Experimental investigation of heat transfer and pressure drop characteristics of ammonia–water in a mini-channel annulus
•Heat transfer experiments in mini-channel annulus during absorption.•Pressure drop for mini-channel annulus investigated.•Heat transfer and pressure drop compared with existing correlations. The ammonia–water mixture is commonly used in absorption and compression–resorption heat pumps. The heat tra...
Saved in:
Published in | Experimental thermal and fluid science Vol. 61; pp. 177 - 186 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Heat transfer experiments in mini-channel annulus during absorption.•Pressure drop for mini-channel annulus investigated.•Heat transfer and pressure drop compared with existing correlations.
The ammonia–water mixture is commonly used in absorption and compression–resorption heat pumps. The heat transfer performance of a vertically oriented mini-channel annulus operated with an ammonia–water mixture under absorption conditions has been experimentally investigated. Heat exchangers comprised of annuli can be used in compression–resorption heat pumps. Measurements have been executed in a channel with a hydraulic diameter of 0.4mm and a length of 0.8m with an average eccentricity of 0.6. The experiments are used to determine the heat transfer coefficient and pressure drop during absorption for different operating conditions along the channel. The measured heat transfer coefficients vary from 1000 to 10,000Wm−2K−1. Results are presented as function of heat flux, mass flux and vapor quality in order to investigate the dependency of heat transfer coefficients on the given variables. Mass flux is directly measured; vapor quality is obtained from equations of state with pressure and temperature at the inlet and outlet of each channel as input, assuming equilibrium conditions. The heat transfer coefficient increases with increasing mass flux, increasing inlet vapor quality and increasing heat flux. The heat transfer coefficient increases sharply between mass fluxes of 120 and 175kgm−2s−1 at low inlet vapor qualities and constant heat flux. The pressure drop shows an increasing trend with increasing mass flux and vapor inlet quality. The pressure drop measurements have been compared against empirical models from literature originally designed for tubes. One of these models is able to predict the measured pressure drop in the current channel within 25% deviation. The heat transfer performance was compared against empirical models from literature, which show very little agreement with the results from the experiments. The models are intended to predict condensation heat transfer in tubes, so they cannot fully take the annular geometry, eccentricity and mass transfer resistances into account, causing large discrepancies between predicted and experimental heat transfer coefficients. |
---|---|
AbstractList | The ammonia-water mixture is commonly used in absorption and compression-resorption heat pumps. The heat transfer performance of a vertically oriented mini-channel annulus operated with an ammonia-water mixture under absorption conditions has been experimentally investigated. Heat exchangers comprised of annuli can be used in compression-resorption heat pumps. Measurements have been executed in a channel with a hydraulic diameter of 0.4 mm and a length of 0.8 m with an average eccentricity of 0.6. The experiments are used to determine the heat transfer coefficient and pressure drop during absorption for different operating conditions along the channel. The heat transfer performance was compared against empirical models from literature, which show very little agreement with the results from the experiments. The models are intended to predict condensation heat transfer in tubes, so they cannot fully take the annular geometry, eccentricity and mass transfer resistances into account, causing large discrepancies between predicted and experimental heat transfer coefficients. •Heat transfer experiments in mini-channel annulus during absorption.•Pressure drop for mini-channel annulus investigated.•Heat transfer and pressure drop compared with existing correlations. The ammonia–water mixture is commonly used in absorption and compression–resorption heat pumps. The heat transfer performance of a vertically oriented mini-channel annulus operated with an ammonia–water mixture under absorption conditions has been experimentally investigated. Heat exchangers comprised of annuli can be used in compression–resorption heat pumps. Measurements have been executed in a channel with a hydraulic diameter of 0.4mm and a length of 0.8m with an average eccentricity of 0.6. The experiments are used to determine the heat transfer coefficient and pressure drop during absorption for different operating conditions along the channel. The measured heat transfer coefficients vary from 1000 to 10,000Wm−2K−1. Results are presented as function of heat flux, mass flux and vapor quality in order to investigate the dependency of heat transfer coefficients on the given variables. Mass flux is directly measured; vapor quality is obtained from equations of state with pressure and temperature at the inlet and outlet of each channel as input, assuming equilibrium conditions. The heat transfer coefficient increases with increasing mass flux, increasing inlet vapor quality and increasing heat flux. The heat transfer coefficient increases sharply between mass fluxes of 120 and 175kgm−2s−1 at low inlet vapor qualities and constant heat flux. The pressure drop shows an increasing trend with increasing mass flux and vapor inlet quality. The pressure drop measurements have been compared against empirical models from literature originally designed for tubes. One of these models is able to predict the measured pressure drop in the current channel within 25% deviation. The heat transfer performance was compared against empirical models from literature, which show very little agreement with the results from the experiments. The models are intended to predict condensation heat transfer in tubes, so they cannot fully take the annular geometry, eccentricity and mass transfer resistances into account, causing large discrepancies between predicted and experimental heat transfer coefficients. |
Author | van de Bor, Dennis M. Vasilescu, Catalina Infante Ferreira, Carlos |
Author_xml | – sequence: 1 givenname: Dennis M. surname: van de Bor fullname: van de Bor, Dennis M. email: d.m.vandebor@tudelft.nl – sequence: 2 givenname: Catalina surname: Vasilescu fullname: Vasilescu, Catalina – sequence: 3 givenname: Carlos surname: Infante Ferreira fullname: Infante Ferreira, Carlos |
BookMark | eNqNkbFuFDEQhi0UJC6Bd3BBQbOH7d3z2hINipKAFIkGamvOO8v5tGsvtjcEKt6BN-RJmNPR0KUayf__f5rxf8kuYorI2GsptlJI_fa4xcelHjDP47QWH7ZKyI6krVD9M7aRpreNUkZfsI0wtmtk3_cv2GUpRyGEUVJs2M-bxwVzmDFWmHiID1hq-Ao1pMjTyA8IldcMsYyYOcSBLxlLWTPyIaeF-wNk8JUIFPPlFIF5TjHAn1-_vwMJxOTA5xBDQ-YYcSJMXGnfl-z5CFPBV__mFftye_P5-kNz_-nu4_X7-8a3VtfG78dBobFG6E711gytbGG_60aLaEBrRS-qNUK0ynZgxU52dg_Gj0KZHfSyvWJvztwlp28r3efmUDxOE0RMa3FSa0t4o8xTrEb1SuiWrO_OVp9TKRlHt9A3Qv7hpHCndtzR_d-OO7VzUqkdit-e40iXPwTMjhwYPQ4ho69uSOFpoL9MBaZ2 |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2019_114619 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119974 crossref_primary_10_1016_j_rser_2016_12_050 crossref_primary_10_1016_j_icheatmasstransfer_2019_104346 crossref_primary_10_1016_j_ijft_2023_100433 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119483 crossref_primary_10_1016_j_applthermaleng_2019_02_051 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121091 crossref_primary_10_1140_epjp_s13360_021_01136_1 |
Cites_doi | 10.1016/S0017-9310(99)00228-8 10.1115/1.1428327 10.1016/0017-9310(71)90211-0 10.1016/j.expthermflusci.2010.11.006 10.1016/S0894-1777(02)00162-0 10.1016/j.ijrefrig.2011.02.004 10.1016/0894-1777(94)00110-T 10.1016/0301-9322(91)90072-B 10.1016/j.expthermflusci.2013.01.002 10.1080/01457630500523907 10.1016/S0017-9310(00)00176-9 10.1115/1.2345427 10.1016/0894-1777(95)00059-3 10.1016/0142-727X(95)00030-T 10.1016/j.ijheatmasstransfer.2009.09.011 10.1063/1.556015 10.1016/j.ijheatmasstransfer.2012.02.047 10.1016/j.scient.2011.07.003 10.1016/j.ijheatmasstransfer.2009.04.018 10.1016/0894-1777(89)90031-9 10.1021/i260009a012 10.2514/6.1998-2492 10.1002/aic.690140334 10.1016/0017-9310(82)90192-2 10.1016/S0140-7007(02)00155-X |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. |
Copyright_xml | – notice: 2014 Elsevier Inc. |
DBID | AAYXX CITATION 7QH 7UA C1K F1W H96 L.G 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.expthermflusci.2014.10.027 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2286 |
EndPage | 186 |
ExternalDocumentID | 10_1016_j_expthermflusci_2014_10_027 S0894177714002763 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7QH 7UA C1K F1W H96 L.G 7TB 7U5 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c396t-cbfd2e8980642798d313ab54f9ee8a6628d3238003294a905149ba8cf0285a713 |
IEDL.DBID | .~1 |
ISSN | 0894-1777 |
IngestDate | Fri Oct 25 05:21:34 EDT 2024 Fri Oct 25 01:41:30 EDT 2024 Thu Sep 26 15:56:37 EDT 2024 Fri Feb 23 02:31:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mini-channel Annulus Absorption Heat transfer coefficient Ammonia–water |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-cbfd2e8980642798d313ab54f9ee8a6628d3238003294a905149ba8cf0285a713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1668272063 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1669898828 proquest_miscellaneous_1668272063 crossref_primary_10_1016_j_expthermflusci_2014_10_027 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2014_10_027 |
PublicationCentury | 2000 |
PublicationDate | February 2015 2015-02-00 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationTitle | Experimental thermal and fluid science |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Tu, Cai, Yan (b0045) 1989; 4 Manglik, Fang (b0140) 1995; 16 Nozu, Honda, Nishida (b0030) 1995; 11 Garimella, Killion, Coleman (b0095) 2002; 124 Trombetta (b0135) 1971; 14 H Gnielinski (b0075) 1976; 16 O mixtures for the industrial design of absorption refrigeration equipment, 2006. Wang, Radcliff, Christensen (b0090) 2002; 26 Cavallini, Doretti, Matkovic, Rossetto (b0080) 2006; 27 Zhang, Hibiki, Mishima (b0155) 2010; 53 Wang, Du (b0035) 2000; 43 P. Colonna, T.P. Van der Stelt, FluidProp: a program for the estimation of thermophysical properties of fluids., in: FluidProp Lin, Kwok, Li, Chen, Chen (b0150) 1991; 17 Bandhauer, Agarwal, Garimella (b0060) 2006; 128 Hanafizadeh, Saidi, Nouri Gheimasi, Ghanbarzadeh (b0010) 2011; 18 Park, Vakili-Farahani, Consolini, Thome (b0065) 2011; 35 Liu, Li, Sun, Wang (b0070) 2013; 47 Kasprzak, Podpora (b0055) 1982; 25 E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, in: Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, 2010. Cheng, Hwang (b0130) 1968; 14 Yan, Lin (b0040) 2001; 44 Nozu, Honda, Nakata (b0025) 1995; 11 V D I Heat Atlas, second ed., Springer Verlag, Berlin, 2010. Y. Muzychka, M. Yovanovich, Modeling friction factors in non-circular ducts for developing laminar flow, in: 2nd AIAA Theoretical Fluid Mechanics Meeting, 1998. pp. 15–18. Mills (b0145) 1999 + Kim, Mudawar (b0160) 2012; 55 M. Conde, Thermophysical properties of NH Koyama, Kuwahara, Nakashita, Yamamoto (b0085) 2003; 26 Tillner-Roth, Friend (b0115) 1998; 27 Stewart, Clayton, Loya, Hurd (b0050) 1964; 3 Dutkowski (b0005) 2009; 52 2004. Determan, Garimella (b0100) 2011; 34 Honda, Nozu, Matsuoka, Aoyama, Nakata (b0020) 1989; 2 Garimella (10.1016/j.expthermflusci.2014.10.027_b0095) 2002; 124 10.1016/j.expthermflusci.2014.10.027_b0125 Stewart (10.1016/j.expthermflusci.2014.10.027_b0050) 1964; 3 10.1016/j.expthermflusci.2014.10.027_b0105 10.1016/j.expthermflusci.2014.10.027_b0120 Kasprzak (10.1016/j.expthermflusci.2014.10.027_b0055) 1982; 25 Wang (10.1016/j.expthermflusci.2014.10.027_b0045) 1989; 4 Dutkowski (10.1016/j.expthermflusci.2014.10.027_b0005) 2009; 52 Cheng (10.1016/j.expthermflusci.2014.10.027_b0130) 1968; 14 Wang (10.1016/j.expthermflusci.2014.10.027_b0035) 2000; 43 Koyama (10.1016/j.expthermflusci.2014.10.027_b0085) 2003; 26 Determan (10.1016/j.expthermflusci.2014.10.027_b0100) 2011; 34 Cavallini (10.1016/j.expthermflusci.2014.10.027_b0080) 2006; 27 Nozu (10.1016/j.expthermflusci.2014.10.027_b0025) 1995; 11 Wang (10.1016/j.expthermflusci.2014.10.027_b0090) 2002; 26 Park (10.1016/j.expthermflusci.2014.10.027_b0065) 2011; 35 Lin (10.1016/j.expthermflusci.2014.10.027_b0150) 1991; 17 Bandhauer (10.1016/j.expthermflusci.2014.10.027_b0060) 2006; 128 Gnielinski (10.1016/j.expthermflusci.2014.10.027_b0075) 1976; 16 Mills (10.1016/j.expthermflusci.2014.10.027_b0145) 1999 10.1016/j.expthermflusci.2014.10.027_b0015 Hanafizadeh (10.1016/j.expthermflusci.2014.10.027_b0010) 2011; 18 10.1016/j.expthermflusci.2014.10.027_b0110 Yan (10.1016/j.expthermflusci.2014.10.027_b0040) 2001; 44 Liu (10.1016/j.expthermflusci.2014.10.027_b0070) 2013; 47 Trombetta (10.1016/j.expthermflusci.2014.10.027_b0135) 1971; 14 Manglik (10.1016/j.expthermflusci.2014.10.027_b0140) 1995; 16 Honda (10.1016/j.expthermflusci.2014.10.027_b0020) 1989; 2 Tillner-Roth (10.1016/j.expthermflusci.2014.10.027_b0115) 1998; 27 Kim (10.1016/j.expthermflusci.2014.10.027_b0160) 2012; 55 Nozu (10.1016/j.expthermflusci.2014.10.027_b0030) 1995; 11 Zhang (10.1016/j.expthermflusci.2014.10.027_b0155) 2010; 53 |
References_xml | – year: 1999 ident: b0145 article-title: Basic Heat and Mass Transfer contributor: fullname: Mills – volume: 11 start-page: 40 year: 1995 end-page: 51 ident: b0025 article-title: Condensation of refrigerants CFC11 and CFC113 in the annulus of a double-tube coil with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Nakata – volume: 35 start-page: 442 year: 2011 end-page: 454 ident: b0065 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Thome – volume: 55 start-page: 3246 year: 2012 end-page: 3261 ident: b0160 article-title: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows publication-title: Int. J. Heat Mass Trans. contributor: fullname: Mudawar – volume: 16 start-page: 359 year: 1976 end-page: 368 ident: b0075 article-title: Equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. contributor: fullname: Gnielinski – volume: 27 start-page: 63 year: 1998 end-page: 96 ident: b0115 article-title: A Helmholtz free energy formulation of the thermodynamic properties of the mixture {water publication-title: J. Phys. Chem. Ref. Data contributor: fullname: Friend – volume: 52 start-page: 5185 year: 2009 end-page: 5192 ident: b0005 article-title: Two-phase pressure drop of air–water in minichannels publication-title: Int. J. Heat Mass Trans. contributor: fullname: Dutkowski – volume: 25 start-page: 389 year: 1982 end-page: 398 ident: b0055 article-title: Condensation in turbulent flow through an annulus—experimental and theoretical investigations publication-title: Int. J. Heat Mass Trans. contributor: fullname: Podpora – volume: 47 start-page: 60 year: 2013 end-page: 67 ident: b0070 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Wang – volume: 43 start-page: 1391 year: 2000 end-page: 1398 ident: b0035 article-title: Condensation on the outside surface of a small/mini diameter tube for vapor flowing through a horizontal annulus surround by an adiabatic concentric tube publication-title: Int. J. Heat Mass Trans. contributor: fullname: Du – volume: 2 start-page: 173 year: 1989 end-page: 182 ident: b0020 article-title: Condensation of refrigerants R-11 and R-113 in the annuli of horizontal double-tube condensers with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Nakata – volume: 3 start-page: 48 year: 1964 end-page: 54 ident: b0050 article-title: Condensing heat transfer in steam-air mixtures in turbulent flow publication-title: I.E.C. Process Des. Dev. contributor: fullname: Hurd – volume: 16 start-page: 298 year: 1995 end-page: 306 ident: b0140 article-title: Effect of eccentricity and thermal boundary conditions on laminar fully developed flow in annular ducts publication-title: Int. J. Heat Fluid Flow contributor: fullname: Fang – volume: 4 start-page: 275 year: 1989 end-page: 285 ident: b0045 article-title: Condensation heat transfer of vapor–gas mixture in turbulent flow through an annulus publication-title: Chin. J. Chem. Eng. contributor: fullname: Yan – volume: 26 start-page: 425 year: 2003 end-page: 432 ident: b0085 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig contributor: fullname: Yamamoto – volume: 17 start-page: 95 year: 1991 end-page: 102 ident: b0150 article-title: Local frictional pressure drop during vaporization of R-12 through capillary tubes publication-title: Int. J. Multiphase Flow contributor: fullname: Chen – volume: 34 start-page: 1197 year: 2011 end-page: 1208 ident: b0100 article-title: Ammonia–water desorption heat and mass transfer in microchannel devices publication-title: Int. J. Refrig contributor: fullname: Garimella – volume: 14 start-page: 1161 year: 1971 end-page: 1173 ident: b0135 article-title: Laminar forced convection in eccentric annuli publication-title: Int. J. Heat Mass Trans. contributor: fullname: Trombetta – volume: 14 start-page: 510 year: 1968 end-page: 512 ident: b0130 article-title: Laminar forced convection in eccentric annuli publication-title: AlChE J. contributor: fullname: Hwang – volume: 128 start-page: 1050 year: 2006 end-page: 1059 ident: b0060 article-title: Measurement and modeling of condensation heat transfer coefficients in circular microchannels publication-title: J. Heat Transfer contributor: fullname: Garimella – volume: 124 start-page: 205 year: 2002 end-page: 214 ident: b0095 article-title: An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels publication-title: J. Fluids Eng. contributor: fullname: Coleman – volume: 26 start-page: 473 year: 2002 end-page: 485 ident: b0090 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Christensen – volume: 44 start-page: 1143 year: 2001 end-page: 1151 ident: b0040 article-title: Natural convection heat and mass transfer in vertical annuli with film evaporation and condensation publication-title: Int. J. Heat Mass Trans. contributor: fullname: Lin – volume: 11 start-page: 364 year: 1995 end-page: 371 ident: b0030 article-title: Condensation of a zeotropic CFC 114-CFC 113 refrigerant mixture in the annulus of a double-tube coil with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Nishida – volume: 27 start-page: 74 year: 2006 end-page: 87 ident: b0080 article-title: Update on condensation heat transfer and pressure drop inside minichannels publication-title: Heat Transfer Eng. contributor: fullname: Rossetto – volume: 18 start-page: 923 year: 2011 end-page: 929 ident: b0010 article-title: Experimental investigation of air–water, two-phase flow regimes in vertical mini pipe publication-title: Sci. Iranica contributor: fullname: Ghanbarzadeh – volume: 53 start-page: 453 year: 2010 end-page: 465 ident: b0155 article-title: Correlations of two-phase frictional pressure drop and void fraction in mini-channel publication-title: Int. J. Heat Mass Trans. contributor: fullname: Mishima – volume: 43 start-page: 1391 year: 2000 ident: 10.1016/j.expthermflusci.2014.10.027_b0035 article-title: Condensation on the outside surface of a small/mini diameter tube for vapor flowing through a horizontal annulus surround by an adiabatic concentric tube publication-title: Int. J. Heat Mass Trans. doi: 10.1016/S0017-9310(99)00228-8 contributor: fullname: Wang – volume: 124 start-page: 205 year: 2002 ident: 10.1016/j.expthermflusci.2014.10.027_b0095 article-title: An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels publication-title: J. Fluids Eng. doi: 10.1115/1.1428327 contributor: fullname: Garimella – volume: 14 start-page: 1161 year: 1971 ident: 10.1016/j.expthermflusci.2014.10.027_b0135 article-title: Laminar forced convection in eccentric annuli publication-title: Int. J. Heat Mass Trans. doi: 10.1016/0017-9310(71)90211-0 contributor: fullname: Trombetta – volume: 35 start-page: 442 year: 2011 ident: 10.1016/j.expthermflusci.2014.10.027_b0065 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.11.006 contributor: fullname: Park – volume: 26 start-page: 473 year: 2002 ident: 10.1016/j.expthermflusci.2014.10.027_b0090 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(02)00162-0 contributor: fullname: Wang – volume: 34 start-page: 1197 year: 2011 ident: 10.1016/j.expthermflusci.2014.10.027_b0100 article-title: Ammonia–water desorption heat and mass transfer in microchannel devices publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2011.02.004 contributor: fullname: Determan – volume: 11 start-page: 40 year: 1995 ident: 10.1016/j.expthermflusci.2014.10.027_b0025 article-title: Condensation of refrigerants CFC11 and CFC113 in the annulus of a double-tube coil with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(94)00110-T contributor: fullname: Nozu – volume: 16 start-page: 359 year: 1976 ident: 10.1016/j.expthermflusci.2014.10.027_b0075 article-title: Equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. contributor: fullname: Gnielinski – volume: 17 start-page: 95 year: 1991 ident: 10.1016/j.expthermflusci.2014.10.027_b0150 article-title: Local frictional pressure drop during vaporization of R-12 through capillary tubes publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(91)90072-B contributor: fullname: Lin – volume: 47 start-page: 60 year: 2013 ident: 10.1016/j.expthermflusci.2014.10.027_b0070 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.01.002 contributor: fullname: Liu – volume: 27 start-page: 74 year: 2006 ident: 10.1016/j.expthermflusci.2014.10.027_b0080 article-title: Update on condensation heat transfer and pressure drop inside minichannels publication-title: Heat Transfer Eng. doi: 10.1080/01457630500523907 contributor: fullname: Cavallini – volume: 44 start-page: 1143 year: 2001 ident: 10.1016/j.expthermflusci.2014.10.027_b0040 article-title: Natural convection heat and mass transfer in vertical annuli with film evaporation and condensation publication-title: Int. J. Heat Mass Trans. doi: 10.1016/S0017-9310(00)00176-9 contributor: fullname: Yan – volume: 128 start-page: 1050 year: 2006 ident: 10.1016/j.expthermflusci.2014.10.027_b0060 article-title: Measurement and modeling of condensation heat transfer coefficients in circular microchannels publication-title: J. Heat Transfer doi: 10.1115/1.2345427 contributor: fullname: Bandhauer – volume: 11 start-page: 364 year: 1995 ident: 10.1016/j.expthermflusci.2014.10.027_b0030 article-title: Condensation of a zeotropic CFC 114-CFC 113 refrigerant mixture in the annulus of a double-tube coil with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(95)00059-3 contributor: fullname: Nozu – volume: 4 start-page: 275 year: 1989 ident: 10.1016/j.expthermflusci.2014.10.027_b0045 article-title: Condensation heat transfer of vapor–gas mixture in turbulent flow through an annulus publication-title: Chin. J. Chem. Eng. contributor: fullname: Wang – volume: 16 start-page: 298 year: 1995 ident: 10.1016/j.expthermflusci.2014.10.027_b0140 article-title: Effect of eccentricity and thermal boundary conditions on laminar fully developed flow in annular ducts publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(95)00030-T contributor: fullname: Manglik – volume: 53 start-page: 453 year: 2010 ident: 10.1016/j.expthermflusci.2014.10.027_b0155 article-title: Correlations of two-phase frictional pressure drop and void fraction in mini-channel publication-title: Int. J. Heat Mass Trans. doi: 10.1016/j.ijheatmasstransfer.2009.09.011 contributor: fullname: Zhang – year: 1999 ident: 10.1016/j.expthermflusci.2014.10.027_b0145 contributor: fullname: Mills – volume: 27 start-page: 63 year: 1998 ident: 10.1016/j.expthermflusci.2014.10.027_b0115 article-title: A Helmholtz free energy formulation of the thermodynamic properties of the mixture {water+ammonia} publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.556015 contributor: fullname: Tillner-Roth – ident: 10.1016/j.expthermflusci.2014.10.027_b0110 – volume: 55 start-page: 3246 year: 2012 ident: 10.1016/j.expthermflusci.2014.10.027_b0160 article-title: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows publication-title: Int. J. Heat Mass Trans. doi: 10.1016/j.ijheatmasstransfer.2012.02.047 contributor: fullname: Kim – volume: 18 start-page: 923 year: 2011 ident: 10.1016/j.expthermflusci.2014.10.027_b0010 article-title: Experimental investigation of air–water, two-phase flow regimes in vertical mini pipe publication-title: Sci. Iranica doi: 10.1016/j.scient.2011.07.003 contributor: fullname: Hanafizadeh – volume: 52 start-page: 5185 year: 2009 ident: 10.1016/j.expthermflusci.2014.10.027_b0005 article-title: Two-phase pressure drop of air–water in minichannels publication-title: Int. J. Heat Mass Trans. doi: 10.1016/j.ijheatmasstransfer.2009.04.018 contributor: fullname: Dutkowski – volume: 2 start-page: 173 year: 1989 ident: 10.1016/j.expthermflusci.2014.10.027_b0020 article-title: Condensation of refrigerants R-11 and R-113 in the annuli of horizontal double-tube condensers with an enhanced inner tube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(89)90031-9 contributor: fullname: Honda – volume: 3 start-page: 48 year: 1964 ident: 10.1016/j.expthermflusci.2014.10.027_b0050 article-title: Condensing heat transfer in steam-air mixtures in turbulent flow publication-title: I.E.C. Process Des. Dev. doi: 10.1021/i260009a012 contributor: fullname: Stewart – ident: 10.1016/j.expthermflusci.2014.10.027_b0125 doi: 10.2514/6.1998-2492 – ident: 10.1016/j.expthermflusci.2014.10.027_b0015 – volume: 14 start-page: 510 year: 1968 ident: 10.1016/j.expthermflusci.2014.10.027_b0130 article-title: Laminar forced convection in eccentric annuli publication-title: AlChE J. doi: 10.1002/aic.690140334 contributor: fullname: Cheng – volume: 25 start-page: 389 year: 1982 ident: 10.1016/j.expthermflusci.2014.10.027_b0055 article-title: Condensation in turbulent flow through an annulus—experimental and theoretical investigations publication-title: Int. J. Heat Mass Trans. doi: 10.1016/0017-9310(82)90192-2 contributor: fullname: Kasprzak – volume: 26 start-page: 425 year: 2003 ident: 10.1016/j.expthermflusci.2014.10.027_b0085 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig doi: 10.1016/S0140-7007(02)00155-X contributor: fullname: Koyama – ident: 10.1016/j.expthermflusci.2014.10.027_b0105 – ident: 10.1016/j.expthermflusci.2014.10.027_b0120 |
SSID | ssj0008210 |
Score | 2.164624 |
Snippet | •Heat transfer experiments in mini-channel annulus during absorption.•Pressure drop for mini-channel annulus investigated.•Heat transfer and pressure drop... The ammonia-water mixture is commonly used in absorption and compression-resorption heat pumps. The heat transfer performance of a vertically oriented... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 177 |
SubjectTerms | Absorption Ammonia–water Annulus Channels Eccentricity Fluid flow Heat pumps Heat transfer Heat transfer coefficient Heat transfer coefficients Mathematical models Mini-channel Pressure drop |
Title | Experimental investigation of heat transfer and pressure drop characteristics of ammonia–water in a mini-channel annulus |
URI | https://dx.doi.org/10.1016/j.expthermflusci.2014.10.027 https://search.proquest.com/docview/1668272063 https://search.proquest.com/docview/1669898828 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA9DQfRB_IvzHxH2Gtd2aZo8icjGVNyLDnwraZvARNtSNxQfxO_gN_STeNe1zImI4GPTa5vmLne_I5dfCGl5xndtpBxmhbWMe9phKhKKAbhwZQJ415YrulcD0R_yi1v_tkHO6r0wWFZZ-f6pTy-9ddXSrkaznY9G7WtHKu4GATLOQW4lkPGTQ_gDmz5-nZV5SK9kJEBhhtJLpDWr8TLPOcKsB3s_gU9goRc_xlovPGPm5zD1zWGXUai3RlYr-EhPpz1cJw2TbpCVL6SCm-Sl-4W0n45mPBpZSjNL0fnScQlXTUF1mtCyFHZSGJoUWU7jeQZnfESjrY70x9v7EyDTAt5JNUVOEobbhlNzT3G_MfzcFhn2ujdnfVadsMDijhJjFkc28YxUEtOQQMmk43Z05HOrjJFaCA9aIKbDzPcU10jlxVWkZWwBlfga8tttspBmqdkhFCREwo0sCW28wIn8RIMDcYII0nUt4ibx6wEN8ymRRlhXmN2F84oIURF4FxTRJCf16IdzhhGCz__jG45qpYUwd3BBRKcmmzyGrhAS16FF51cZPGITEtPdf_dkjyzDlT8t-t4nC-NiYg4A04yjw9JoD8ni6fllf_AJVcb79Q |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAo9VH2AoLTFlbiazcNx7FOFEGh5XgoSN8tJbGnRkqzCrkAcEP-h_7C_pDPZRMtWVYXENZ44jj0efyN__gywE7kk9JkOuJfecxHZgOtMao7gIlQF4l3f7Oiencv-pTi-Sq4WYL87C0O0yjb2T2N6E63bJ722N3ujwaD3M1BahGlKinOYW8l4EZYF4WN06t3HGc9DRY0kAVlzMn8DOzOSl7sfEc668cMJfoOYXmKXyF50ycy_16m_InazDB2-h3ctfmR70yZ-gAVXfoS3z1QFP8HDwTPVfjaYCWlUJas8o-jLxg1edTWzZcEaLuykdqyoqxHL5yWc6RVLzjqwv59-3SE0rbFOZhmJknA6N1y6IaMDx_hza3B5eHCx3-ftFQs8j7Uc8zzzReSUVpSHpFoVcRjbLBFeO6eslBE-wUUdp36khSUtL6Ezq3KPsCSxmOCuw1JZlW4DGFrIQjjVKNpEaZAlhcUIEqQZ5utW5puQdB1qRlMlDdNRzK7N_EAYGggqxYHYhB9d75s5zzAY9F9Yw_du0AxOHtoRsaWrJrcmlFLRRrSM_2tDd2xiZvr51S3ZhpX-xdmpOT06P9mCVSxJpgzwL7A0rifuKwKccfatceA_KNz9jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+heat+transfer+and+pressure+drop+characteristics+of+ammonia-water+in+a+mini-channel+annulus&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=van+de+Bor%2C+Dennis+M&rft.au=Vasilescu%2C+Catalina&rft.au=Ferreira%2C+Carlos+Infante&rft.date=2015-02-01&rft.issn=0894-1777&rft.volume=61&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1016%2Fj.expthermflusci.2014.10.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |