041
  ident: bb0070
  article-title: Synthesis process
  publication-title: Science (80-)
– volume: 306
  start-page: 495
  year: 2016
  end-page: 502
  ident: bb0075
  article-title: A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems
  publication-title: J Power Sources
– reference: (accessed March 28, 2020).
– start-page: 0
  year: 2019
  end-page: 1
  ident: bb0090
  article-title: Selective H 2 O 2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts
  publication-title: Catal Today
– volume: 53
  start-page: 4937
  year: 2008
  ident: bb0420
  article-title: A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction
  publication-title: Electrochim Acta
– volume: 156
  start-page: 553
  year: 2015
  end-page: 560
  ident: bb0320
  article-title: An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode
  publication-title: Sep Purif Technol
– volume: 113
  start-page: 17811
  year: 2009
  end-page: 17823
  ident: bb0340
  article-title: Investigating the mechanism and electrode kinetics of the oxygenlsuperoxide (O2IO2-) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298-318 K
  publication-title: J Phys Chem C
– volume: 3
  start-page: 2942
  year: 2019
  end-page: 2954
  ident: bb0030
  article-title: Electrosynthesis of hydrogen peroxide by phase-transfer catalysis
  publication-title: Joule
– volume: 54
  start-page: 258
  year: 2018
  end-page: 264
  ident: bb0010
  article-title: Electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode based on mesostructured carbon CMK-3
  publication-title: Russ J Electrochem
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  ident: bb0105
  article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 442
  year: 2019
  end-page: 458
  ident: bb0005
  article-title: Electrochemical synthesis of hydrogen peroxide from water and oxygen
  publication-title: Nat Rev Chem
– volume: 248
  start-page: 3
  year: 2015
  end-page: 9
  ident: bb0050
  article-title: Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen
  publication-title: Catal Today
– volume: 55
  start-page: 2058
  year: 2016
  end-page: 2062
  ident: bb0385
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew Chemie Int Ed
– volume: 7
  start-page: 2436
  year: 2014
  end-page: 2440
  ident: bb0330
  article-title: The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries
  publication-title: ChemSusChem
– volume: 6
  start-page: 4224
  year: 2015
  end-page: 4228
  ident: bb0360
  article-title: Selective electrochemical generation of hydrogen peroxide from water oxidation
  publication-title: J Phys Chem Lett
– year: 2009
  ident: bb0020
  article-title: Handbook of advanced industrial and hazardous wastes treatment
– volume: 411–412
  start-page: 1
  year: 2012
  end-page: 6
  ident: bb0315
  article-title: Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis
  publication-title: Appl Catal A Gen
– reference: BBC NEWS | UK | England | London | M25 chaos after lorry explosion n.d.
– volume: 47
  start-page: 1900
  year: 2008
  end-page: 1902
  ident: bb0215
  article-title: Neutral H2O2 synthesis by electrolysis of water and O2
  publication-title: Angew Chemie Int Ed
– volume: 116
  start-page: 4572
  year: 2012
  end-page: 4583
  ident: bb0400
  article-title: Study of direct synthesis of hydrogen peroxide acid solutions at a heat-treated MnCl-porphyrin/activated carbon cathode from H 2 and O 2
  publication-title: J Phys Chem C
– volume: 35
  start-page: 1330
  year: 2006
  end-page: 1331
  ident: bb0080
  article-title: Electrocatalysis of heat-treated Mn-porphyrin/carbon cathode for synthesis of H2O2 acid solutions by H2/O2 fuel cell method
  publication-title: Chem Lett
– volume: 5
  start-page: 13801
  year: 2015
  end-page: 13821
  ident: bb0235
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci Rep
– volume: 4
  start-page: 3749
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0100
  article-title: Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon
  publication-title: ACS Catal
  doi: 10.1021/cs5008206
– volume: 116
  start-page: 4572
  year: 2012
  ident: 10.1016/j.cis.2020.102331_bb0400
  article-title: Study of direct synthesis of hydrogen peroxide acid solutions at a heat-treated MnCl-porphyrin/activated carbon cathode from H 2 and O 2
  publication-title: J Phys Chem C
  doi: 10.1021/jp207679e
– volume: 107
  start-page: 3442
  year: 1985
  ident: 10.1016/j.cis.2020.102331_bb0395
  article-title: Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalyzed by cobalt(II) Tetrakis(4-N-methylpyridyl)porphyrin
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00298a008
– volume: 4
  start-page: 352
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0150
  article-title: CaSnO 3 : an electrocatalyst for two-electron water oxidation reaction to form H 2 O 2
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b02303
– volume: 7
  start-page: 2436
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0330
  article-title: The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402315
– volume: 35
  start-page: 319
  year: 1990
  ident: 10.1016/j.cis.2020.102331_bb0200
  article-title: One step synthesis of hydrogen peroxide through fuel cell reaction
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(90)87004-L
– volume: 145
  start-page: 30
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0475
  article-title: Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2014.12.020
– volume: 10
  start-page: 3629
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0300
  article-title: Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1572-9
– volume: 9
  start-page: 236
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0210
  article-title: Direct synthesis of pure H2O2 aqueous solution by CoTPP/Ketjen-black electrocatalyst and the fuel cell reactor
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-017-0444-0
– volume: 10
  start-page: 611
  year: 2008
  ident: 10.1016/j.cis.2020.102331_bb0425
  article-title: Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2008.02.004
– volume: 3
  start-page: 442
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0005
  article-title: Electrochemical synthesis of hydrogen peroxide from water and oxygen
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-019-0110-6
– volume: 45
  start-page: 15763
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0290
  article-title: Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.073
– volume: 8
  start-page: 4064
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0065
  article-title: Toward the decentralized electrochemical production of H2O2: a focus on the catalysis
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b00217
– volume: 9
  start-page: 4593
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0145
  article-title: ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b04873
– year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0115
  article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0571-5
– volume: 115
  start-page: 5792
  year: 2011
  ident: 10.1016/j.cis.2020.102331_bb0220
  article-title: Electrosynthesis of neutral H2O2 solution from O 2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell
  publication-title: J Phys Chem C
  doi: 10.1021/jp1109702
– volume: 53
  start-page: 4937
  year: 2008
  ident: 10.1016/j.cis.2020.102331_bb0420
  article-title: A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2008.02.012
– volume: 53
  start-page: 102
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0265
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.201306588
– volume: 16
  start-page: 380
  year: 2010
  ident: 10.1016/j.cis.2020.102331_bb0485
  article-title: Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2010.06.006
– volume: 95
  start-page: 949
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0085
  article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2015.09.002
– volume: 411–412
  start-page: 1
  year: 2012
  ident: 10.1016/j.cis.2020.102331_bb0315
  article-title: Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2011.09.030
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.cis.2020.102331_bb0380
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat Commun
  doi: 10.1038/ncomms10922
– volume: 156
  start-page: 553
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0320
  article-title: An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2015.10.048
– volume: 3
  start-page: 24463
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0245
  article-title: Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07075A
– volume: 55
  start-page: 2058
  year: 2016
  ident: 10.1016/j.cis.2020.102331_bb0385
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.201509241
– volume: 5
  start-page: 832
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0110
  article-title: High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts
  publication-title: Nanoscale Horizons
  doi: 10.1039/C9NH00783K
– volume: 5
  start-page: 13801
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0235
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci Rep
  doi: 10.1038/srep13801
– volume: 118
  start-page: 30063
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0450
  article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated pt surface
  publication-title: J Phys Chem C
  doi: 10.1021/jp5113894
– volume: 29
  start-page: 1349
  year: 2004
  ident: 10.1016/j.cis.2020.102331_bb0135
  article-title: Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.02.001
– year: 2009
  ident: 10.1016/j.cis.2020.102331_bb0020
– volume: 69
  start-page: 755
  year: 2007
  ident: 10.1016/j.cis.2020.102331_bb0465
  article-title: An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.05.008
– volume: 15
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0285
  article-title: Recent advances in the development of water oxidation electrocatalysts at mild pH
  publication-title: Small
– volume: 7
  start-page: 1301
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0390
  article-title: Support effect in single-atom platinum catalyst for electrochemical oxygen reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02899
– volume: 216
  start-page: 455
  year: 2003
  ident: 10.1016/j.cis.2020.102331_bb0045
  article-title: The direct formation of H2O2 from H2 and O2 over palladium catalysts
  publication-title: J Catal
  doi: 10.1016/S0021-9517(02)00070-2
– volume: 12
  start-page: 17519
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0230
  article-title: Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c01278
– volume: 52
  start-page: 8526
  year: 2013
  ident: 10.1016/j.cis.2020.102331_bb0260
  article-title: Tuning nanoparticle catalysis for the oxygen reduction reaction
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.201207186
– volume: 8
  start-page: 701
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0160
  article-title: Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00585-6
– volume: 7
  start-page: 882
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0190
  article-title: Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: a highly efficient OER electrocatalyst
  publication-title: Cat Sci Technol
  doi: 10.1039/C6CY02282K
– volume: 56
  start-page: 13368
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0225
  article-title: Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.7b02125
– volume: 140
  start-page: 7851
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0445
  article-title: Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b02798
– volume: 3
  start-page: 59
  year: 2010
  ident: 10.1016/j.cis.2020.102331_bb0205
  article-title: Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC)
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900246
– volume: 601
  start-page: 63
  year: 2007
  ident: 10.1016/j.cis.2020.102331_bb0435
  article-title: Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2006.10.023
– ident: 10.1016/j.cis.2020.102331_bb0040
– volume: 139
  start-page: 16458
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0415
  article-title: Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b09089
– volume: 328
  start-page: 36
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0350
  article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J Catal
  doi: 10.1016/j.jcat.2014.12.033
– volume: 11
  start-page: 744
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0175
  article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
  publication-title: Energ Environ Sci
  doi: 10.1039/C7EE03457A
– volume: 8
  start-page: 164
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0305
  article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402699
– volume: 332
  start-page: 51
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0430
  article-title: Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration
  publication-title: J Catal
  doi: 10.1016/j.jcat.2015.08.027
– volume: 4
  start-page: 3800
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0455
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Cat Sci Technol
  doi: 10.1039/C4CY00669K
– volume: 2
  start-page: 553
  year: 2013
  ident: 10.1016/j.cis.2020.102331_bb0275
  article-title: Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.06.009
– volume: 19
  start-page: 213
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0310
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 14
  start-page: 1603
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0125
  article-title: Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering
  publication-title: Nano Lett
  doi: 10.1021/nl500037x
– volume: 91
  start-page: 312
  year: 2007
  ident: 10.1016/j.cis.2020.102331_bb0470
  article-title: Enhanced stability of hydrogen peroxide in the presence of subsurface solids
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2006.11.004
– volume: 81
  start-page: 8094
  year: 2009
  ident: 10.1016/j.cis.2020.102331_bb0130
  article-title: Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy
  publication-title: Anal Chem
  doi: 10.1021/ac901291v
– volume: 152
  start-page: 1
  year: 2005
  ident: 10.1016/j.cis.2020.102331_bb0255
  article-title: Recent development of non-platinum catalysts for oxygen reduction reaction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.05.098
– volume: 5
  start-page: 10072
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0250
  article-title: High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02090
– volume: 16
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0165
  article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony
  publication-title: Small
  doi: 10.1002/smll.201905779
– volume: 141
  start-page: 12372
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0105
  article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b05576
– volume: 3
  start-page: 2948
  year: 2012
  ident: 10.1016/j.cis.2020.102331_bb0355
  article-title: Unifying the 2e - and 4e - reduction of oxygen on metal surfaces
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz301476w
– volume: 3
  start-page: 2942
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0030
  article-title: Electrosynthesis of hydrogen peroxide by phase-transfer catalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.019
– start-page: 0
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0090
  article-title: Selective H 2 O 2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts
  publication-title: Catal Today
– volume: 47
  start-page: 845
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0060
  article-title: Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide
  publication-title: Acc Chem Res
  doi: 10.1021/ar400177c
– volume: 54
  start-page: 258
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0010
  article-title: Electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode based on mesostructured carbon CMK-3
  publication-title: Russ J Electrochem
  doi: 10.1134/S1023193518030060
– volume: 12
  start-page: 8042
  year: 2010
  ident: 10.1016/j.cis.2020.102331_bb0375
  article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c002416c
– volume: 10
  start-page: 4155
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0460
  article-title: Electrolyte engineering towards efficient water splitting at mild pH
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701266
– start-page: 4174
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0185
  article-title: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA14037A
– volume: 25
  start-page: 545
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0280
  article-title: Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes
  publication-title: Prog Nat Sci Mater Int
  doi: 10.1016/j.pnsc.2015.11.008
– volume: 1
  start-page: 99
  year: 2006
  ident: 10.1016/j.cis.2020.102331_bb0440
  article-title: Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)17140-9
– volume: 226
  start-page: 499
  year: 2008
  ident: 10.1016/j.cis.2020.102331_bb0480
  article-title: Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma
  publication-title: Eur Food Res Technol
  doi: 10.1007/s00217-007-0562-7
– volume: 6
  start-page: 8069
  year: 2016
  ident: 10.1016/j.cis.2020.102331_bb0180
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co and Ni: a review
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02479
– volume: 57
  start-page: 3082
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0240
  article-title: NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.7b02947
– start-page: 923
  year: 2013
  ident: 10.1016/j.cis.2020.102331_bb0025
– volume: 306
  start-page: 495
  year: 2016
  ident: 10.1016/j.cis.2020.102331_bb0075
  article-title: A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.078
– volume: 683
  start-page: 436
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0370
  article-title: Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2017.01.071
– volume: 2
  start-page: 1902666
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0170
  article-title: Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis
  publication-title: Adv Energy Mater
– volume: 8
  start-page: 1157
  year: 2017
  ident: 10.1016/j.cis.2020.102331_bb0270
  article-title: One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b02924
– volume: 248
  start-page: 3
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0050
  article-title: Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2014.03.011
– volume: 108
  start-page: 321
  year: 2013
  ident: 10.1016/j.cis.2020.102331_bb0405
  article-title: Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.06.072
– volume: 3
  start-page: 125
  year: 2020
  ident: 10.1016/j.cis.2020.102331_bb0140
  article-title: Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0402-8
– volume: 49
  start-page: 4487
  year: 2004
  ident: 10.1016/j.cis.2020.102331_bb0325
  article-title: Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.05.006
– volume: 10
  start-page: 2251
  year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0295
  article-title: Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction
  publication-title: Small
  doi: 10.1002/smll.201303715
– volume: 49
  start-page: 3557
  year: 2010
  ident: 10.1016/j.cis.2020.102331_bb0345
  article-title: Electroreduction of dioxygen for fuel-cell applications: materials and challenges
  publication-title: Inorg Chem
  doi: 10.1021/ic9022486
– volume: 6
  start-page: 311
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0095
  article-title: Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02517
– volume: 35
  start-page: 1330
  year: 2006
  ident: 10.1016/j.cis.2020.102331_bb0080
  article-title: Electrocatalysis of heat-treated Mn-porphyrin/carbon cathode for synthesis of H2O2 acid solutions by H2/O2 fuel cell method
  publication-title: Chem Lett
  doi: 10.1246/cl.2006.1330
– volume: 47
  start-page: 1900
  year: 2008
  ident: 10.1016/j.cis.2020.102331_bb0215
  article-title: Neutral H2O2 synthesis by electrolysis of water and O2
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.200704431
– volume: 4
  start-page: 720
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0155
  article-title: Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b00277
– volume: 323
  start-page: 1037
  year: 2009
  ident: 10.1016/j.cis.2020.102331_bb0070
  article-title: Synthesis process
  publication-title: Science (80-)
  doi: 10.1126/science.1168980
– volume: 6
  start-page: 4224
  year: 2015
  ident: 10.1016/j.cis.2020.102331_bb0360
  article-title: Selective electrochemical generation of hydrogen peroxide from water oxidation
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b02178
– volume: 11
  start-page: 1673
  year: 2019
  ident: 10.1016/j.cis.2020.102331_bb0055
  article-title: The direct synthesis of H 2 O 2 using TS-1 supported catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900100
– volume: 112
  start-page: 8839
  year: 2008
  ident: 10.1016/j.cis.2020.102331_bb0410
  article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications
  publication-title: J Phys Chem C
  doi: 10.1021/jp8001564
– volume: 113
  start-page: 17811
  year: 2009
  ident: 10.1016/j.cis.2020.102331_bb0340
  article-title: Investigating the mechanism and electrode kinetics of the oxygenlsuperoxide (O2IO2-) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298-318 K
  publication-title: J Phys Chem C
  doi: 10.1021/jp9064054
– volume: 128
  start-page: 7408
  year: 2006
  ident: 10.1016/j.cis.2020.102331_bb0335
  article-title: Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes
  publication-title: J Am Chem Soc
  doi: 10.1021/ja061246s
– volume: 8
  start-page: 17
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0015
  article-title: Selective electrochemical H2O2 production through two-electron oxygen electrochemistry
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201801909
– volume: 45
  start-page: 6962
  year: 2006
  ident: 10.1016/j.cis.2020.102331_bb0035
  article-title: Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.200503779
– volume: 12
  start-page: 1137
  year: 2013
  ident: 10.1016/j.cis.2020.102331_bb0120
  article-title: Enabling direct H2O2 production through rational electrocatalyst design
  publication-title: Nat Mater
  doi: 10.1038/nmat3795
– year: 2014
  ident: 10.1016/j.cis.2020.102331_bb0195
  article-title: Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2- on anodized Au surface: application to electrocatalysis of the oxygen evolution reaction
  publication-title: RSC Adv
– volume: 8
  start-page: 379
  year: 2018
  ident: 10.1016/j.cis.2020.102331_bb0365
  article-title: Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review
  publication-title: Catalysts
  doi: 10.3390/catal8090379
SSID ssj0002575
Score 2.5854893
SecondaryResourceType review_article
Snippet Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102331
SubjectTerms Electrocatalysis
Electrochemical synthesis
H2O2 generation
Oxygen reduction reaction
Water oxidation reaction
Title A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies
URI https://dx.doi.org/10.1016/j.cis.2020.102331
https://www.ncbi.nlm.nih.gov/pubmed/33321333
https://www.proquest.com/docview/2470629426
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1VrRBcUCkFlkJlJE6VQrOxk-weVyuqhRU9oFbdW-SMbRGEkqrZSuyFM5_dmdjeikN74JTIshMrM7Gf7TdvAD5i4XTtpnXi8olMlHOGfilXJtq43JmyUHZgE347LxaX6usqX-3APMbCMK0yjP1-TB9G61ByGr7m6XXTcIxvylrvRcawN01XHMGuStbP__TnnuZBLumzGNCymWvHk82B44UNK3ZnXsBAjh-amx7CnsMcdLYPzwN4FDPfvxewY9sDeOLTSW4O4Ok8Zm-j0oHaif1L-DsTPj5FdC3dMRtTmHuqUC-aVoRkOBjUA8SPjbnpyLUEy4j_bowV_aYlqNg3veCdW6EFhhwJQm-1PUXnuEEM3uyFbo3o11GM4hAuzj5fzBdJyL-QoJwW6wSNRYVjXVqGQfm0JuvZSWHNuEBTKm2Q4JOaINpMGk1Ax-SE5rhCphyNJK9gt-1a-wZEntk0r8doS0IMaKVOkaAkWnpMSYhpMoI0fvgKgzY5p8j4VUUS2k8q7yu2VeVtNYKTbZNrL8zxWGUVrVn9410VTRyPNfsQLV-R-fgoRbe2u6VKqkyLbErwZgSvvUtseyGlzGjlL9_-30uP4FnGvJlhm-cd7K5vbu17Aj7r-njw7GPYm31ZLs75uvx-tbwDYcIGKg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ShJJeQpq-Nn2p0FPBxGvJ9u5xWRo2TbKnLezNyCOJuhQ7xBvo_oP-7M5Y0pYekkNuRmhsoRmPPkkz3wB8xsLp2k3rxOUTmSjnDP1Srky0cbkzZaHsEE14vSwW39W3db7eg3nMheGwyuD7vU8fvHVoOQuzeXbTNJzjmzLXe5Ex7E3T9RM4YHYqMvaD2cXlYrlzyGSVvpAB7ZxZIF5uDmFe2DBpd-Y5DOT4vuXpPvg5LEPnx3AU8KOY-SE-hz3bnsBTX1FyewKH81jAjVqH6E7sX8CfmfApKqJr6YkDMoX5Fy3Ui6YVoR4OBgIB8WNrbjuyLsFM4r8bY0W_bQkt9k0v-PBWaIGhTILQO3pP0TkWiPmbvdCtEf0m8lG8hNX519V8kYQSDAnKabFJ0FhUONalZSSUT2tSoJ0U1owLNKXSBglBqQmizaTRhHVMToCOO2TKkTN5Bftt19o3IPLMpnk9RlsSaEArdYqEJtHSa0oCTZMRpHHiKwz05Fwl41cV49B-Untfsa4qr6sRfNmJ3Hhujoc6q6jN6j8Dq2jteEjsU9R8Rerj2xTd2u6OOqkyLbIpIZwRvPYmsRuFlDKjzb88fdxHP8LhYnV9VV1dLC_fwrOMw2iGU593sL-5vbPvCQdt6g_Bzv8CHP4HOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+recent+developments+in+electrochemical+hydrogen+peroxide+synthesis+with+a+critical+assessment+of+perspectives+and+strategies&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Anantharaj%2C+Sengeni&rft.au=Pitchaimuthu%2C+Sudhagar&rft.au=Noda%2C+Suguru&rft.date=2021-01-01&rft.eissn=1873-3727&rft.volume=287&rft.spage=102331&rft_id=info:doi/10.1016%2Fj.cis.2020.102331&rft_id=info%3Apmid%2F33321333&rft.externalDocID=33321333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon