Factors for the Simulation of Convectively Coupled Kelvin Waves

This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa–Schubert (RAS; hereafter CTRL) and simpli...

Full description

Saved in:
Bibliographic Details
Published inJournal of climate Vol. 25; no. 10; pp. 3495 - 3514
Main Authors Seo, Kyong-Hwan, Choi, Jin-Ho, Han, Sang-Dae
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 15.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa–Schubert (RAS; hereafter CTRL) and simplified Arakawa–Schubert (SAS) cumulus parameterization schemes show that the former generates the observed Kelvin wave signature more realistically than the latter does. For example, the space–time spectral signal, eastward propagation, and tilted (and second baroclinic mode) vertical structures in convection, temperature, moisture, and circulation anomalies associated with CCKWs in CTRL are more comparable to observations than in the SAS simulation. CTRL and observations demonstrate the characteristic evolution and vertical heating profile associated with CCKWs similar to those seen in mesoscale convective systems in the tropics: shallow convection, followed by deep convection and then stratiform cloudiness, and resulting in a top-heavy diabatic heating profile. Five additional experiments demonstrate that the effects of convective downdrafts, subgrid-scale convective rain evaporation, and large-scale rain evaporation on CCKWs are assessed to be insignificant in CTRL, possibly due to a more humid environment than observation. However, the Kelvin wave signals are reduced by ∼40% when shallow convection is disabled. More importantly, the removal of convective detrainment at the cloud top results in the greatest reduction in Kelvin wave activity (by more than 70%). Therefore, the preconditioning of the atmosphere by shallow convection and detrainment of water vapor and condensate from convective updrafts to the environment and subsequent stratiform heating (grid-scale condensational heating)/precipitation processes are the two most crucial factors for the successful simulation of CCKWs.
AbstractList This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa-Schubert (RAS; hereafter CTRL) and simplified Arakawa-Schubert (SAS) cumulus parameterization schemes show that the former generates the observed Kelvin wave signature more realistically than the latter does. For example, the space-time spectral signal, eastward propagation, and tilted (and second baroclinic mode) vertical structures in convection, temperature, moisture, and circulation anomalies associated with CCKWs in CTRL are more comparable to observations than in the SAS simulation. CTRL and observations demonstrate the characteristic evolution and vertical heating profile associated with CCKWs similar to those seen in mesoscale convective systems in the tropics: shallow convection, followed by deep convection and then stratiform cloudiness, and resulting in a top-heavy diabatic heating profile. Five additional experiments demonstrate that the effects of convective downdrafts, subgrid-scale convective rain evaporation, and large-scale rain evaporation on CCKWs are assessed to be insignificant in CTRL, possibly due to a more humid environment than observation. However, the Kelvin wave signals are reduced by ;40% when shallow convection is disabled. More importantly, the removal of convective detrainment at the cloud top results in the greatest reduction in Kelvin wave activity (by more than 70%). Therefore, the preconditioning of the atmosphere by shallow convection and detrainment of water vapor and condensate from convective updrafts to the environment and subsequent stratiform heating (gridscale condensational heating)/precipitation processes are the two most crucial factors for the successful simulation of CCKWs. [PUBLICATION ABSTRACT]
This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa–Schubert (RAS; hereafter CTRL) and simplified Arakawa–Schubert (SAS) cumulus parameterization schemes show that the former generates the observed Kelvin wave signature more realistically than the latter does. For example, the space–time spectral signal, eastward propagation, and tilted (and second baroclinic mode) vertical structures in convection, temperature, moisture, and circulation anomalies associated with CCKWs in CTRL are more comparable to observations than in the SAS simulation. CTRL and observations demonstrate the characteristic evolution and vertical heating profile associated with CCKWs similar to those seen in mesoscale convective systems in the tropics: shallow convection, followed by deep convection and then stratiform cloudiness, and resulting in a top-heavy diabatic heating profile. Five additional experiments demonstrate that the effects of convective downdrafts, subgrid-scale convective rain evaporation, and large-scale rain evaporation on CCKWs are assessed to be insignificant in CTRL, possibly due to a more humid environment than observation. However, the Kelvin wave signals are reduced by ~40% when shallow convection is disabled. More importantly, the removal of convective detrainment at the cloud top results in the greatest reduction in Kelvin wave activity (by more than 70%). Therefore, the preconditioning of the atmosphere by shallow convection and detrainment of water vapor and condensate from convective updrafts to the environment and subsequent stratiform heating (grid-scale condensational heating)/precipitation processes are the two most crucial factors for the successful simulation of CCKWs.
Abstract This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa–Schubert (RAS; hereafter CTRL) and simplified Arakawa–Schubert (SAS) cumulus parameterization schemes show that the former generates the observed Kelvin wave signature more realistically than the latter does. For example, the space–time spectral signal, eastward propagation, and tilted (and second baroclinic mode) vertical structures in convection, temperature, moisture, and circulation anomalies associated with CCKWs in CTRL are more comparable to observations than in the SAS simulation. CTRL and observations demonstrate the characteristic evolution and vertical heating profile associated with CCKWs similar to those seen in mesoscale convective systems in the tropics: shallow convection, followed by deep convection and then stratiform cloudiness, and resulting in a top-heavy diabatic heating profile. Five additional experiments demonstrate that the effects of convective downdrafts, subgrid-scale convective rain evaporation, and large-scale rain evaporation on CCKWs are assessed to be insignificant in CTRL, possibly due to a more humid environment than observation. However, the Kelvin wave signals are reduced by ~40% when shallow convection is disabled. More importantly, the removal of convective detrainment at the cloud top results in the greatest reduction in Kelvin wave activity (by more than 70%). Therefore, the preconditioning of the atmosphere by shallow convection and detrainment of water vapor and condensate from convective updrafts to the environment and subsequent stratiform heating (grid-scale condensational heating)/precipitation processes are the two most crucial factors for the successful simulation of CCKWs.
This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing relaxed Arakawa–Schubert (RAS; hereafter CTRL) and simplified Arakawa–Schubert (SAS) cumulus parameterization schemes show that the former generates the observed Kelvin wave signature more realistically than the latter does. For example, the space–time spectral signal, eastward propagation, and tilted (and second baroclinic mode) vertical structures in convection, temperature, moisture, and circulation anomalies associated with CCKWs in CTRL are more comparable to observations than in the SAS simulation. CTRL and observations demonstrate the characteristic evolution and vertical heating profile associated with CCKWs similar to those seen in mesoscale convective systems in the tropics: shallow convection, followed by deep convection and then stratiform cloudiness, and resulting in a top-heavy diabatic heating profile. Five additional experiments demonstrate that the effects of convective downdrafts, subgrid-scale convective rain evaporation, and large-scale rain evaporation on CCKWs are assessed to be insignificant in CTRL, possibly due to a more humid environment than observation. However, the Kelvin wave signals are reduced by ∼40% when shallow convection is disabled. More importantly, the removal of convective detrainment at the cloud top results in the greatest reduction in Kelvin wave activity (by more than 70%). Therefore, the preconditioning of the atmosphere by shallow convection and detrainment of water vapor and condensate from convective updrafts to the environment and subsequent stratiform heating (grid-scale condensational heating)/precipitation processes are the two most crucial factors for the successful simulation of CCKWs.
Author Choi, Jin-Ho
Han, Sang-Dae
Seo, Kyong-Hwan
Author_xml – sequence: 1
  givenname: Kyong-Hwan
  surname: Seo
  fullname: Seo, Kyong-Hwan
– sequence: 2
  givenname: Jin-Ho
  surname: Choi
  fullname: Choi, Jin-Ho
– sequence: 3
  givenname: Sang-Dae
  surname: Han
  fullname: Han, Sang-Dae
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25906047$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AQhhepYFv9AR6EgHiMzmz2IzmJpFarBQ8qHsNms8GUNFt300L_vVtb9OZpvp55Z3hHZNDZzhByjnCNKPnNUz6fxZMYMQYAEZpHZIicQgyM0QEZQpqxOJWcn5CR9wsApAJgSG6nSvfW-ai2Luo_TfTaLNet6hvbRbaOctttjO6bjWm3oVivWlNFz6bdNF30oTbGn5LjWrXenB3imLxP79_yx3j-8jDL7-axTjLRxyUFySmrwzMgyxKVAlalykClQZRVgjphKmWa1yAkKMoYK5OUioxTlWaSJmNyudddOfu1Nr4vFnbtunCyoCmyRCYsFf9RCMiokIyyQOGe0s5670xdrFyzVG4boGLnZrFzs5iEvPhxs8Cwc3VQVl6rtnaq043_XaQ8CxyTgbvYcwsfbP2bC8ww45h8AzvHfTs
CitedBy_id crossref_primary_10_1007_s00382_022_06510_y
crossref_primary_10_1007_s00382_012_1631_6
crossref_primary_10_1002_2017MS001106
crossref_primary_10_1175_JCLI_D_15_0696_1
crossref_primary_10_1029_2018JC013858
crossref_primary_10_1029_2021MS002902
crossref_primary_10_1029_2022MS003300
Cites_doi 10.2151/jmsj1965.72.3_433
10.1175/2007JAS2345.1
10.1175/2007JAS2353.1
10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2
10.1175/2007JCLI1790.1
10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2
10.1175/2008JCLI2421.1
10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2
10.1175/JAS3677.1
10.1007/s00382-009-0697-2
10.1175/BAMS-83-11-1631
10.1007/BF00231106
10.1175/MWR3369.1
10.1016/j.dynatmoce.2006.02.005
10.1175/JAS3968.1
10.1175/2009JCLI2610.1
10.2151/jmsj1965.60.1_156
10.1007/s00382-010-0972-2
10.2151/jmsj1965.44.1_25
10.1175/2009JAS3089.1
10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2
10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2
10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
10.1175/2009JAS3277.1
10.1175/JCLI3735.1
10.1175/2009JAS3260.1
10.1016/j.dynatmoce.2006.02.002
10.1256/qj.03.130
10.1175/2009JCLI3422.1
10.1175/JCLI3812.1
10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
10.1175/JCLI3893.1
10.1175/JAS3884.1
10.1175/2010JCLI2983.1
10.1175/2009JAS3081.1
10.1175/1520-0469(1998)055<0088:OKWATM>2.0.CO;2
10.1175/2007JAS2444.1
10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
10.1175/JAS3945.1
10.1029/2008RG000266
10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2
10.1175/1520-0469(1994)051<0353:SEOTAW>2.0.CO;2
10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
10.1175/2007MWR2172.1
10.1029/2004RG000150
10.1029/2005GL022511
10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2
10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2
10.1007/s00382-008-0455-x
ContentType Journal Article
Copyright 2012 American Meteorological Society
2015 INIST-CNRS
Copyright American Meteorological Society May 15, 2012
Copyright American Meteorological Society 2012
Copyright_xml – notice: 2012 American Meteorological Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Meteorological Society May 15, 2012
– notice: Copyright American Meteorological Society 2012
DBID IQODW
AAYXX
CITATION
3V.
7QH
7TG
7UA
7X2
7XB
88F
88I
8AF
8FE
8FG
8FH
8FK
8G5
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M0K
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
S0X
DOI 10.1175/JCLI-D-11-00060.1
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
eLibrary
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
ProQuest Military Collection
ProQuest Research Library
ProQuest Science Journals
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1520-0442
EndPage 3514
ExternalDocumentID 2665051801
10_1175_JCLI_D_11_00060_1
25906047
26191951
Genre Feature
GeographicLocations South America
Indian Ocean
GeographicLocations_xml – name: Indian Ocean
– name: South America
GroupedDBID -~X
29K
2WC
3V.
4.4
5GY
7X2
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
ABBHK
ABDBF
ABDNZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIHN
ADULT
AEAQA
AENEX
AEUPB
AFKRA
AFRAH
AIFVT
AIRJO
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
APEBS
ARAPS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CCPQU
COF
CS3
D-I
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EAU
EBS
EDH
EJD
EMK
EPL
EQZMY
EST
ESX
F5P
F8P
FRP
GNUQQ
GUQSH
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K6-
LK5
M0K
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PEA
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM9
QN7
QO4
RWA
RWE
RWL
RXW
S0X
SA0
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
UNMZH
XJT
~02
53G
6TJ
ABPTK
ABTAH
ACYGS
AI.
C1A
CAG
H13
IQODW
OHT
VH1
VOH
XXG
ZY4
~KM
AAYXX
ADACV
AEKFB
CITATION
7QH
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c396t-b207524f44207bb1aa04d8ae0dc06bd31c34a84c5f0670a2444b3826952a89723
IEDL.DBID BENPR
ISSN 0894-8755
IngestDate Fri Oct 04 10:31:39 EDT 2024
Sat Oct 05 15:57:38 EDT 2024
Fri Aug 23 01:02:43 EDT 2024
Sun Oct 22 16:07:41 EDT 2023
Fri Feb 02 08:16:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Updraft
Cumulus cloud
Deep convection
tropical zone
Forecast model
Detrainment
Kelvin wave
parametrization
Cloudiness
Downdraft
climate change
rainfall
atmospheric precipitation
Mesoscale convective system
climate warming
Convectively coupled waves
anomalies
Climate prediction
Baroclinic mode
water vapor
Vertical profile
Shallow convection
evaporation
Preconditioning
Cloud top
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-b207524f44207bb1aa04d8ae0dc06bd31c34a84c5f0670a2444b3826952a89723
OpenAccessLink https://doi.org/10.1175/jcli-d-11-00060.1
PQID 1014267424
PQPubID 32902
PageCount 20
ParticipantIDs proquest_journals_2814373486
proquest_journals_1014267424
crossref_primary_10_1175_JCLI_D_11_00060_1
pascalfrancis_primary_25906047
jstor_primary_26191951
PublicationCentury 2000
PublicationDate 20120515
PublicationDateYYYYMMDD 2012-05-15
PublicationDate_xml – month: 05
  year: 2012
  text: 20120515
  day: 15
PublicationDecade 2010
PublicationPlace Boston, MA
PublicationPlace_xml – name: Boston, MA
– name: Boston
PublicationTitle Journal of climate
PublicationYear 2012
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Lin (2020061417503037300_bib22) 2006; 19
Benedict (2020061417503037300_bib2) 2007; 64
Kuang (2020061417503037300_bib18) 2010; 67
Moorthi (2020061417503037300_bib30) 1999
Schumacher (2020061417503037300_bib39) 2003; 16
Tiedtke (2020061417503037300_bib50) 1983
Matsuno (2020061417503037300_bib29) 1966; 44
Hayashi (2020061417503037300_bib8) 1982; 60
Saha (2020061417503037300_bib38) 2006; 19
Tulich (2020061417503037300_bib52) 2010; 67
Hendon (2020061417503037300_bib9) 1990; 47
Takayabu (2020061417503037300_bib48) 1994; 72
Roundy (2020061417503037300_bib35) 2008; 65
Straub (2020061417503037300_bib47) 2010; 23
Fu (2020061417503037300_bib6) 2009; 22
Thayer-Calder (2020061417503037300_bib49) 2009; 66
Slingo (2020061417503037300_bib44) 1996; 12
Houze (2020061417503037300_bib11) 2004; 42
Inness (2020061417503037300_bib12) 2003; 16
Wheeler (2020061417503037300_bib56) 2005
Tulich (2020061417503037300_bib53) 2007; 64
Kanamitsu (2020061417503037300_bib13) 2002; 83
Madden (2020061417503037300_bib24) 1971; 28
Arakawa (2020061417503037300_bib1) 1974; 31
Zhang (2020061417503037300_bib59) 1994; 51
Fu (2020061417503037300_bib7) 2008; 136
Mapes (2020061417503037300_bib28) 2000; 57
Straub (2020061417503037300_bib46) 2006; 42
Li (2020061417503037300_bib19) 2009; 32
Wheeler (2020061417503037300_bib55) 1999; 56
Roundy (2020061417503037300_bib36) 2004; 61
Maloney (2020061417503037300_bib27) 2000; 13
Seo (2020061417503037300_bib42) 2007; 135
Yanai (2020061417503037300_bib57) 1973; 30
Derbyshire (2020061417503037300_bib3) 2004; 130
Frierson (2020061417503037300_bib5) 2007; 64
Zhang (2020061417503037300_bib58) 2009; 66
Seo (2020061417503037300_bib43) 2009; 22
Emanual (2020061417503037300_bib4) 1994
Madden (2020061417503037300_bib25) 1972; 29
Hendon (2020061417503037300_bib10) 1998; 55
Kuang (2020061417503037300_bib17) 2008; 65
Liebmann (2020061417503037300_bib20) 1996; 77
Morita (2020061417503037300_bib32) 2006; 42
Majda (2020061417503037300_bib26) 2001; 58
Kim (2020061417503037300_bib16) 2011; 38
Tulich (2020061417503037300_bib51) 2008; 65
Tulich (2020061417503037300_bib54) 2011; 36
Lin (2020061417503037300_bib23) 2008; 21
Pan (2020061417503037300_bib34) 1995
Kiladis (2020061417503037300_bib15) 2009; 47
Khouider (2020061417503037300_bib14) 2006; 63
Roundy (2020061417503037300_bib37) 2006; 19
Seo (2020061417503037300_bib41) 2010; 23
Lin (2020061417503037300_bib21) 2004; 61
Straub (2020061417503037300_bib45) 2002; 59
Moorthi (2020061417503037300_bib31) 2001
Pacanowski (2020061417503037300_bib33) 1998
Seo (2020061417503037300_bib40) 2005; 32
References_xml – volume: 72
  start-page: 433
  year: 1994
  ident: 2020061417503037300_bib48
  article-title: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj1965.72.3_433
  contributor:
    fullname: Takayabu
– volume: 65
  start-page: 1342
  year: 2008
  ident: 2020061417503037300_bib35
  article-title: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2007JAS2345.1
  contributor:
    fullname: Roundy
– volume: 65
  start-page: 140
  year: 2008
  ident: 2020061417503037300_bib51
  article-title: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2007JAS2353.1
  contributor:
    fullname: Tulich
– volume: 47
  start-page: 2227
  year: 1990
  ident: 2020061417503037300_bib9
  article-title: Composite study of onset of the Australian summer monsoon
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2
  contributor:
    fullname: Hendon
– volume: 21
  start-page: 883
  year: 2008
  ident: 2020061417503037300_bib23
  article-title: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves
  publication-title: J. Climate
  doi: 10.1175/2007JCLI1790.1
  contributor:
    fullname: Lin
– volume: 61
  start-page: 2105
  year: 2004
  ident: 2020061417503037300_bib36
  article-title: A climatology of waves in the equatorial region
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2
  contributor:
    fullname: Roundy
– volume: 22
  start-page: 2372
  year: 2009
  ident: 2020061417503037300_bib43
  article-title: Evaluation of MJO forecast skill from several statistical and dynamical forecast models
  publication-title: J. Climate
  doi: 10.1175/2008JCLI2421.1
  contributor:
    fullname: Seo
– year: 1994
  ident: 2020061417503037300_bib4
  contributor:
    fullname: Emanual
– volume: 59
  start-page: 30
  year: 2002
  ident: 2020061417503037300_bib45
  article-title: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2
  contributor:
    fullname: Straub
– volume: 63
  start-page: 1308
  year: 2006
  ident: 2020061417503037300_bib14
  article-title: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3677.1
  contributor:
    fullname: Khouider
– volume: 36
  start-page: 185
  year: 2011
  ident: 2020061417503037300_bib54
  article-title: Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-009-0697-2
  contributor:
    fullname: Tulich
– volume: 83
  start-page: 1631
  year: 2002
  ident: 2020061417503037300_bib13
  article-title: NCEP–DOE AMIP-II Reanalysis (R-2)
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-83-11-1631
  contributor:
    fullname: Kanamitsu
– volume: 12
  start-page: 325
  year: 1996
  ident: 2020061417503037300_bib44
  article-title: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject
  publication-title: Climate Dyn.
  doi: 10.1007/BF00231106
  contributor:
    fullname: Slingo
– volume: 135
  start-page: 1807
  year: 2007
  ident: 2020061417503037300_bib42
  article-title: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): The effect of sea surface temperature
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3369.1
  contributor:
    fullname: Seo
– volume: 42
  start-page: 216
  year: 2006
  ident: 2020061417503037300_bib46
  article-title: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2006.02.005
  contributor:
    fullname: Straub
– volume: 64
  start-page: 2332
  year: 2007
  ident: 2020061417503037300_bib2
  article-title: Observed characteristics of the MJO relative to maximum rainfall
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3968.1
  contributor:
    fullname: Benedict
– volume: 22
  start-page: 3939
  year: 2009
  ident: 2020061417503037300_bib6
  article-title: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments
  publication-title: J. Climate
  doi: 10.1175/2009JCLI2610.1
  contributor:
    fullname: Fu
– volume: 60
  start-page: 156
  year: 1982
  ident: 2020061417503037300_bib8
  article-title: Space-time spectral analysis and its applications to atmospheric waves
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj1965.60.1_156
  contributor:
    fullname: Hayashi
– volume: 38
  start-page: 411
  year: 2011
  ident: 2020061417503037300_bib16
  article-title: A bulk mass flux convection scheme for climate model: Description and moisture sensitivity
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-010-0972-2
  contributor:
    fullname: Kim
– volume: 44
  start-page: 25
  year: 1966
  ident: 2020061417503037300_bib29
  article-title: Quasi-geostrophic motions in the equatorial area
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj1965.44.1_25
  contributor:
    fullname: Matsuno
– volume: 66
  start-page: 3621
  year: 2009
  ident: 2020061417503037300_bib58
  article-title: Bimodal structure and variability of large-scale diabatic heating in the tropics
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3089.1
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 345
  year: 2003
  ident: 2020061417503037300_bib12
  article-title: Simulation of the Madden–Julian Oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2
  contributor:
    fullname: Inness
– volume: 30
  start-page: 611
  year: 1973
  ident: 2020061417503037300_bib57
  article-title: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
  contributor:
    fullname: Yanai
– volume: 13
  start-page: 1451
  year: 2000
  ident: 2020061417503037300_bib27
  article-title: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
  contributor:
    fullname: Maloney
– volume: 16
  start-page: 1739
  year: 2003
  ident: 2020061417503037300_bib39
  article-title: Stratiform rain in the Tropics as seen by the TRMM precipitation radar
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2
  contributor:
    fullname: Schumacher
– volume: 56
  start-page: 374
  year: 1999
  ident: 2020061417503037300_bib55
  article-title: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
  contributor:
    fullname: Wheeler
– volume: 67
  start-page: 923
  year: 2010
  ident: 2020061417503037300_bib52
  article-title: Transient environmental sensitivities of explicitly simulated tropical convection
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3277.1
  contributor:
    fullname: Tulich
– volume: 19
  start-page: 2665
  year: 2006
  ident: 2020061417503037300_bib22
  article-title: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals
  publication-title: J. Climate
  doi: 10.1175/JCLI3735.1
  contributor:
    fullname: Lin
– volume: 67
  start-page: 941
  year: 2010
  ident: 2020061417503037300_bib18
  article-title: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3260.1
  contributor:
    fullname: Kuang
– volume: 77
  start-page: 1275
  year: 1996
  ident: 2020061417503037300_bib20
  article-title: Description of a complete (interpolated) outgoing longwave radiation dataset
  publication-title: Bull. Amer. Meteor. Soc.
  contributor:
    fullname: Liebmann
– volume: 42
  start-page: 107
  year: 2006
  ident: 2020061417503037300_bib32
  article-title: Analysis of rainfall characteristics of the Madden-Julian oscillation using TRMM satellite data
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2006.02.002
  contributor:
    fullname: Morita
– volume: 130
  start-page: 3055
  year: 2004
  ident: 2020061417503037300_bib3
  article-title: Sensitivity of moist convection to environmental humidity
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.03.130
  contributor:
    fullname: Derbyshire
– year: 1998
  ident: 2020061417503037300_bib33
  contributor:
    fullname: Pacanowski
– volume: 23
  start-page: 3031
  year: 2010
  ident: 2020061417503037300_bib47
  article-title: An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models
  publication-title: J. Climate
  doi: 10.1175/2009JCLI3422.1
  contributor:
    fullname: Straub
– volume: 19
  start-page: 3483
  year: 2006
  ident: 2020061417503037300_bib38
  article-title: The NCEP climate forecast system
  publication-title: J. Climate
  doi: 10.1175/JCLI3812.1
  contributor:
    fullname: Saha
– volume: 28
  start-page: 702
  year: 1971
  ident: 2020061417503037300_bib24
  article-title: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  contributor:
    fullname: Madden
– volume: 19
  start-page: 5253
  year: 2006
  ident: 2020061417503037300_bib37
  article-title: Observed relationships between oceanic Kelvin waves and atmospheric forcing
  publication-title: J. Climate
  doi: 10.1175/JCLI3893.1
  contributor:
    fullname: Roundy
– volume: 64
  start-page: 1210
  year: 2007
  ident: 2020061417503037300_bib53
  article-title: Vertical mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3884.1
  contributor:
    fullname: Tulich
– year: 1983
  ident: 2020061417503037300_bib50
  contributor:
    fullname: Tiedtke
– volume: 23
  start-page: 4770
  year: 2010
  ident: 2020061417503037300_bib41
  article-title: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating
  publication-title: J. Climate
  doi: 10.1175/2010JCLI2983.1
  contributor:
    fullname: Seo
– volume: 66
  start-page: 3297
  year: 2009
  ident: 2020061417503037300_bib49
  article-title: The role of convective moistening in the Madden–Julian oscillation
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3081.1
  contributor:
    fullname: Thayer-Calder
– volume: 55
  start-page: 88
  year: 1998
  ident: 2020061417503037300_bib10
  article-title: Oceanic Kelvin waves and the Madden–Julian Oscillation
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1998)055<0088:OKWATM>2.0.CO;2
  contributor:
    fullname: Hendon
– volume: 65
  start-page: 834
  year: 2008
  ident: 2020061417503037300_bib17
  article-title: A moisture-stratiform instability for convectively coupled waves
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2007JAS2444.1
  contributor:
    fullname: Kuang
– volume: 29
  start-page: 1109
  year: 1972
  ident: 2020061417503037300_bib25
  article-title: Description of global scale circulation cells in the tropics with a 40-50 day period
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  contributor:
    fullname: Madden
– year: 2001
  ident: 2020061417503037300_bib31
  contributor:
    fullname: Moorthi
– year: 1999
  ident: 2020061417503037300_bib30
  contributor:
    fullname: Moorthi
– volume: 64
  start-page: 2076
  year: 2007
  ident: 2020061417503037300_bib5
  article-title: Convectively coupled Kelvin waves in an idealized moist general circulation model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3945.1
  contributor:
    fullname: Frierson
– volume: 47
  start-page: RG2003
  year: 2009
  ident: 2020061417503037300_bib15
  article-title: Convectively coupled equatorial waves
  publication-title: Rev. Geophys.
  doi: 10.1029/2008RG000266
  contributor:
    fullname: Kiladis
– year: 2005
  ident: 2020061417503037300_bib56
  contributor:
    fullname: Wheeler
– volume: 58
  start-page: 1567
  year: 2001
  ident: 2020061417503037300_bib26
  article-title: Models for stratiform instability and convectively coupled waves
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2
  contributor:
    fullname: Majda
– volume: 51
  start-page: 353
  year: 1994
  ident: 2020061417503037300_bib59
  article-title: Selective excitation of tropical atmospheric waves in wave-CISK: Effect of vertical wind shear
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1994)051<0353:SEOTAW>2.0.CO;2
  contributor:
    fullname: Zhang
– volume: 31
  start-page: 674
  year: 1974
  ident: 2020061417503037300_bib1
  article-title: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  contributor:
    fullname: Arakawa
– volume: 136
  start-page: 577
  year: 2008
  ident: 2020061417503037300_bib7
  article-title: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2007MWR2172.1
  contributor:
    fullname: Fu
– volume: 42
  start-page: RG4003
  year: 2004
  ident: 2020061417503037300_bib11
  article-title: Mesoscale convective systems
  publication-title: Rev. Geophys.
  doi: 10.1029/2004RG000150
  contributor:
    fullname: Houze
– volume: 32
  start-page: L07712
  year: 2005
  ident: 2020061417503037300_bib40
  article-title: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP Global Ocean Data Assimilation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL022511
  contributor:
    fullname: Seo
– volume: 61
  start-page: 296
  year: 2004
  ident: 2020061417503037300_bib21
  article-title: Stratiform precipitation, vertical heating profiles, and the Madden–Julian Oscillation
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2
  contributor:
    fullname: Lin
– volume: 57
  start-page: 1515
  year: 2000
  ident: 2020061417503037300_bib28
  article-title: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2
  contributor:
    fullname: Mapes
– volume: 32
  start-page: 167
  year: 2009
  ident: 2020061417503037300_bib19
  article-title: Sensitivity of MJO simulations to diabatic heating profiles
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-008-0455-x
  contributor:
    fullname: Li
– year: 1995
  ident: 2020061417503037300_bib34
  contributor:
    fullname: Pan
SSID ssj0012600
Score 2.1425977
Snippet This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for...
Abstract This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for...
SourceID proquest
crossref
pascalfrancis
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 3495
SubjectTerms Anomalies
Atmosphere
Atmospheric convection
Atmospheric models
Baroclinic mode
Circulation anomalies
Climate change
Climate models
Climate prediction
Climate system
Cloud cover
Cloud parameterization
Cloudiness
Convection
Convection clouds
Convection heating
Detrainment
Diabatic heating
Downdraft
Earth, ocean, space
Evaporation
Exact sciences and technology
External geophysics
General circulation models
Gravity
Heating
Kelvin waves
Mesoscale convective systems
Modeling
Moisture effects
Parameterization
Precipitation
Precipitation processes
Preconditioning
R&D
Rain
Research & development
Simulation
Simulations
Tropical climates
Tropical environments
Troposphere
Updraft
Water vapor
Water vapour
Weather
Title Factors for the Simulation of Convectively Coupled Kelvin Waves
URI https://www.jstor.org/stable/26191951
https://www.proquest.com/docview/1014267424/abstract/
https://www.proquest.com/docview/2814373486/abstract/
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB7xuHBBCwsibKl8QByQQmvHzuOElpZSWECIh-AW2Y4jVeq2Xdoi7b9nxklBCMTNVpzLZDLzjefxAexL7kzKaQIAettQFk6HWgsdJm0nTJxgmKupOfnqOu4_yIsn9bQE_UUvDJVVLmyiN9TF2NIdeYs4ZUWMgZxsaUO3AHbWOp78C4k_ivKsNZnGMqwKLilhu3pyen1z-5ZRoEHsHlFmEi2AUnWGE71n66JzeR52fYMZjSc54h98VFWmSDWTeopiKyu-i0-m2_uj3g9Yr4Ek-119-Q1YcqNNCK4QA4-f_VU5O2Cd4QABqd_9hONeRa3DEKYyhH3sbvC35u5i45J1qPzcG7_hf9zMJ0NXsD9u-DIYsUf94qZb8NA7ve_0w5o-IbRRFs9CIxAOCFlKiQtjuNZtWaTatQvbjk0RcRtJnUqrSurV0ejnpYkw2siU0CmRkW3Dymg8cjvACvRzWcmltga9mRGZFbos0xLjtUTx2AZwuBBYPqmmZOQ-ukhUTtLNu7jOvXRzHsC2F-nbSQriOCK9AJofZPx-QGU04ycJoLEQel7_atP8XTG-fCxQEyMa4RPvfv_2L1hDMCSoMoCrBqzMnuduDwHHzDRhOe2dNWuNegX2SdJu
link.rule.ids 315,786,790,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xGGBBPEV4ekAMSIHasfOYECqUAi0LINgsO3GkSqUttCDx77lzUhACscWKs1zs-76z7-4DOJDc2ZRTBwBE21AWzoTGCBMmDSdsnGCYa6g4uXsbtx_k9ZN6qg_cxnVa5dQnekddDHM6Iz8hTVkRYyAnT0cvIalG0e1qLaExC_MyQuikSvHW5dctAjVf9ywyk7jrlapvNRExT66bnavw3BeVUUuSY_4Dl6rURMqTNGM0VVlpXPxy1x6DWsuwVJNHdlb97RWYcYNVCLrIe4ev_nicHbJmv4ck1I_W4LRVyekwpKYMqR676z3Xel1sWLImpZx7h9f_wMHbqO8KduP6770BezTvbrwOD62L-2Y7rCUTwjzK4kloBVIAIUsp8cFabkxDFqlxjSJvxLaIeB5Jk8pclVSfYxDbpY0wwsiUMCkJkG3A3GA4cJvACsS2rOTS5BYRzIosF6Ys0xJjtETxOA_gaGowPao6Y2gfUSRKk3X1OT5rb13NA9jwJv2aSYEbR3YXwN4PG39PUBn19UkC2JkaXdfba6y_F8OfrwWuvoja9sRb_3-9Dwvt-25Hd65ub7ZhEcmQoMwArnZgbvL65naRcEzsnl9VnxSFz1U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEB6shdIXsa3Sba3mQfogbO-STfbHk5S7rr9FsFLfQrKbwMH17vROof-9M9mcIhXfEjb7Mjs7803yZT6AXcmdLTl1AMBsm8rWmdQYYdKi74TNCyxzDV1OPjvPD6_k8bW6jvyneaRVLmNiCNTttKE98h5pyoocCznZ85EWcTGs92c3KSlI0UlrlNN4A28JZJOaQVkfPJ4oUCP2gCgriRFAqXjCidmzdzw4PUqH4YIZtSf5wZ_lqI6mSJxJM0ez-U7v4r_QHfJRvQ5rEUiyn92X_wArbvIRkjPEwNPbsFXOvrPBeISANMw-wX7dSeswhKkMYR-7HP2N2l1s6tmA6Och-I3_4eRuNnYtO3Hj-9GE_TH3br4BV_Wv34PDNMonpE1W5YvUCoQDQnopcWAtN6Yv29K4ftv0c9tmvMmkKWWjPN3VMZjnpc2w2qiUMCWJkW3C6mQ6cZ-BtZjnKs-laSxmMyuqRhjvS4_1WqF43iSwtzSYnnVdMnSoLgqlybp6iGMdrKt5ApvBpI8rqYjjiPQS2H5m46cFqqIeP0UCW0uj6_irzfWTY7z4WKAnZtTCJ__y-ts78A4dSp8enZ98hfeIiwSRBLjagtXF7Z37hthjYbeDUz0A5GDTig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+for+the+Simulation+of+Convectively+Coupled+Kelvin+Waves&rft.jtitle=Journal+of+climate&rft.au=Seo%2C+Kyong-Hwan&rft.au=Choi%2C+Jin-Ho&rft.au=Han%2C+Sang-Dae&rft.date=2012-05-15&rft.pub=American+Meteorological+Society&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=25&rft.issue=10&rft.spage=3495&rft_id=info:doi/10.1175%2FJCLI-D-11-00060.1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2665051801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon