A wireless multi-step attack pattern recognition method for WLAN

•We propose a novel wireless multi-step attack pattern recognition method.•Hyper alerts are defined to improve the recognition of wireless multi-step attacks.•The correlation between two alerts is uncovered by wireless alert correlativity.•The method can effectively identify typical wireless multi-s...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 16; pp. 7068 - 7076
Main Authors Chen, Guanlin, Zhang, Yujia, Wang, Can
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a novel wireless multi-step attack pattern recognition method.•Hyper alerts are defined to improve the recognition of wireless multi-step attacks.•The correlation between two alerts is uncovered by wireless alert correlativity.•The method can effectively identify typical wireless multi-step attack patterns. Intrusion detection and prevention technology has been broadly applied to wired networks as an important means to protect network security. However, few work in this area has been extended to the WLAN. In this paper, we propose a wireless multi-step attack pattern recognition method (WMAPRM) based on correlation analysis with the main attributes of the IEEE 802.11 frame. The method consists of six steps: clustering wireless intrusion alerts, constructing a global attack database, building candidate attack chains, filtering candidate attack chains, correlating multi-step attack behaviors and recognizing multi-step attack patterns. Experimental results in real world environment show that WMAPRM is capable of identifying highly correlated multi-step attack patterns such as WEP crack with ARP+Deauthentication Flood, WEP crack with wesside-ng, config file stealing attack and authentication session hijack attack etc. The method is expected to improve both wireless intrusion detection and prevention performance in practical WLAN security scenarios.
AbstractList Intrusion detection and prevention technology has been broadly applied to wired networks as an important means to protect network security. However, few work in this area has been extended to the WLAN. In this paper, we propose a wireless multi-step attack pattern recognition method (WMAPRM) based on correlation analysis with the main attributes of the IEEE 802.11 frame. The method consists of six steps: clustering wireless intrusion alerts, constructing a global attack database, building candidate attack chains, filtering candidate attack chains, correlating multi-step attack behaviors and recognizing multistep attack patterns. Experimental results in real world environment show that WMAPRM is capable of identifying highly correlated multi-step attack patterns such as WEP crack with ARP + Deauthentication Flood, WEP crack with wesside-ng, con fig file stealing attack and authentication session hijack attack etc. The method is expected to improve both wireless intrusion detection and prevention performance in practical WLAN security scenarios.
•We propose a novel wireless multi-step attack pattern recognition method.•Hyper alerts are defined to improve the recognition of wireless multi-step attacks.•The correlation between two alerts is uncovered by wireless alert correlativity.•The method can effectively identify typical wireless multi-step attack patterns. Intrusion detection and prevention technology has been broadly applied to wired networks as an important means to protect network security. However, few work in this area has been extended to the WLAN. In this paper, we propose a wireless multi-step attack pattern recognition method (WMAPRM) based on correlation analysis with the main attributes of the IEEE 802.11 frame. The method consists of six steps: clustering wireless intrusion alerts, constructing a global attack database, building candidate attack chains, filtering candidate attack chains, correlating multi-step attack behaviors and recognizing multi-step attack patterns. Experimental results in real world environment show that WMAPRM is capable of identifying highly correlated multi-step attack patterns such as WEP crack with ARP+Deauthentication Flood, WEP crack with wesside-ng, config file stealing attack and authentication session hijack attack etc. The method is expected to improve both wireless intrusion detection and prevention performance in practical WLAN security scenarios.
Author Zhang, Yujia
Wang, Can
Chen, Guanlin
Author_xml – sequence: 1
  givenname: Guanlin
  surname: Chen
  fullname: Chen, Guanlin
  organization: School of Computer and Computing Science, Zhejiang University City College, Hangzhou 310015, PR China
– sequence: 2
  givenname: Yujia
  surname: Zhang
  fullname: Zhang, Yujia
  organization: Citigroup Software Technology and Services (China) Limited, Shanghai 201203, PR China
– sequence: 3
  givenname: Can
  surname: Wang
  fullname: Wang, Can
  email: wcan@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou 310027, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28610738$$DView record in Pascal Francis
BookMark eNqNkE1LAzEURYMoWKt_wNVsBDczviQzyQy4sIhfUHSjuAyZ9EVTp5OapBb_vVNaXIqruzn3XjhHZL_3PRJySqGgQMXFvMC41gUDWhZQFcCaPTKiteS5kA3fJyNoKpmXVJaH5CjGOQCVAHJEribZ2gXsMMZsseqSy2PCZaZT0uYjWw6Joc8CGv_Wu-R8ny0wvftZZn3IXqeTx2NyYHUX8WSXY_Jye_N8fZ9Pn-4erifT3PBGpNwIy7GUjREMBFS2ply2TaO15LyuK6apFa2WxraNoAxKXs1aKzm2DEDYEvmYnG93l8F_rjAmtXDRYNfpHv0qKipkDZQLwf6BDqNlLRkdULZFTfAxBrRqGdxCh29FQW3MqrnamFUbswoqNZgdSme7fR2N7mzQvXHxt8lqQUHyeuAutxwOXr4cBhWNw97gbDBukpp599fNDytGju0
CitedBy_id crossref_primary_10_1016_j_cose_2018_03_001
crossref_primary_10_1109_ACCESS_2022_3168976
crossref_primary_10_1007_s11771_019_4233_1
crossref_primary_10_1016_j_asoc_2020_106188
crossref_primary_10_1049_iet_net_2018_5050
Cites_doi 10.1109/DISCEX.2001.932191
10.1147/sj.413.0475
10.1360/crad20060718
10.1016/j.eswa.2012.07.009
10.1145/996943.996947
10.1109/SECPRI.2002.1004372
10.1145/586110.586144
10.1016/j.eswa.2012.07.057
10.1016/j.eswa.2013.08.066
10.1109/SECPRI.2002.1004377
10.1016/S1389-1286(00)00139-0
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.05.029
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 7076
ExternalDocumentID 10_1016_j_eswa_2014_05_029
28610738
S0957417414003091
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
08R
29G
AAAKG
AALMO
AAPBV
AAQXK
ABKBG
ABPIF
ABPTK
ACNNM
ADALY
ADJOM
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
IPNFZ
IQODW
PQEST
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
AAXKI
AAYXX
ADMUD
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-c6f3e479c620605f8137b99aa7338852a1f6ba7cfb96120435dbf73eb2006f4e3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Fri Oct 25 00:35:26 EDT 2024
Fri Oct 25 07:01:47 EDT 2024
Thu Sep 26 16:49:35 EDT 2024
Fri Nov 25 01:03:31 EST 2022
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Network security
WLAN
Pattern recognition
Correlation analysis
Multi-stage attack
Wireless LAN
Correlation
Intruder detector
Correlation method
Flood
Classification
Database
Wired network
Computer security
Script
Filtering
Meshed network
Aggression
Transmission protocol
Step method
Cluster
Experimental result
Filter
Authentication
Wireless network
Crack
Intrusion detection systems
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-c6f3e479c620605f8137b99aa7338852a1f6ba7cfb96120435dbf73eb2006f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1620048721
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1678013662
proquest_miscellaneous_1620048721
crossref_primary_10_1016_j_eswa_2014_05_029
pascalfrancis_primary_28610738
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_05_029
PublicationCentury 2000
PublicationDate 2014-11-15
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cuppens, F., & Miege, A. (2002). Alert correlation in a cooperative intrusion detection framework. In
Geib, C. W., & Goldman, R. P. (2001). Plan recognition in intrusion detection systems. In Proceedings of DARPA information survivability conference and exposition (DISCEX II’01), Anaheim, USA.
Kim, Lee, Kim (b0025) 2014; 41
Wang, Ghorbani, Li (b0070) 2010; 10
Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. M. (2002). Automated generation and analysis of attack graphs. In
Key West, USA.
Lippmann, Haines, Fried, Korba, Das (b0035) 2000; 34
Ning, Cui, Reeves, Xu (b0040) 2004; 7
Geib, C. W., & Goldman, R. P. (2001). Probabilistic plan recognition for hostile agents. In
Tucson, USA.
Oakland, USA.
Ning, P., Cui, Y., & Reeves, D. S. (2002). Constructing attack scenarios through correlation of intrusion alerts. In
Percoco, N. J. (2012). Trustwave 2012 global security report. Trustware SpiderLabs. Technical report.
Qin, X., & Lee, W. (2004). Attack plan recognition and prediction using causal networks. In
Yang, Yun, Li (b0075) 2006; 43
Washington, DC, USA.
Koc, Mazzuchi, Sarkani (b0030) 2012; 39
Hellerstein, Ma, Perng (b0020) 2002; 41
Shin, Lee, Kim, Kim (b0065) 2013; 40
Hellerstein (10.1016/j.eswa.2014.05.029_b0020) 2002; 41
10.1016/j.eswa.2014.05.029_b0055
10.1016/j.eswa.2014.05.029_b0045
Ning (10.1016/j.eswa.2014.05.029_b0040) 2004; 7
Shin (10.1016/j.eswa.2014.05.029_b0065) 2013; 40
10.1016/j.eswa.2014.05.029_b0015
10.1016/j.eswa.2014.05.029_b0005
10.1016/j.eswa.2014.05.029_b0060
10.1016/j.eswa.2014.05.029_b0050
Yang (10.1016/j.eswa.2014.05.029_b0075) 2006; 43
Koc (10.1016/j.eswa.2014.05.029_b0030) 2012; 39
10.1016/j.eswa.2014.05.029_b0010
Lippmann (10.1016/j.eswa.2014.05.029_b0035) 2000; 34
Wang (10.1016/j.eswa.2014.05.029_b0070) 2010; 10
Kim (10.1016/j.eswa.2014.05.029_b0025) 2014; 41
References_xml – volume: 10
  start-page: 142
  year: 2010
  end-page: 152
  ident: b0070
  article-title: Automatic multi-step attack pattern discovering
  publication-title: International Journal of Network Security
  contributor:
    fullname: Li
– volume: 39
  start-page: 13492
  year: 2012
  end-page: 13500
  ident: b0030
  article-title: A network intrusion detection system based on a Hidden Naive Bayes multiclass classifier
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Sarkani
– volume: 34
  start-page: 579
  year: 2000
  end-page: 595
  ident: b0035
  article-title: The 1999 DARPA off-line intrusion detection evaluation
  publication-title: Computer Networks
  contributor:
    fullname: Das
– volume: 40
  start-page: 315
  year: 2013
  end-page: 322
  ident: b0065
  article-title: Advanced probabilistic approach for network intrusion forecasting and detection
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Kim
– volume: 41
  start-page: 1690
  year: 2014
  end-page: 1700
  ident: b0025
  article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Kim
– volume: 43
  start-page: 1252
  year: 2006
  end-page: 1259
  ident: b0075
  article-title: Efficient approach to intrusion detection based on boosting rule learning
  publication-title: Computer Research and Development
  contributor:
    fullname: Li
– volume: 7
  start-page: 274
  year: 2004
  end-page: 318
  ident: b0040
  article-title: Techniques and tools for analyzing intrusion alerts
  publication-title: ACM Transactions on Information and System Security
  contributor:
    fullname: Xu
– volume: 41
  start-page: 475
  year: 2002
  end-page: 493
  ident: b0020
  article-title: Discovering actionable patterns in event data
  publication-title: IBM Systems Journal
  contributor:
    fullname: Perng
– ident: 10.1016/j.eswa.2014.05.029_b0010
  doi: 10.1109/DISCEX.2001.932191
– volume: 41
  start-page: 475
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2014.05.029_b0020
  article-title: Discovering actionable patterns in event data
  publication-title: IBM Systems Journal
  doi: 10.1147/sj.413.0475
  contributor:
    fullname: Hellerstein
– volume: 43
  start-page: 1252
  issue: 7
  year: 2006
  ident: 10.1016/j.eswa.2014.05.029_b0075
  article-title: Efficient approach to intrusion detection based on boosting rule learning
  publication-title: Computer Research and Development
  doi: 10.1360/crad20060718
  contributor:
    fullname: Yang
– volume: 39
  start-page: 13492
  issue: 18
  year: 2012
  ident: 10.1016/j.eswa.2014.05.029_b0030
  article-title: A network intrusion detection system based on a Hidden Naive Bayes multiclass classifier
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.009
  contributor:
    fullname: Koc
– volume: 7
  start-page: 274
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2014.05.029_b0040
  article-title: Techniques and tools for analyzing intrusion alerts
  publication-title: ACM Transactions on Information and System Security
  doi: 10.1145/996943.996947
  contributor:
    fullname: Ning
– volume: 10
  start-page: 142
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2014.05.029_b0070
  article-title: Automatic multi-step attack pattern discovering
  publication-title: International Journal of Network Security
  contributor:
    fullname: Wang
– ident: 10.1016/j.eswa.2014.05.029_b0050
– ident: 10.1016/j.eswa.2014.05.029_b0055
– ident: 10.1016/j.eswa.2014.05.029_b0015
– ident: 10.1016/j.eswa.2014.05.029_b0005
  doi: 10.1109/SECPRI.2002.1004372
– ident: 10.1016/j.eswa.2014.05.029_b0045
  doi: 10.1145/586110.586144
– volume: 40
  start-page: 315
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.05.029_b0065
  article-title: Advanced probabilistic approach for network intrusion forecasting and detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.057
  contributor:
    fullname: Shin
– volume: 41
  start-page: 1690
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2014.05.029_b0025
  article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.066
  contributor:
    fullname: Kim
– ident: 10.1016/j.eswa.2014.05.029_b0060
  doi: 10.1109/SECPRI.2002.1004377
– volume: 34
  start-page: 579
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2014.05.029_b0035
  article-title: The 1999 DARPA off-line intrusion detection evaluation
  publication-title: Computer Networks
  doi: 10.1016/S1389-1286(00)00139-0
  contributor:
    fullname: Lippmann
SSID ssj0017007
Score 2.195695
Snippet •We propose a novel wireless multi-step attack pattern recognition method.•Hyper alerts are defined to improve the recognition of wireless multi-step...
Intrusion detection and prevention technology has been broadly applied to wired networks as an important means to protect network security. However, few work...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 7068
SubjectTerms Access methods and protocols, osi model
Applied sciences
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Construction
Correlation analysis
Cracks
Exact sciences and technology
Intrusion
Local area networks
Memory and file management (including protection and security)
Memory organisation. Data processing
Multi-stage attack
Network security
Networks
Pattern recognition
Radiocommunications
Security
Software
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Wireless networks
WLAN
Title A wireless multi-step attack pattern recognition method for WLAN
URI https://dx.doi.org/10.1016/j.eswa.2014.05.029
https://search.proquest.com/docview/1620048721
https://search.proquest.com/docview/1678013662
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M7UUQ7-K8jAi-SV3btE365hiOeduLDn0LaZuAF7riKr752z1J28FQfBD60pLQ8qU55_vIuQCcUh4YnqwcGSeZTclx4ox7TkjdzNVSydBmyN1NovE0uH4Kn1owbHJhTFhlbfsrm26tdf2kX6PZL56f-_dIDtAd4hXY8zyUQB10Rz5vQ2dwdTOeLA4TmFtlTeN4x0yoc2eqMC81_zTlh7zAFvC0TPNX_7RWyDmipqt2Fz8st3VHo01Yr3kkGVSfugUtlW_DRtOjgdRbdgcuBsRUI35Dg0Zs8KCDy1oQWZYyfSWFra6Zk0UY0SwnVU9pgmSWPN4OJrswHV0-DMdO3TXBSWkclU4aaaoCFqeR76JW0dyjLIljKRmqUR760tNRIlmqkxjZjYt0KUs0o6iwcQPqQNE9aOezXO0DkdIQvoy5GmVXKE17UK5YlrmxRtkpaRfOGqxEURXHEE3U2IswyAqDrHBDgch2IWzgFEtLLNB6_zmvt4T94lU-R-7HKO_CSbMYAjeHOfGQuZp9zIUXGSPAUeX-NYZxU7gu8g_--YGHsGruTIaiFx5Bu3z_UMdIVcqkByvnX16v_iG_ATN75mI
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yHxTEuzivEXyTsnZpm-TNMRzVbX3R4d5C2iYwla64Dv--J2k7EGUPQp_ahJYvPSffR84FoVvCfMOTlSN5ktmUHIdnzHMC4maulkoGNkNuHIfRxH-aBtMN1G9yYUxYZe37K59uvXV9p1Oj2Slms84zkAPYDuHy7XkeSKBNYAMcrHOz9ziM4tVhAnWrrGkY75gJde5MFealFl-m_JDn2wKelmn-uT_tFHIBqOmq3cUvz223o8E-2q15JO5Vn3qANlR-iPaaHg24NtkjdN_DphrxBzg0bIMHHVjWAsuylOk7Lmx1zRyvwojmOa56SmMgs_h11IuP0WTw8NKPnLprgpMSHpZOGmqifMrTsOuCVtHMIzThXEoKapQFXenpMJE01QkHduMCXcoSTQkobDBA7Styglr5PFenCEtpCF9GXQ2yK5CmPShTNMtcrkF2StJGdw1WoqiKY4gmauxNGGSFQVa4gQBk2yho4BQ_lliA91477-oH9qtXdRlwP0pYG900iyHAOMyJh8zVfLkQXmicAAOVu24MZaZwXdg9--cHXqOt6GU8EqPHeHiOts0Tk63oBReoVX4u1SXQljK5qn_Lb8gN6FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wireless+multi-step+attack+pattern+recognition+method+for+WLAN&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Guanlin&rft.au=Zhang%2C+Yujia&rft.au=Wang%2C+Can&rft.date=2014-11-15&rft.issn=0957-4174&rft.volume=41&rft.issue=16&rft.spage=7068&rft.epage=7076&rft_id=info:doi/10.1016%2Fj.eswa.2014.05.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon