Adaptive Penalty-Based Distributed Stochastic Convex Optimization
In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalt...
Saved in:
Published in | IEEE transactions on signal processing Vol. 62; no. 15; pp. 3924 - 3938 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalty methods that allows the network to cooperatively optimize the global cost function, which is defined as the sum of the individual costs over the network, subject to all constraints. We show that when small constant step-sizes are employed, the expected distance between the optimal solution vector and that obtained at each node in the network can be made arbitrarily small. Two distinguishing features of the proposed solution relative to other approaches is that the developed strategy does not require the use of projections and is able to track drifts in the location of the minimizer due to changes in the constraints or in the aggregate cost itself. The proposed strategy is able to cope with changing network topology, is robust to network disruptions, and does not require global information or rely on central processors. |
---|---|
AbstractList | In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalty methods that allows the network to cooperatively optimize the global cost function, which is defined as the sum of the individual costs over the network, subject to all constraints. We show that when small constant step-sizes are employed, the expected distance between the optimal solution vector and that obtained at each node in the network can be made arbitrarily small. Two distinguishing features of the proposed solution relative to other approaches is that the developed strategy does not require the use of projections and is able to track drifts in the location of the minimizer due to changes in the constraints or in the aggregate cost itself. The proposed strategy is able to cope with changing network topology, is robust to network disruptions, and does not require global information or rely on central processors. |
Author | Towfic, Zaid J. Sayed, Ali H. |
Author_xml | – sequence: 1 givenname: Zaid J. surname: Towfic fullname: Towfic, Zaid J. email: ztowfic@ucla.edu organization: Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA – sequence: 2 givenname: Ali H. surname: Sayed fullname: Sayed, Ali H. email: sayed@ucla.edu organization: Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28721791$$DView record in Pascal Francis |
BookMark | eNp90b1rAjEYBvBQLFRt90IXoRS6nE0ul6_R2k8QFHTodrwXczRy3tkkSu1f31jFwaFTXsLvSciTDmrVTW0Quia4TwhWD7PppJ9ikvVTSgkn7Ay1icpIgjPBW3HGjCZMio8L1PF-gaPMFG-jwWAOq2A3pjcxNVRhmzyCN_Pek_XB2WId4jwNjf4EH6zuDZt6Y7574xhZ2h8Itqkv0XkJlTdXh7WLZi_Ps-FbMhq_vg8Ho0RTxUMCmpKsoLIABaUEAWXKsZBGllIbKjIzp5iJQhVCkKyMGyoFkGnURdSUdtH9_tiVa77Wxod8ab02VQW1adY-J4wprhiWItLbE7po1i6-bqc4YzSVSkZ1d1DgNVSlg1pbn6-cXYLb5qkUKRGKRIf3TrvGe2fKIyE431Wfx-rzXfX5ofoY4ScRbcNfWcGBrf4L3uyD1hhzvIdLquI30l_ytJG6 |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_TAC_2017_2747505 crossref_primary_10_1109_LSP_2015_2454055 crossref_primary_10_1016_j_sysconle_2015_06_006 crossref_primary_10_1109_JSTSP_2017_2679339 crossref_primary_10_1016_j_sigpro_2016_03_022 crossref_primary_10_1109_TAC_2019_2902612 crossref_primary_10_1109_TAC_2019_2906495 crossref_primary_10_1109_TAC_2021_3081073 crossref_primary_10_1109_TSP_2015_2424206 crossref_primary_10_1109_TSIPN_2018_2866296 crossref_primary_10_1016_j_sigpro_2016_05_023 crossref_primary_10_1109_TNSE_2017_2713396 crossref_primary_10_1109_TWC_2015_2402672 crossref_primary_10_1109_TSP_2020_2999671 crossref_primary_10_1016_j_neucom_2023_02_022 crossref_primary_10_1007_s11760_018_1250_8 crossref_primary_10_1109_TSP_2021_3050840 crossref_primary_10_1177_0143624418775881 crossref_primary_10_1016_j_ijrefrig_2019_06_007 crossref_primary_10_1109_TSG_2016_2587741 crossref_primary_10_1109_TSP_2014_2333560 crossref_primary_10_1109_TAC_2022_3196627 crossref_primary_10_1002_dac_3348 crossref_primary_10_1109_LWC_2021_3136897 crossref_primary_10_1016_j_ifacol_2020_12_034 crossref_primary_10_1109_TAC_2021_3126253 crossref_primary_10_1155_2017_5385708 crossref_primary_10_1109_TSP_2021_3050858 crossref_primary_10_1109_TSP_2018_2875898 crossref_primary_10_1186_s13662_018_1845_y crossref_primary_10_1137_17M1111085 crossref_primary_10_1007_s10107_020_01487_0 crossref_primary_10_1109_TCNS_2020_3024483 crossref_primary_10_1109_TII_2017_2703132 crossref_primary_10_1109_TSP_2024_3413017 crossref_primary_10_3390_math12213347 crossref_primary_10_1109_TCNS_2016_2594487 crossref_primary_10_1109_TNSE_2021_3117881 crossref_primary_10_1016_j_ijepes_2018_08_035 crossref_primary_10_1109_TVT_2020_3013329 crossref_primary_10_1016_j_jfranklin_2022_03_046 crossref_primary_10_1109_TCNS_2022_3232519 crossref_primary_10_1109_TSP_2017_2721930 crossref_primary_10_1049_iet_stg_2018_0271 crossref_primary_10_1109_TSP_2017_2686368 crossref_primary_10_1177_1550147716671144 crossref_primary_10_1109_JIOT_2020_2968539 crossref_primary_10_1109_TSP_2017_2695451 crossref_primary_10_1109_TAC_2022_3151734 crossref_primary_10_1109_TSP_2014_2385045 crossref_primary_10_1109_TSIPN_2016_2631886 crossref_primary_10_1007_s40747_025_01818_8 crossref_primary_10_1109_TNNLS_2021_3105385 crossref_primary_10_1287_opre_2017_1666 crossref_primary_10_1016_j_heliyon_2017_e00457 crossref_primary_10_1109_TIT_2017_2674678 crossref_primary_10_1109_ACCESS_2019_2913359 crossref_primary_10_1109_TSIPN_2016_2620440 crossref_primary_10_1177_0143624420966259 crossref_primary_10_1080_02331934_2024_2407019 crossref_primary_10_1109_TSMC_2018_2823901 |
Cites_doi | 10.1109/Allerton.2012.6483402 10.1109/TIT.2006.874516 10.1109/TSP.2011.2161474 10.1109/TSP.2007.896019 10.1016/j.jat.2008.03.001 10.1007/s10957-010-9737-7 10.1109/JSAC.2005.843546 10.1137/1.9780898717907 10.1109/JSTSP.2013.2266318 10.1109/JSTSP.2011.2118740 10.1016/B978-0-12-411597-2.00009-6 10.1109/Allerton.2013.6736672 10.1109/MSP.2012.2231991 10.1109/JPROC.2014.2306253 10.1016/B978-0-12-396500-4.00007-7 10.1109/MSP.2011.943495 10.1109/TIT.2012.2191450 10.1137/S0036144503423264 10.1137/S1052623495287022 10.1109/TSP.2012.2217338 10.1561/2200000016 10.1002/9780470374122 10.1109/TSP.2012.2197205 10.1109/TSP.2012.2204985 10.1016/j.sigpro.2008.04.020 10.1109/ACSSC.2012.6489281 10.1109/TKDE.2012.191 10.1017/CBO9780511804441 10.1016/j.neucom.2012.12.043 10.1109/MSP.2012.2232713 10.1515/9781400835560 10.1109/JSTSP.2013.2246763 10.1109/MSP.2010.938752 10.1109/TAC.1986.1104412 10.1109/JSTSP.2013.2247023 10.1137/S1052623499362111 10.1109/TSP.2012.2198470 10.1109/TWC.2011.060711.101797 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2014.2331615 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0476 |
EndPage | 3938 |
ExternalDocumentID | 3443562171 28721791 10_1109_TSP_2014_2331615 6839047 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF grantid: CCF-1011918 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYOK AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH RIG VH1 IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c396t-ac314b38ba9af8a7af26078e8f8ce374ed3057b9b7714f37492aa82a9ab8a733 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Jul 11 02:14:55 EDT 2025 Mon Jun 30 06:01:35 EDT 2025 Wed Apr 02 07:37:49 EDT 2025 Tue Jul 01 02:53:04 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 Tue Aug 26 16:50:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Target tracking Adaptation and learning Adaptive algorithm diffusion strategies Network architecture Stochastic method Convex programming Penalty method Constrained optimization Learning Topological structure Distributed processing Optimal solution Distributed algorithm Signal processing Cost function consensus strategies Convex function Localization |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-ac314b38ba9af8a7af26078e8f8ce374ed3057b9b7714f37492aa82a9ab8a733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://infoscience.epfl.ch/record/233458 |
PQID | 1565532898 |
PQPubID | 85478 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_28721791 proquest_miscellaneous_1559695087 crossref_primary_10_1109_TSP_2014_2331615 ieee_primary_6839047 proquest_journals_1565532898 crossref_citationtrail_10_1109_TSP_2014_2331615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2014 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | fletcher (40) 1987 23 gharehshiran (16) 2013; 7 46 24 25 stein (43) 2005 26 chen (34) 2013 27 29 bazaraa (32) 1993 nedic (19) 2010 30 31 10 33 12 35 13 36 14 polyak (28) 1987 15 37 38 17 39 18 papoulis (45) 2002 kreyszig (44) 1989 bertsekas (6) 1997 1 sayed (22) 2014; 3 3 cui (11) 2007; 55 4 5 7 8 9 41 20 42 barbarossa (2) 2014; 2 21 |
References_xml | – year: 2013 ident: 34 publication-title: On the Learning Behavior of Adaptive Networks-Part I Transient Analysis – ident: 33 doi: 10.1109/Allerton.2012.6483402 – ident: 17 doi: 10.1109/TIT.2006.874516 – ident: 13 doi: 10.1109/TSP.2011.2161474 – volume: 55 start-page: 4683 year: 2007 ident: 11 article-title: Estimation diversity and energy efficiency in distributed sensing publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2007.896019 – ident: 9 doi: 10.1016/j.jat.2008.03.001 – ident: 21 doi: 10.1007/s10957-010-9737-7 – ident: 38 doi: 10.1109/JSAC.2005.843546 – ident: 46 doi: 10.1137/1.9780898717907 – volume: 7 start-page: 821 year: 2013 ident: 16 article-title: Distributed energy-aware diffusion least mean squares: Game-theoretic learning publication-title: IEEE J Sel Topics Signal Process doi: 10.1109/JSTSP.2013.2266318 – year: 1989 ident: 44 publication-title: Introductory Functional Analysis With Applications – ident: 26 doi: 10.1109/JSTSP.2011.2118740 – volume: 3 start-page: 323 year: 2014 ident: 22 article-title: Diffusion adaptation over networks publication-title: Academic Press Library in Signal Processing doi: 10.1016/B978-0-12-411597-2.00009-6 – ident: 1 doi: 10.1109/Allerton.2013.6736672 – year: 1987 ident: 28 publication-title: Introduction to Optimization – ident: 23 doi: 10.1109/MSP.2012.2231991 – ident: 24 doi: 10.1109/JPROC.2014.2306253 – volume: 2 start-page: 329 year: 2014 ident: 2 article-title: Distributed detection and estimation in wireless sensor networks publication-title: Academic Press Library in Signal Processing doi: 10.1016/B978-0-12-396500-4.00007-7 – ident: 10 doi: 10.1109/MSP.2011.943495 – ident: 7 doi: 10.1109/TIT.2012.2191450 – ident: 41 doi: 10.1137/S0036144503423264 – ident: 36 doi: 10.1137/S1052623495287022 – ident: 31 doi: 10.1109/TSP.2012.2217338 – ident: 18 doi: 10.1561/2200000016 – ident: 25 doi: 10.1002/9780470374122 – ident: 39 doi: 10.1109/TSP.2012.2197205 – ident: 42 doi: 10.1109/TSP.2012.2204985 – ident: 15 doi: 10.1016/j.sigpro.2008.04.020 – year: 1997 ident: 6 publication-title: Parallel and Distributed Computation Numerical Methods – ident: 14 doi: 10.1109/ACSSC.2012.6489281 – ident: 20 doi: 10.1109/TKDE.2012.191 – ident: 27 doi: 10.1017/CBO9780511804441 – ident: 29 doi: 10.1016/j.neucom.2012.12.043 – ident: 3 doi: 10.1109/MSP.2012.2232713 – year: 2010 ident: 19 article-title: Cooperative distributed multi-agent optimization publication-title: Convex Optimization in Signal Processing and Communications – year: 2005 ident: 43 publication-title: Real Analysis Measure Theory Integration and Hilbert Spaces doi: 10.1515/9781400835560 – year: 2002 ident: 45 publication-title: Probability random variables and stochastic processes – ident: 30 doi: 10.1109/JSTSP.2013.2246763 – ident: 8 doi: 10.1109/MSP.2010.938752 – ident: 5 doi: 10.1109/TAC.1986.1104412 – ident: 4 doi: 10.1109/JSTSP.2013.2247023 – year: 1987 ident: 40 publication-title: Practical Methods of Optimization – ident: 37 doi: 10.1137/S1052623499362111 – ident: 35 doi: 10.1109/TSP.2012.2198470 – year: 1993 ident: 32 publication-title: Nonlinear Programming Theory and Algorithms – ident: 12 doi: 10.1109/TWC.2011.060711.101797 |
SSID | ssj0014496 |
Score | 2.4480813 |
Snippet | In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3924 |
SubjectTerms | Accuracy Adaptation and learning Algorithms Applied sciences Approximation algorithms Approximation methods consensus strategies Constants constrained optimization Convex functions Cost engineering Cost function Detection, estimation, filtering, equalization, prediction diffusion strategies distributed processing Exact sciences and technology Information, signal and communications theory Networks Optimization penalty method Processors Signal and communications theory Signal processing algorithms Signal, noise Strategy Telecommunications and information theory |
Title | Adaptive Penalty-Based Distributed Stochastic Convex Optimization |
URI | https://ieeexplore.ieee.org/document/6839047 https://www.proquest.com/docview/1565532898 https://www.proquest.com/docview/1559695087 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB_UJ304v06u6kkP7uXA7m6btEke1y_kwDvBFfatTNMEQd0V7YL61zvTdsvpifgWmglNZ5LMTGfyG4CfyMvGI0bWJiaSXptIl462e0HGdZzZga5xCs7-ZKeX8vc4HS_AfncXxjlXJ5-5HjfrWH45tTP-VdbPSJsPpFqERXLcmrtaXcRAyroWF5kLIkq1Gs9DkgPTH12ccw6X7CVCsIHzSgXVNVU4IxIfiCm-qWbx38Fca5uTVTibz7NJMrnuzaqiZ5_fQDh-9kPW4EtrdobDZp2sw4KbbMDKP2CEmzAclnjHh1947oi2eooOSMOV4RFD63JVLGpfVFN7hQztHB5yuvpj-JeG3LZ3Ob_C6OR4dHgatQUWIitMVkVoRSwLoQs06DUq9OTdKO2019YJJV1Jp4EqTKFULD09MAmiToi6IGohtmBpMp24bxB6T46utZJUHUpMaXnGmRfGx1lGLhnaAPpzlue2BR_nGhg3ee2EDExOQspZSHkrpAB-dSPuGuCND2g3mccdXcveAPZeSbXrpyklDMsawO5czHm7dR9ycmjTVJAfqgP40XXTpuNICk7cdMY0qcm4fq7afv_VO7DME2wyBXdhqbqfue9kvVTFXr1sXwCYquud |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAPQAP-4AhujFWJF4m0btrkzbJ440N3QbHkDike6vcNBHSxh2CnrTtr5_d9qrBpmlvUeOoqZ3Edu38DHCIvGw8YmRtYiLptYl06Wi7F2Rcx5kd6BqnYHyeja7k52k6XYGj7i6Mc65OPnM9btax_HJuF_yrrJ-RNh9ItQpPSO-ncXNbq4sZSFlX4yKDQUSpVtNlUHJg-pPLC87ikr1ECDZxHiihuqoK50TiPbHFN_Us_jiaa31z8gzGy5k2aSZfe4uq6Nmfj0Ac__dTnsPT1vAMh81KeQErbrYFm7_BEW7DcFjiLR9_4YUj2upH9J50XBl-YHBdrotF7ctqbq-RwZ3DY05Y_x5-oSE37W3OlzA5-Tg5HkVtiYXICpNVEVoRy0LoAg16jQo9-TdKO-21dUJJV9J5oApTKBVLTw9MgqgToi6IWogdWJvNZ24XQu_J1bVWkrJDiSkt0Djzwvg4y8gpQxtAf8ny3Lbw41wF41teuyEDk5OQchZS3gopgHfdiNsGeuMftNvM446uZW8A-w-k2vXTlBIGZg1gbynmvN289zm5tGkqyBPVARx03bTtOJaCMzdfME1qMq6gq179_dVvYX00GZ_lZ5_OT1_DBk-2yRvcg7XqbuHekC1TFfv1Ev4FB7ru5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Penalty-Based+Distributed+Stochastic+Convex+Optimization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=TOWFIC%2C+Zaid+J&rft.au=SAYED%2C+Ali+H&rft.date=2014-08-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=62&rft.issue=13-16&rft.spage=3924&rft.epage=3938&rft_id=info:doi/10.1109%2FTSP.2014.2331615&rft.externalDBID=n%2Fa&rft.externalDocID=28721791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |