Adaptive Penalty-Based Distributed Stochastic Convex Optimization

In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalt...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 15; pp. 3924 - 3938
Main Authors Towfic, Zaid J., Sayed, Ali H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalty methods that allows the network to cooperatively optimize the global cost function, which is defined as the sum of the individual costs over the network, subject to all constraints. We show that when small constant step-sizes are employed, the expected distance between the optimal solution vector and that obtained at each node in the network can be made arbitrarily small. Two distinguishing features of the proposed solution relative to other approaches is that the developed strategy does not require the use of projections and is able to track drifts in the location of the minimizer due to changes in the constraints or in the aggregate cost itself. The proposed strategy is able to cope with changing network topology, is robust to network disruptions, and does not require global information or rely on central processors.
AbstractList In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a fully distributed adaptive diffusion algorithm based on penalty methods that allows the network to cooperatively optimize the global cost function, which is defined as the sum of the individual costs over the network, subject to all constraints. We show that when small constant step-sizes are employed, the expected distance between the optimal solution vector and that obtained at each node in the network can be made arbitrarily small. Two distinguishing features of the proposed solution relative to other approaches is that the developed strategy does not require the use of projections and is able to track drifts in the location of the minimizer due to changes in the constraints or in the aggregate cost itself. The proposed strategy is able to cope with changing network topology, is robust to network disruptions, and does not require global information or rely on central processors.
Author Towfic, Zaid J.
Sayed, Ali H.
Author_xml – sequence: 1
  givenname: Zaid J.
  surname: Towfic
  fullname: Towfic, Zaid J.
  email: ztowfic@ucla.edu
  organization: Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Ali H.
  surname: Sayed
  fullname: Sayed, Ali H.
  email: sayed@ucla.edu
  organization: Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28721791$$DView record in Pascal Francis
BookMark eNp90b1rAjEYBvBQLFRt90IXoRS6nE0ul6_R2k8QFHTodrwXczRy3tkkSu1f31jFwaFTXsLvSciTDmrVTW0Quia4TwhWD7PppJ9ikvVTSgkn7Ay1icpIgjPBW3HGjCZMio8L1PF-gaPMFG-jwWAOq2A3pjcxNVRhmzyCN_Pek_XB2WId4jwNjf4EH6zuDZt6Y7574xhZ2h8Itqkv0XkJlTdXh7WLZi_Ps-FbMhq_vg8Ho0RTxUMCmpKsoLIABaUEAWXKsZBGllIbKjIzp5iJQhVCkKyMGyoFkGnURdSUdtH9_tiVa77Wxod8ab02VQW1adY-J4wprhiWItLbE7po1i6-bqc4YzSVSkZ1d1DgNVSlg1pbn6-cXYLb5qkUKRGKRIf3TrvGe2fKIyE431Wfx-rzXfX5ofoY4ScRbcNfWcGBrf4L3uyD1hhzvIdLquI30l_ytJG6
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TAC_2017_2747505
crossref_primary_10_1109_LSP_2015_2454055
crossref_primary_10_1016_j_sysconle_2015_06_006
crossref_primary_10_1109_JSTSP_2017_2679339
crossref_primary_10_1016_j_sigpro_2016_03_022
crossref_primary_10_1109_TAC_2019_2902612
crossref_primary_10_1109_TAC_2019_2906495
crossref_primary_10_1109_TAC_2021_3081073
crossref_primary_10_1109_TSP_2015_2424206
crossref_primary_10_1109_TSIPN_2018_2866296
crossref_primary_10_1016_j_sigpro_2016_05_023
crossref_primary_10_1109_TNSE_2017_2713396
crossref_primary_10_1109_TWC_2015_2402672
crossref_primary_10_1109_TSP_2020_2999671
crossref_primary_10_1016_j_neucom_2023_02_022
crossref_primary_10_1007_s11760_018_1250_8
crossref_primary_10_1109_TSP_2021_3050840
crossref_primary_10_1177_0143624418775881
crossref_primary_10_1016_j_ijrefrig_2019_06_007
crossref_primary_10_1109_TSG_2016_2587741
crossref_primary_10_1109_TSP_2014_2333560
crossref_primary_10_1109_TAC_2022_3196627
crossref_primary_10_1002_dac_3348
crossref_primary_10_1109_LWC_2021_3136897
crossref_primary_10_1016_j_ifacol_2020_12_034
crossref_primary_10_1109_TAC_2021_3126253
crossref_primary_10_1155_2017_5385708
crossref_primary_10_1109_TSP_2021_3050858
crossref_primary_10_1109_TSP_2018_2875898
crossref_primary_10_1186_s13662_018_1845_y
crossref_primary_10_1137_17M1111085
crossref_primary_10_1007_s10107_020_01487_0
crossref_primary_10_1109_TCNS_2020_3024483
crossref_primary_10_1109_TII_2017_2703132
crossref_primary_10_1109_TSP_2024_3413017
crossref_primary_10_3390_math12213347
crossref_primary_10_1109_TCNS_2016_2594487
crossref_primary_10_1109_TNSE_2021_3117881
crossref_primary_10_1016_j_ijepes_2018_08_035
crossref_primary_10_1109_TVT_2020_3013329
crossref_primary_10_1016_j_jfranklin_2022_03_046
crossref_primary_10_1109_TCNS_2022_3232519
crossref_primary_10_1109_TSP_2017_2721930
crossref_primary_10_1049_iet_stg_2018_0271
crossref_primary_10_1109_TSP_2017_2686368
crossref_primary_10_1177_1550147716671144
crossref_primary_10_1109_JIOT_2020_2968539
crossref_primary_10_1109_TSP_2017_2695451
crossref_primary_10_1109_TAC_2022_3151734
crossref_primary_10_1109_TSP_2014_2385045
crossref_primary_10_1109_TSIPN_2016_2631886
crossref_primary_10_1007_s40747_025_01818_8
crossref_primary_10_1109_TNNLS_2021_3105385
crossref_primary_10_1287_opre_2017_1666
crossref_primary_10_1016_j_heliyon_2017_e00457
crossref_primary_10_1109_TIT_2017_2674678
crossref_primary_10_1109_ACCESS_2019_2913359
crossref_primary_10_1109_TSIPN_2016_2620440
crossref_primary_10_1177_0143624420966259
crossref_primary_10_1080_02331934_2024_2407019
crossref_primary_10_1109_TSMC_2018_2823901
Cites_doi 10.1109/Allerton.2012.6483402
10.1109/TIT.2006.874516
10.1109/TSP.2011.2161474
10.1109/TSP.2007.896019
10.1016/j.jat.2008.03.001
10.1007/s10957-010-9737-7
10.1109/JSAC.2005.843546
10.1137/1.9780898717907
10.1109/JSTSP.2013.2266318
10.1109/JSTSP.2011.2118740
10.1016/B978-0-12-411597-2.00009-6
10.1109/Allerton.2013.6736672
10.1109/MSP.2012.2231991
10.1109/JPROC.2014.2306253
10.1016/B978-0-12-396500-4.00007-7
10.1109/MSP.2011.943495
10.1109/TIT.2012.2191450
10.1137/S0036144503423264
10.1137/S1052623495287022
10.1109/TSP.2012.2217338
10.1561/2200000016
10.1002/9780470374122
10.1109/TSP.2012.2197205
10.1109/TSP.2012.2204985
10.1016/j.sigpro.2008.04.020
10.1109/ACSSC.2012.6489281
10.1109/TKDE.2012.191
10.1017/CBO9780511804441
10.1016/j.neucom.2012.12.043
10.1109/MSP.2012.2232713
10.1515/9781400835560
10.1109/JSTSP.2013.2246763
10.1109/MSP.2010.938752
10.1109/TAC.1986.1104412
10.1109/JSTSP.2013.2247023
10.1137/S1052623499362111
10.1109/TSP.2012.2198470
10.1109/TWC.2011.060711.101797
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2014.2331615
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 3938
ExternalDocumentID 3443562171
28721791
10_1109_TSP_2014_2331615
6839047
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-1011918
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c396t-ac314b38ba9af8a7af26078e8f8ce374ed3057b9b7714f37492aa82a9ab8a733
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Jul 11 02:14:55 EDT 2025
Mon Jun 30 06:01:35 EDT 2025
Wed Apr 02 07:37:49 EDT 2025
Tue Jul 01 02:53:04 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Tue Aug 26 16:50:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Target tracking
Adaptation and learning
Adaptive algorithm
diffusion strategies
Network architecture
Stochastic method
Convex programming
Penalty method
Constrained optimization
Learning
Topological structure
Distributed processing
Optimal solution
Distributed algorithm
Signal processing
Cost function
consensus strategies
Convex function
Localization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ac314b38ba9af8a7af26078e8f8ce374ed3057b9b7714f37492aa82a9ab8a733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://infoscience.epfl.ch/record/233458
PQID 1565532898
PQPubID 85478
PageCount 15
ParticipantIDs pascalfrancis_primary_28721791
proquest_miscellaneous_1559695087
crossref_primary_10_1109_TSP_2014_2331615
ieee_primary_6839047
proquest_journals_1565532898
crossref_citationtrail_10_1109_TSP_2014_2331615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References fletcher (40) 1987
23
gharehshiran (16) 2013; 7
46
24
25
stein (43) 2005
26
chen (34) 2013
27
29
bazaraa (32) 1993
nedic (19) 2010
30
31
10
33
12
35
13
36
14
polyak (28) 1987
15
37
38
17
39
18
papoulis (45) 2002
kreyszig (44) 1989
bertsekas (6) 1997
1
sayed (22) 2014; 3
3
cui (11) 2007; 55
4
5
7
8
9
41
20
42
barbarossa (2) 2014; 2
21
References_xml – year: 2013
  ident: 34
  publication-title: On the Learning Behavior of Adaptive Networks-Part I Transient Analysis
– ident: 33
  doi: 10.1109/Allerton.2012.6483402
– ident: 17
  doi: 10.1109/TIT.2006.874516
– ident: 13
  doi: 10.1109/TSP.2011.2161474
– volume: 55
  start-page: 4683
  year: 2007
  ident: 11
  article-title: Estimation diversity and energy efficiency in distributed sensing
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.896019
– ident: 9
  doi: 10.1016/j.jat.2008.03.001
– ident: 21
  doi: 10.1007/s10957-010-9737-7
– ident: 38
  doi: 10.1109/JSAC.2005.843546
– ident: 46
  doi: 10.1137/1.9780898717907
– volume: 7
  start-page: 821
  year: 2013
  ident: 16
  article-title: Distributed energy-aware diffusion least mean squares: Game-theoretic learning
  publication-title: IEEE J Sel Topics Signal Process
  doi: 10.1109/JSTSP.2013.2266318
– year: 1989
  ident: 44
  publication-title: Introductory Functional Analysis With Applications
– ident: 26
  doi: 10.1109/JSTSP.2011.2118740
– volume: 3
  start-page: 323
  year: 2014
  ident: 22
  article-title: Diffusion adaptation over networks
  publication-title: Academic Press Library in Signal Processing
  doi: 10.1016/B978-0-12-411597-2.00009-6
– ident: 1
  doi: 10.1109/Allerton.2013.6736672
– year: 1987
  ident: 28
  publication-title: Introduction to Optimization
– ident: 23
  doi: 10.1109/MSP.2012.2231991
– ident: 24
  doi: 10.1109/JPROC.2014.2306253
– volume: 2
  start-page: 329
  year: 2014
  ident: 2
  article-title: Distributed detection and estimation in wireless sensor networks
  publication-title: Academic Press Library in Signal Processing
  doi: 10.1016/B978-0-12-396500-4.00007-7
– ident: 10
  doi: 10.1109/MSP.2011.943495
– ident: 7
  doi: 10.1109/TIT.2012.2191450
– ident: 41
  doi: 10.1137/S0036144503423264
– ident: 36
  doi: 10.1137/S1052623495287022
– ident: 31
  doi: 10.1109/TSP.2012.2217338
– ident: 18
  doi: 10.1561/2200000016
– ident: 25
  doi: 10.1002/9780470374122
– ident: 39
  doi: 10.1109/TSP.2012.2197205
– ident: 42
  doi: 10.1109/TSP.2012.2204985
– ident: 15
  doi: 10.1016/j.sigpro.2008.04.020
– year: 1997
  ident: 6
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: 14
  doi: 10.1109/ACSSC.2012.6489281
– ident: 20
  doi: 10.1109/TKDE.2012.191
– ident: 27
  doi: 10.1017/CBO9780511804441
– ident: 29
  doi: 10.1016/j.neucom.2012.12.043
– ident: 3
  doi: 10.1109/MSP.2012.2232713
– year: 2010
  ident: 19
  article-title: Cooperative distributed multi-agent optimization
  publication-title: Convex Optimization in Signal Processing and Communications
– year: 2005
  ident: 43
  publication-title: Real Analysis Measure Theory Integration and Hilbert Spaces
  doi: 10.1515/9781400835560
– year: 2002
  ident: 45
  publication-title: Probability random variables and stochastic processes
– ident: 30
  doi: 10.1109/JSTSP.2013.2246763
– ident: 8
  doi: 10.1109/MSP.2010.938752
– ident: 5
  doi: 10.1109/TAC.1986.1104412
– ident: 4
  doi: 10.1109/JSTSP.2013.2247023
– year: 1987
  ident: 40
  publication-title: Practical Methods of Optimization
– ident: 37
  doi: 10.1137/S1052623499362111
– ident: 35
  doi: 10.1109/TSP.2012.2198470
– year: 1993
  ident: 32
  publication-title: Nonlinear Programming Theory and Algorithms
– ident: 12
  doi: 10.1109/TWC.2011.060711.101797
SSID ssj0014496
Score 2.4480813
Snippet In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3924
SubjectTerms Accuracy
Adaptation and learning
Algorithms
Applied sciences
Approximation algorithms
Approximation methods
consensus strategies
Constants
constrained optimization
Convex functions
Cost engineering
Cost function
Detection, estimation, filtering, equalization, prediction
diffusion strategies
distributed processing
Exact sciences and technology
Information, signal and communications theory
Networks
Optimization
penalty method
Processors
Signal and communications theory
Signal processing algorithms
Signal, noise
Strategy
Telecommunications and information theory
Title Adaptive Penalty-Based Distributed Stochastic Convex Optimization
URI https://ieeexplore.ieee.org/document/6839047
https://www.proquest.com/docview/1565532898
https://www.proquest.com/docview/1559695087
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB_UJ304v06u6kkP7uXA7m6btEke1y_kwDvBFfatTNMEQd0V7YL61zvTdsvpifgWmglNZ5LMTGfyG4CfyMvGI0bWJiaSXptIl462e0HGdZzZga5xCs7-ZKeX8vc4HS_AfncXxjlXJ5-5HjfrWH45tTP-VdbPSJsPpFqERXLcmrtaXcRAyroWF5kLIkq1Gs9DkgPTH12ccw6X7CVCsIHzSgXVNVU4IxIfiCm-qWbx38Fca5uTVTibz7NJMrnuzaqiZ5_fQDh-9kPW4EtrdobDZp2sw4KbbMDKP2CEmzAclnjHh1947oi2eooOSMOV4RFD63JVLGpfVFN7hQztHB5yuvpj-JeG3LZ3Ob_C6OR4dHgatQUWIitMVkVoRSwLoQs06DUq9OTdKO2019YJJV1Jp4EqTKFULD09MAmiToi6IGohtmBpMp24bxB6T46utZJUHUpMaXnGmRfGx1lGLhnaAPpzlue2BR_nGhg3ee2EDExOQspZSHkrpAB-dSPuGuCND2g3mccdXcveAPZeSbXrpyklDMsawO5czHm7dR9ycmjTVJAfqgP40XXTpuNICk7cdMY0qcm4fq7afv_VO7DME2wyBXdhqbqfue9kvVTFXr1sXwCYquud
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAPQAP-4AhujFWJF4m0btrkzbJ440N3QbHkDike6vcNBHSxh2CnrTtr5_d9qrBpmlvUeOoqZ3Edu38DHCIvGw8YmRtYiLptYl06Wi7F2Rcx5kd6BqnYHyeja7k52k6XYGj7i6Mc65OPnM9btax_HJuF_yrrJ-RNh9ItQpPSO-ncXNbq4sZSFlX4yKDQUSpVtNlUHJg-pPLC87ikr1ECDZxHiihuqoK50TiPbHFN_Us_jiaa31z8gzGy5k2aSZfe4uq6Nmfj0Ac__dTnsPT1vAMh81KeQErbrYFm7_BEW7DcFjiLR9_4YUj2upH9J50XBl-YHBdrotF7ctqbq-RwZ3DY05Y_x5-oSE37W3OlzA5-Tg5HkVtiYXICpNVEVoRy0LoAg16jQo9-TdKO-21dUJJV9J5oApTKBVLTw9MgqgToi6IWogdWJvNZ24XQu_J1bVWkrJDiSkt0Djzwvg4y8gpQxtAf8ny3Lbw41wF41teuyEDk5OQchZS3gopgHfdiNsGeuMftNvM446uZW8A-w-k2vXTlBIGZg1gbynmvN289zm5tGkqyBPVARx03bTtOJaCMzdfME1qMq6gq179_dVvYX00GZ_lZ5_OT1_DBk-2yRvcg7XqbuHekC1TFfv1Ev4FB7ru5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Penalty-Based+Distributed+Stochastic+Convex+Optimization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=TOWFIC%2C+Zaid+J&rft.au=SAYED%2C+Ali+H&rft.date=2014-08-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=62&rft.issue=13-16&rft.spage=3924&rft.epage=3938&rft_id=info:doi/10.1109%2FTSP.2014.2331615&rft.externalDBID=n%2Fa&rft.externalDocID=28721791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon