Parameter Estimation in Softmax Decision-Making Models With Linear Objective Functions

We contribute to the development of a systematic means to infer features of human decision-making from behavioral data. Motivated by the common use of softmax selection in models of human decision-making, we study the maximum-likelihood (ML) parameter estimation problem for softmax decision-making m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 13; no. 1; pp. 54 - 67
Main Authors Reverdy, Paul, Leonard, Naomi Ehrich
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We contribute to the development of a systematic means to infer features of human decision-making from behavioral data. Motivated by the common use of softmax selection in models of human decision-making, we study the maximum-likelihood (ML) parameter estimation problem for softmax decision-making models with linear objective functions. We present conditions under which the likelihood function is convex. These allow us to provide sufficient conditions for convergence of the resulting ML estimator and to construct its asymptotic distribution. In the case of models with nonlinear objective functions, we show how the estimator can be applied by linearizing about a nominal parameter value. We apply the estimator to fit the stochastic Upper Credible Limit (UCL) model of human decision-making to human subject data. The fits show statistically significant differences in behavior across related, but distinct, tasks.
AbstractList We contribute to the development of a systematic means to infer features of human decision-making from behavioral data. Motivated by the common use of softmax selection in models of human decision-making, we study the maximum-likelihood (ML) parameter estimation problem for softmax decision-making models with linear objective functions. We present conditions under which the likelihood function is convex. These allow us to provide sufficient conditions for convergence of the resulting ML estimator and to construct its asymptotic distribution. In the case of models with nonlinear objective functions, we show how the estimator can be applied by linearizing about a nominal parameter value. We apply the estimator to fit the stochastic Upper Credible Limit (UCL) model of human decision-making to human subject data. The fits show statistically significant differences in behavior across related, but distinct, tasks.
Author Reverdy, Paul
Leonard, Naomi Ehrich
Author_xml – sequence: 1
  givenname: Paul
  surname: Reverdy
  fullname: Reverdy, Paul
  email: preverdy@seas.upenn.edu
  organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Naomi Ehrich
  surname: Leonard
  fullname: Leonard, Naomi Ehrich
  email: naomi@princeton.edu
  organization: Dept. of Mech. & Aerosp. Eng., Princeton Univ., Princeton, NJ, USA
BookMark eNp9kE1LxDAQhoMo-PkDxEvAi5euSdOkyVF0_YAVBVc9ltl0qlm7qSZZ0X9v64oHD55mGJ73ZXi2ybrvPBKyz9mIc2aOpyd341HOuBzlhTF5UayRLS6lzkSpxfqwFzKTRspNsh3jnLG80IZtkYdbCLDAhIGOY3ILSK7z1Hl61zVpAR_0DK2L_S27hhfnn-h1V2Mb6aNLz3TiPEKgN7M52uTekZ4vvR0K4i7ZaKCNuPczd8j9-Xh6eplNbi6uTk8mmRVGpQwsRyzzupQCi9qqRtaWoVWqVrWWvEGNUuZ1o2wDGkHLGWgAoaGBmhUcxA45WvW-hu5tiTFVCxctti147Jax4qVWXBkmWI8e_kHn3TL4_ruekoYrkRvVU-WKsqGLMWBTWZe-paQArq04qwbf1eC7GnxXP777JP-TfA29z_D5b-ZglXGI-MuXQihZcvEF5h6Ovg
CODEN ITASC7
CitedBy_id crossref_primary_10_3389_fnins_2019_01292
crossref_primary_10_1007_s11042_021_11669_3
crossref_primary_10_1177_0037549716667834
crossref_primary_10_26599_BSA_2022_9050007
crossref_primary_10_1007_s42113_021_00112_3
crossref_primary_10_1016_j_image_2021_116410
crossref_primary_10_1088_1742_6596_1550_3_032066
crossref_primary_10_1109_TMC_2024_3373501
crossref_primary_10_1109_TCE_2023_3331770
crossref_primary_10_1155_2018_9867061
crossref_primary_10_1007_s11012_017_0748_4
crossref_primary_10_1002_minf_201700111
crossref_primary_10_1007_s11042_023_14866_4
crossref_primary_10_3390_jimaging6030008
crossref_primary_10_1111_cogs_12695
crossref_primary_10_1177_0361198119851085
crossref_primary_10_1109_LSP_2018_2860238
crossref_primary_10_3390_vaccines10111838
crossref_primary_10_3390_vaccines10050756
crossref_primary_10_1016_j_ijepes_2019_105812
crossref_primary_10_1109_TCCN_2020_2971688
crossref_primary_10_1007_s11042_022_12125_6
crossref_primary_10_1007_s42113_024_00229_1
crossref_primary_10_1007_s11042_020_08654_7
crossref_primary_10_1186_s13640_018_0332_4
crossref_primary_10_1109_TASE_2023_3307758
crossref_primary_10_1007_s00607_020_00883_w
crossref_primary_10_1007_s10670_024_00913_5
crossref_primary_10_1109_TVCG_2022_3148745
crossref_primary_10_1088_2399_6528_ac75ad
crossref_primary_10_1109_ACCESS_2019_2944411
crossref_primary_10_1186_s12915_023_01774_0
crossref_primary_10_1016_j_cie_2024_110209
Cites_doi 10.1901/jeab.2005.110-04
10.1146/annurev.neuro.29.051605.112903
10.1109/JPROC.2011.2173815
10.1371/journal.pcbi.1003015
10.1109/ACC.2011.5991446
10.1037/a0038199
10.1090/S0025-5718-1970-0274029-X
10.1093/comjnl/13.3.317
10.1038/nature04766
10.3758/s13415-013-0220-4
10.1109/JPROC.2014.2307024
10.1177/1745691610393980
10.1093/imamat/6.1.76
10.1090/S0025-5718-1970-0258249-6
10.1098/rstb.2007.2098
10.1145/279943.279964
10.1016/j.neuron.2010.04.016
10.1007/BF00048682
10.1109/JPROC.2011.2166437
10.1109/TPAMI.2005.127
10.1007/BF00992698
10.1126/science.1115270
10.1090/S0002-9904-1952-09620-8
10.2307/1427186
10.1093/acprof:oso/9780199600434.003.0001
10.1016/S1573-4412(05)80005-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TASE.2015.2499244
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 67
ExternalDocumentID 3930427351
10_1109_TASE_2015_2499244
7336571
Genre orig-research
Feature
GrantInformation_xml – fundername: Office of Naval Research (ONR) under
  grantid: N00014-09-1-1074; N00014-14-1-0635
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c396t-ac1ee72d753e4dc6f5dc0ec66d6d851fe8e552df6cfa8ea85ba8aa38afad041a3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Sun Aug 24 04:05:53 EDT 2025
Sun Jun 29 15:18:30 EDT 2025
Tue Jul 01 02:56:28 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ac1ee72d753e4dc6f5dc0ec66d6d851fe8e552df6cfa8ea85ba8aa38afad041a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1759163296
PQPubID 27623
PageCount 14
ParticipantIDs proquest_miscellaneous_1786169030
proquest_journals_1759163296
ieee_primary_7336571
crossref_citationtrail_10_1109_TASE_2015_2499244
crossref_primary_10_1109_TASE_2015_2499244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref37
ref15
wilson (ref38) 2013
ref30
ref32
ref10
goldberger (ref11) 1991
ref2
ref1
(ref34) 2015
ref16
ref19
ref18
sutton (ref33) 1998
kay (ref14) 1993
newey (ref22) 1994; 4
russell (ref28) 1998
gimpel (ref9) 2010
ref24
samejima (ref29) 2005; 310
ref26
ref20
kaufmann (ref13) 2012
ref21
ref27
ng (ref23) 2000
srivastava (ref31) 2015
ref8
ref7
ref4
ref3
ref6
ref5
reverdy (ref25) 2014
welch (ref36) 1947; 34
mcfadden (ref17) 1974
References_xml – ident: ref16
  doi: 10.1901/jeab.2005.110-04
– ident: ref19
  doi: 10.1146/annurev.neuro.29.051605.112903
– start-page: 592
  year: 2012
  ident: ref13
  article-title: On Bayesian upper confidence bounds for bandit problems
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref32
  doi: 10.1109/JPROC.2011.2173815
– ident: ref20
  doi: 10.1371/journal.pcbi.1003015
– year: 1991
  ident: ref11
  publication-title: Econometrics Course[M]
– ident: ref24
  doi: 10.1109/ACC.2011.5991446
– ident: ref37
  doi: 10.1037/a0038199
– ident: ref30
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: ref8
  doi: 10.1093/comjnl/13.3.317
– ident: ref7
  doi: 10.1038/nature04766
– start-page: 663
  year: 2000
  ident: ref23
  article-title: Algorithms for inverse reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref5
  doi: 10.3758/s13415-013-0220-4
– ident: ref26
  doi: 10.1109/JPROC.2014.2307024
– year: 2014
  ident: ref25
  publication-title: Human-inspired algorithms for search a framework for human-machine multi-armed bandit problems
– year: 2015
  ident: ref31
  article-title: Correlated multiarmed bandit problem: Bayesian algorithms and regret analysis
– ident: ref3
  doi: 10.1177/1745691610393980
– year: 1993
  ident: ref14
  publication-title: Fundamentals of Statistical Signal Processing Volume I Estimation Theory
– ident: ref2
  doi: 10.1093/imamat/6.1.76
– start-page: 41s
  year: 2013
  ident: ref38
  article-title: Is model fitting necessary for model-based fMRI?
  publication-title: Proc Multi-Disciplinary Conf Reinforcement Learn Decision Making
– ident: ref12
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: ref4
  doi: 10.1098/rstb.2007.2098
– start-page: 101
  year: 1998
  ident: ref28
  article-title: Learning agents for uncertain environments
  publication-title: Proc 11th Annu Conf Computational Learning Theory
  doi: 10.1145/279943.279964
– ident: ref10
  doi: 10.1016/j.neuron.2010.04.016
– ident: ref1
  doi: 10.1007/BF00048682
– year: 1998
  ident: ref33
  publication-title: Introduction to Reinforcement Learning
– start-page: 105
  year: 1974
  ident: ref17
  publication-title: Frontiers in Econometrics
– ident: ref21
  doi: 10.1109/JPROC.2011.2166437
– year: 2015
  ident: ref34
  publication-title: Fminunc
– volume: 34
  start-page: 28
  year: 1947
  ident: ref36
  article-title: The generalization of ?Student?s? problem when several different population variances are involved
  publication-title: Biometrika
– ident: ref15
  doi: 10.1109/TPAMI.2005.127
– ident: ref35
  doi: 10.1007/BF00992698
– volume: 310
  start-page: 1337
  year: 2005
  ident: ref29
  article-title: Representation of action-specific reward values in the striatum
  publication-title: Science
  doi: 10.1126/science.1115270
– ident: ref27
  doi: 10.1090/S0002-9904-1952-09620-8
– ident: ref18
  doi: 10.2307/1427186
– ident: ref6
  doi: 10.1093/acprof:oso/9780199600434.003.0001
– volume: 4
  start-page: 2111
  year: 1994
  ident: ref22
  publication-title: Handbook of Econometrics
  doi: 10.1016/S1573-4412(05)80005-4
– year: 2010
  ident: ref9
  publication-title: ?Softmax-margin training for structured log-linear models ?
SSID ssj0024890
Score 2.321352
Snippet We contribute to the development of a systematic means to infer features of human decision-making from behavioral data. Motivated by the common use of softmax...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms Asymptotic methods
Asymptotic properties
Automation
Biological system modeling
Convergence
Data models
Decision making
estimation
Estimators
Human
Human behavior
Linear programming
Mathematical models
Maximum likelihood method
Parameter estimation
Stochastic models
Stochastic processes
Title Parameter Estimation in Softmax Decision-Making Models With Linear Objective Functions
URI https://ieeexplore.ieee.org/document/7336571
https://www.proquest.com/docview/1759163296
https://www.proquest.com/docview/1786169030
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZAaSnqlodcqSeEl2T9WOeIYFeo0rZIQMstcuyJSkuzVclKiF_P2PEuFFDVW6Q4D83Dnm-eAB9ROC8FWj7I0XBZZ5JbpZBbkmXMtTbKBz_k5LM-PpefLtTFEuwtamEQMSafYT9cxli-n7pZcJXth9Z9KhSMLxNw62q17vvqmehPCRYBV4VSKYKZZ8X-2cHpKCRxqT5hDcIb8q8zKA5VebITx-Nl_Aom8x_rskp-9mdt1Xe3j3o2_u-fr8FqsjPZQScYr2EJmzfw8kH3wXX4emJDZhYRlo1I0bsaRnbZsFPamn_ZG3aU5u_wSRxZxcLctKtr9u2y_c4Iw5KOsC_Vj27HZGM6IKMMv4Xz8ejs8JinMQvciUK33LoccTjwBFxQeqdr5V2GTmuvPdljNRpUauBr7Wpr0BpVWWOtMLa2PpO5FRuw0kwbfAcsr6QjjImZJZSnvCjy2hsjjBoKOdRY9yCbE750qQd5GIVxVUYskhVl4FUZeFUmXvVgd_HI764Bx78WrwfaLxYmsvdga87dMqnodUl2E5nGYlDoHnxY3CblChET2-B0FtYYHeKIInv__Js34QV9P_lktmCl_TPDbbJS2moniucdjgrkMQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw9GgaD2wP3Ma0wgBP4gnNXVJf6jxO0KqwdSCtG3uLHPtEDEaKWCohvp5jxy2XIcRbpDiRde73A_AchfNSoOWDHA2XdSa5VQq5JVrGXGujfIhDTk_05Ey-uVAXa7C_6oVBxFh8hv3wGHP5fu4WIVR2EEb3qdAwfov0vsq7bq2fk_VMjKgEm4CrQqmUw8yz4mB2eDoKZVyqT94GeRzyNy0U16rckMVRwYzvwnR5ta6u5FN_0VZ99_2PqY3_e_d7cCdZmuywI437sIbNA9j8Zf7gFpy_s6E2i0DLRsTqXRcju2zYKQnnz_Ybe5U28PBpXFrFwua0q2v2_rL9wMiLJS5hb6uPncxkY1KRkYofwtl4NHs54WnRAnei0C23LkccDjy5Lii907XyLkOntdeeLLIaDSo18LV2tTVojaqssVYYW1ufydyKbVhv5g3uAMsr6cjLxMySn6e8KPLaGyOMGgo51Fj3IFsCvnRpCnlYhnFVRm8kK8qAqzLgqky46sGL1SdfuhEc_zq8FWC_OpjA3oPdJXbLxKTXJVlOZByLQaF7sLd6TewVcia2wfkinDE6ZBJF9ujvf34Gtyez6XF5_Prk6DFs0F1ShGYX1tuvC3xCNktbPY2k-gObi-d6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+in+Softmax+Decision-Making+Models+With+Linear+Objective+Functions&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Reverdy%2C+Paul&rft.au=Leonard%2C+Naomi+Ehrich&rft.date=2016-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=13&rft.issue=1&rft.spage=54&rft.epage=67&rft_id=info:doi/10.1109%2FTASE.2015.2499244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2015_2499244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon