Domain driven data mining in human resource management: A review of current research

► We review data mining in human resource management as a new and prospering field of research using a domain driven framework. ► Findings show a large number of contributions of recent date and mostly technical or methodical provenance (n=100). ► Contributions cover a broad variety of HR domain pro...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 40; no. 7; pp. 2410 - 2420
Main Authors Strohmeier, Stefan, Piazza, Franca
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.06.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We review data mining in human resource management as a new and prospering field of research using a domain driven framework. ► Findings show a large number of contributions of recent date and mostly technical or methodical provenance (n=100). ► Contributions cover a broad variety of HR domain problems and data mining methods. ► Contributions, however, regularly do not consider certain specific domain requirements. ► We elaborate on these requirements to support future work on the topic. An increasing number of publications concerning data mining in the subject of human resource management (HRM) indicate the presence of a prospering new research field. The current paper reviews this research on HR data mining to systematically uncover recent advancements and suggest areas for future work. Based on the approach of domain driven data mining, an initial framework with significant domain-specific requirements is elaborated. Relevant research contributions are identified and reviewed against the background of this framework. The review reveals that HRM constitutes a noteworthy new domain of data mining research that is dominated by method- and technology-oriented work. However, specific domain requirements, such as evaluating the domain success or complying with legal standards, are frequently not recognized or considered in current research. Therefore, the systematic consideration of domain-specific requirements is demonstrated here to have significant implications for future research on data mining in HRM.
AbstractList An increasing number of publications concerning data mining in the subject of human resource management (HRM) indicate the presence of a prospering new research field. The current paper reviews this research on HR data mining to systematically uncover recent advancements and suggest areas for future work. Based on the approach of domain driven data mining, an initial framework with significant domain-specific requirements is elaborated. Relevant research contributions are identified and reviewed against the background of this framework. The review reveals that HRM constitutes a noteworthy new domain of data mining research that is dominated by method- and technology-oriented work. However, specific domain requirements, such as evaluating the domain success or complying with legal standards, are frequently not recognized or considered in current research. Therefore, the systematic consideration of domain-specific requirements is demonstrated here to have significant implications for future research on data mining in HRM.
► We review data mining in human resource management as a new and prospering field of research using a domain driven framework. ► Findings show a large number of contributions of recent date and mostly technical or methodical provenance (n=100). ► Contributions cover a broad variety of HR domain problems and data mining methods. ► Contributions, however, regularly do not consider certain specific domain requirements. ► We elaborate on these requirements to support future work on the topic. An increasing number of publications concerning data mining in the subject of human resource management (HRM) indicate the presence of a prospering new research field. The current paper reviews this research on HR data mining to systematically uncover recent advancements and suggest areas for future work. Based on the approach of domain driven data mining, an initial framework with significant domain-specific requirements is elaborated. Relevant research contributions are identified and reviewed against the background of this framework. The review reveals that HRM constitutes a noteworthy new domain of data mining research that is dominated by method- and technology-oriented work. However, specific domain requirements, such as evaluating the domain success or complying with legal standards, are frequently not recognized or considered in current research. Therefore, the systematic consideration of domain-specific requirements is demonstrated here to have significant implications for future research on data mining in HRM.
Author Strohmeier, Stefan
Piazza, Franca
Author_xml – sequence: 1
  givenname: Stefan
  surname: Strohmeier
  fullname: Strohmeier, Stefan
  email: s.strohmeier@mis.uni-saarland.de
– sequence: 2
  givenname: Franca
  surname: Piazza
  fullname: Piazza, Franca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27100254$$DView record in Pascal Francis
BookMark eNqFkUFP3DAQha1qkboL_AFOuVTqJdtxnMRx1QuCliKtxGU5WxNnAl4lNrUTEP--jpZeeoDTaJ6-N9K8t2Er5x0xdsFhy4HX3w5bii-4LYAXSdhCpT6xNW-kyGupxIqtQVUyL7ksP7NNjAcALgHkmu2v_YjWZV2wz5QGTpiN1ln3kCX1cR7RZYGin4OhLC34QCO56Xt2meRnSy-Z7zMzh5DEBSQM5vGMnfQ4RDp_m6fs_tfP_dXvfHd3c3t1ucuNUPWUYysUrxU3XVsQ1A0ohFIpWdWiB-JkukqURhXISXZNCwitoh5B1J1ogVfilH093n0K_s9McdKjjYaGAR35Oer0IwfVVKL5GC3LRqb4YEG_vKEYDQ59QGds1E_BjhhedSE5QFGViWuOnAk-xkC9NnbCyXo3BbSD5qCXbvRBL93opZtFS90ka_Gf9d_1d00_jiZKkabog47GkjPU2UBm0p2379n_As8BqXE
CitedBy_id crossref_primary_10_1016_j_cie_2016_07_006
crossref_primary_10_1080_17517575_2022_2130013
crossref_primary_10_1016_j_eswa_2016_10_046
crossref_primary_10_4018_IJCAC_2019040101
crossref_primary_10_3390_su162410843
crossref_primary_10_1111_exsy_12289
crossref_primary_10_1108_DTA_04_2023_0132
crossref_primary_10_1108_MD_03_2022_0316
crossref_primary_10_1016_j_giq_2020_101536
crossref_primary_10_1016_j_knosys_2014_07_008
crossref_primary_10_55938_ijgasr_v2i2_50
crossref_primary_10_1057_s41270_022_00181_8
crossref_primary_10_1080_08839514_2022_2145631
crossref_primary_10_1111_emre_12605
crossref_primary_10_1108_IJEM_04_2016_0079
crossref_primary_10_32628_IJSRST2183140
crossref_primary_10_1111_1748_8583_12433
crossref_primary_10_1088_1742_6596_1530_1_012058
crossref_primary_10_1016_j_leaqua_2021_101515
crossref_primary_10_1108_BPMJ_08_2022_0389
crossref_primary_10_1108_JEIM_11_2020_0436
crossref_primary_10_1108_JOEPP_03_2021_0064
crossref_primary_10_1016_j_procs_2024_02_142
crossref_primary_10_1007_s10489_022_03740_9
crossref_primary_10_1016_j_dss_2019_113074
crossref_primary_10_1016_j_dss_2020_113290
crossref_primary_10_2139_ssrn_4722169
crossref_primary_10_1016_j_seps_2021_101121
crossref_primary_10_2139_ssrn_2776229
crossref_primary_10_1057_s41270_021_00125_8
crossref_primary_10_54452_jrb_1113164
crossref_primary_10_1049_iet_sen_2018_5440
crossref_primary_10_2139_ssrn_3335670
crossref_primary_10_2478_ijcss_2020_0005
crossref_primary_10_1108_CCSM_09_2022_0144
crossref_primary_10_1016_j_shaw_2020_09_010
crossref_primary_10_1016_j_techfore_2023_122645
crossref_primary_10_3390_fi8020022
crossref_primary_10_1016_j_emj_2020_04_010
crossref_primary_10_2139_ssrn_4789953
crossref_primary_10_1142_S0218001419590092
crossref_primary_10_4028_www_scientific_net_AMM_380_384_1558
crossref_primary_10_37648_ijrst_v12i02_007
crossref_primary_10_1016_j_jbusres_2021_03_054
crossref_primary_10_1080_23311975_2023_2216430
Cites_doi 10.1145/1401890.1401959
10.1109/JCPC.2009.5420070
10.1504/IJBIS.2010.030629
10.2991/jcis.2006.46
10.1109/NABIC.2009.5393596
10.5120/823-1165
10.1109/FUZZY.2009.5277379
10.1109/ARTCom.2009.214
10.1007/s10696-010-9068-x
10.1108/02621711111126846
10.1016/j.eswa.2005.06.012
10.1109/PACCS.2011.5990180
10.1109/ICMA.2009.5246570
10.1016/j.dss.2010.08.006
10.1111/1468-0394.00235
10.1109/FITME.2008.133
10.1057/mel.2011.3
10.3233/FI-2009-0026
10.1111/j.1467-9310.2005.00408.x
10.1007/978-3-540-76631-5_94
10.1016/j.eswa.2011.01.001
10.1300/J017v19v04_05
10.5539/cis.v4n3p67
10.1016/j.cor.2004.06.022
10.1016/j.eswa.2010.10.003
10.1007/11686699_37
10.1109/CIDM.2009.4938650
10.17705/1CAIS.00506
10.3233/978-1-60750-633-1-49
10.1109/CIMSA.2006.250749
10.1109/PEITS.2009.5407033
10.1016/j.eswa.2009.05.064
10.1007/11678564_16
10.1080/09585192.2011.610340
10.1109/PICMET.2008.4599705
10.1007/978-3-642-13318-3_66
10.1097/00024665-200407000-00012
10.1109/APCIP.2009.89
10.1108/09600030310469153
10.1109/ISISE.2009.55
10.1109/CSCWD.2005.194143
10.1142/S0218001407005612
10.1109/WiCom.2008.2687
10.1007/978-3-642-15387-7_53
10.1016/j.clsr.2006.03.004
10.1016/j.eswa.2008.03.021
10.1057/palgrave.jors.2602516
10.1109/IITA.Workshops.2008.235
10.1016/j.eswa.2009.07.037
10.1109/IFCSTA.2009.90
10.1016/j.eswa.2006.09.003
10.1016/j.eswa.2010.07.134
10.1109/ICDE.1995.380415
10.1109/ISBIM.2008.187
10.1007/11548706_51
10.1016/j.eswa.2008.07.052
10.1007/978-3-642-23878-9_55
10.1007/s10845-008-0145-x
10.1007/978-3-540-77018-3_2
10.1109/ICICTA.2009.235
10.1504/IJPQM.2011.042511
10.1504/IJBIS.2008.018597
10.1109/TSMCC.2010.2053532
10.1007/11539087_85
10.1109/ISCID.2009.220
10.1109/ISDA.2009.64
10.1109/ICMLC.2004.1382104
10.3233/IDA-2008-12206
10.1007/978-3-540-88875-8_86
10.1109/WI.2005.99
10.1016/S0957-4174(03)00136-2
10.1109/ASONAM.2009.52
10.1016/j.eswa.2008.02.021
10.1109/TKDE.2010.32
10.1109/ICEOE.2011.6013123
10.1109/BICTA.2009.5338100
10.1109/ICIII.2010.200
10.1016/j.eswa.2008.02.069
10.1109/WI.2003.1241181
10.1109/TSM.2007.907630
10.4304/jcp.6.1.139-146
10.1109/ICICISYS.2010.5658634
10.1109/AINA.2010.168
10.1109/EBISS.2010.5473417
10.1016/j.clsr.2010.11.009
10.1007/978-3-642-13422-7_4
10.1109/ICMLC.2008.4620484
10.1145/1571941.1571991
10.1109/CAIA.1995.378795
10.1007/978-3-540-45226-3_56
10.1109/FSKD.2010.5569250
10.1109/ICSMC.2005.1571205
10.1109/IUCE.2009.63
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.10.059
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 2420
ExternalDocumentID 27100254
10_1016_j_eswa_2012_10_059
S0957417412011839
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-ab391691cdb2e06809a04997563f0e1ecd534c92a1e7d8b0a0b9efa036d3b0153
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 11 10:34:47 EDT 2025
Fri Jul 11 02:36:01 EDT 2025
Wed Apr 02 07:27:12 EDT 2025
Tue Jul 01 05:00:33 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Literature review
HRM
Data mining
Electronic human resource management (e-HRM)
HR data mining
Domain driven data mining
Data analysis
Data processing
Information extraction
Data driven modelling
Human resource management
Standards
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ab391691cdb2e06809a04997563f0e1ecd534c92a1e7d8b0a0b9efa036d3b0153
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1448720108
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1701098538
proquest_miscellaneous_1448720108
pascalfrancis_primary_27100254
crossref_citationtrail_10_1016_j_eswa_2012_10_059
crossref_primary_10_1016_j_eswa_2012_10_059
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_10_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sivaram, Ramar (b0560) 2010; 4
(pp. 275–278).
Karahoca, A., Karahoca, D., & Kaya, O. (2008). Data mining to cluster human performance by using online self regulating clustering method. In
Chen, Ye, Williams, Xu (b0095) 2007; Vol. 4819
Khosla, R., Lai, C., & Chu, M.-T. (2006). Measurement and comparison of non-verbal behavior and cognitive behavior in human resource management – Application in sales recruitment. In
[89].
Zhang, X., Zhu, Y., & Hua, N. (2010). Improved paralled algorithm for mining frequent itemset used in HRM. 2010
(pp. 309–312).
(pp. 2334–2339).
Li, X.-H., Zhao, J.-H., & Li, B.-H. (2004). Investigation of fuzzy mathematical model for general evaluation of administrators in university. In
Wu, Lee, Tzeng (b0650) 2005; Vol. 3642
Kessler, Béchet, Torres-Moreno, Roche, El-Bèze (b0325) 2009
(pp. 223–230). [100].
Coppock (b0125) 2003
[16].
Kroll (b0350) 2001; 83
(pp. 560–565).
Zhang, Segall (b0695) 2010
Retrieved from
.
[54].
8
[92].
(pp. 9–16).
Huang, Y. (2009). Study of college human resources data mining based on the SOM algorithm. In
(pp. 283–290). [86].
(pp. 257–259).
[27].
Clyde, S., Zhang, J., & Yao, C.-C. (1995). An object-oriented implementation of an adaptive classification of job openings. In
Chen, X., & Wang, F. (2010). Application of data mining on enterprise human resource performance management. In
[D].
[65].
(pp. 1–4).
[80].
(pp. 1–11). [56].
Zhao, X. (2008). A study of performance evaluation of HRM: based on data mining. In
Wahlstrom, K., Roddick, J. F., Sarre, R., Estivill-Castro, V., & DeVries, D. (2002). On the ethics of data mining. Technical Report KDM-02-006. Retrieved from Flinders University of South Australia, Knowledge Discovery and Management Laboratory website
Delgado-Gómez, Aguado, Lopez-Castroman, Santacruz, Artés-Rodriguez (b0130) 2011; 38
Han, J., & Dong, Y. (2007). Application of association rules based on rough set in human resource management. In
Fancello, Pani, Pisano, Serra, Zuddas, Fadda (b0160) 2011; 13
Zhang, X., Zhu, Y., & Hua, N. (2009). Privacy parallel algorithm for mining association rules and its application in HRM. In
Sharma, Osei-Bryson (b0555) 2009; 36
Ning, C. (2010). The application of neural network to the allocation of enterprise human resources. In
Rupnik, Jaklič (b0530) 2009
Baker, Yacef (b0030) 2009; 1
Tai, W.-S., & Hsu, C.-C. (2006). A realistic personnel selection tool based on fuzzy data mining method. In
Teodorescu, R., Teodorescu, N., & Gavrila, C. (2009). Bayesian networks in outplacement. Retrieved from
(pp. 372–375).
Aiolli, F., de Filippo, M., & Sperduti, A. (2009). Application of the preference learning model to a human resources selection task. In
[53].
[99].
Kirby, E., Dufner, D., & Palmer, J. (1998). An analysis of applying artificial neural networks for employee selection. In
Honkela, T., Nordfors, R., & Tuuli, R. (2004). Document maps for competence management. In
Wu (b0645) 2009; 36
[91].
Ye, J., Hu, H., & Chai, C. (2009). A talent classification method based on SVM. In
[26].
(pp. 214–218).
(pp. 214–221).
[41].
(pp. 1–3).
Wang, Z., Li, S., Wang, Y., & Li, S. (2009). The research of task assignment based on ant colony algorithm. In
(pp. 44–49).
Isaias, P., Casaca, C. & Pifano, S. (2010). Recommender systems for human resources task assignment. In
(IDEAL ’11) (pp. 463–473). [72].
(pp. 31–39). [29].
Wang, Q., Li, B., & Hu, J. (2009a). Feature selection for human resource selection based on affinity propagation and SVM sensitivity analysis. In
[37].
Wang, Wang (b0615) 2009; 90
[14].
[98].
Yang, S.-M. (2008). A self-adapting regression SVM model and its application on middle managers performance evaluation. In
Quinn, Rycraft, Schoech (b0495) 2002; 19
Jantan, Hamdan, Othman (b0275) 2010; Vol. 6276
(pp. 198–203). [42].
(pp. 324–327).
Ngai, Xiu, Chau (b0465) 2009; 36
Gkoulalas-Divanis, Verykios (b0750) 2010
Jantan, Hamdan, Othman (b0265) 2009; 26
Liu, Y., Kou, Z., Perlich, C., & Lawrence, R. (2008). Intelligent system for workforce classification. In
Kao, W.-H., Huang, I.-M., Shen, H.-S., & Lin, C.-C. (2009). A study of weighted association rule applied in human resource job requirement. In
[40].
Han, J. (2009). Application of fuzzy data mining algorithm in performance evaluation of human resource. In
Zhang, H. (2009). Fuzzy evaluation on the performance of human resources management of commercial banks based on improved algorithm. In
Strohmeier, Piazza (b0570) 2010; 5
Luell, J. (2010). Employee fraud detection under real world conditions. Doctoral dissertation, University of Zurich, Retrieved from
(pp. 203–210). [1].
Hong, Pai, Huang, Yang (b0220) 2005; Vol. 3610
Juan (b0295) 2009
71
(pp. 343–346).
Hsiung, Yang (b0235) 2012; 23
Jindal, Singla (b0290) 2011; 1
(pp. 1977–1980).
Bernik, M., Flojancic, J., Crnigoj, D., & Bernik I. (2007). Using information technology for human resource management decisions. In
Tzeng, Hsieh, Lin (b0605) 2004; 22
Sáiz, L., Pérez, A., Herrero, A., & Corchado, E. (2011). Analyzing key factors of human resources management. In
Hou, Dong, Liu, Gu (b0230) 2007; 2007
Jantan, Hamdan, Othman (b0285) 2010; 5
(pp. 28-1–28-7). [51].
[97].
Imai, S., Lin, C.-W., Watada, J., & Tzeng, G.-H. (2008a). Knowledge acquisition in human resource management based on rough sets. In
(pp. 151–153).
Han, J., Ren, J., & Dong, Y. (2008). Research on time series model for human resource management based on web technique. In
Youzheng, C., & Ming, G. (2008). Data mining to improve human resource in construction company. In
Li, Y. (2011). Research of evaluation staff satisfaction based on BP neural network. In
(pp. 124–130).
Pechenizkiy, Puuronen, Tsymbal (b0475) 2008; 12
(pp. 57–62).
(pp. 49–45).
Schermer (b0545) 2011; 27
(pp. 3–14).
Lee, W. C., & Drasgow, F. (2001). Predicting employee retention: an examination of a retention likelihood scale (Report No. 45). Retrieved from Center for Human Resource Management website
Adejuwon, Mosavi (b0005) 2010; 7
Puuronen, S., & Pechenizkiy, M. (2010). Towards the generic framework for utility considerations in data mining research. In
Färber (b0745) 2005
Imai, Lin, Watada, Tzeng (b0255) 2008; 9
[85].
[24].
Färber, F., Weitzel, T., & Keim, T. (2003). An automated recommendation approach to selection in personnel recruitment. In
Kessler, Béchet, Roche, El-Bèze, Torres-Moreno (b0320) 2008; Vol. 5333
(b0315) 2010
Nagadevara, Srinivasan, Valk (b0455) 2008; 16
Chien, Chen (b0105) 2008; 34
Liu, H., Dai, S., & Jiang, H. (2009). Application of rough set and support vector machine in competency assessment. In
Choudhary, Harding, Tiwari (b0115) 2008; 20
Hermiz (b0210) 1999
(pp. 2830–2833).
Lockamy, Service (b0410) 2011; 30
Wu, Ting, Chang (b0640) 2010
Mohanraj, V., Lakshmipathi, R., Chandrasekaran, M., Senthilkumar, J., & Suresh, Y. (2009). Intelligent agent based talent evaluation engine using a knowledge base. In
Chien, Chen (b0740) 2007; 20
Zhu, J., Goncalves, A. L., Uren, V. S., Motta, E., & Pacheco, R. (2005). Mining web data for competency management. In
Burgard, Piazza (b0735) 2009
Lakshmipathi, Chandrasekaran, Mohanraj, Senthilkumar, Suresh (b0355) 2010; 2
Li, Ge, Yin (b0375) 2011
[35].
[96].
Rok, Matjaž, Marjan (b0520) 2007; 47
(pp. 280–285). [5].
Long, Troutt (b0765) 2003
Bole, U., Jakličb, J., Papac, G., & Žabkard, J. (2011). The critical success factors of data mining in organizations. Retrieved from
(pp. 76–77). [46].
Romero, Ventura (b0525) 2010; 40
(pp. 31–36).
Lescreve, F. J. (1999). Data integration and classification for an officer selection system. In
Devanna, Fombrun, Tichy (b0135) 1984
[84].
(pp. 130–133). [6].
Drigas, Kouremenos, Vrettos, Vrettaros, Kouremenos (b0150) 2004; 26
Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In
(pp. 296–299).
(pp. 2407–2413). [25].
Ye, P. (2011). The decision tree classification and its application research in personnel management. In
(pp. 645–648).
Ngai, Hu, Wong, Chen, Sun (b0460) 2011; 50
(pp. 744–750).
Ramesh (b0500) 2001; 5
Huang, Wu, Lee (b0240) 2008; 59
[57].
(pp. 94–100).
Rodrigues, S., Oliveira, J., & de Souza, J. M. (2005). Competence mining for team formation and virtual community recommendation. In
(pp. 115–126). [17].
Markham (b0430) 2011; 8
Moehrle, Walter, Geritz, Müller (b0440) 2005; 35
(pp. 111–117).
Min, Emam (b0435) 2003; 33
Li, W., Xu, S., & Meng, W. (2009). A risk prediction model of construction enterprise human resources based on support vector machine. In
(pp. 82–85).
Ly, Rinderle, Dadam, Reichert (b0425) 2006; Vol. 3812
(pp. 839–844).
Cho, Ngai (b0110) 2003; 20
[22].
(pp. 2329–2339). [21].
[45].
Kessler, Torres-Moreno, El-Bèze (b0330) 2007; Vol. 4827
Sugimori, Iida, Suka, Ichimura, Yoshida (b0575) 2003; Vol. 2774
Zhang, Deng (b0685) 2011; 6
(pp. 349–351).
Goonawardene, Subashini, Boralessa, Premaratne (b0190) 2010; Vol. 6064
Holland, A., & Fathi, M. (2005). Creating graphical models as representation of personalized skill profiles. In
Pedreshi, D., Ruggieri, S., & Turini, F. (2008). Discrimination-aware data mining. In
Zhao, X. (2008). An empirical study of data mining in performance evaluation of HRM. In
(pp. 18–26). [58].
Beccera-Fernandez, I., & Rodriguez, J. (2001). Web data mining techniques for expertise-locator knowledge management systems. In
(2001). [49].
(pp. 407–419).
Weiss, G. M. (2009). Data mining in the real world: Experiences, challenges, and recommendations. In
[10].
[79].
[33].
Yang, Lin, Chen, Shi (b0660) 2009; 36
[94].
(pp. 411–416).
Tung, Huang, Chen, Shih (b0595) 2005; 29
Li, Y.-M., Lai, C.-Y., & Kao, C.-P. (2008). Incorporate personality trait with support vector machine to acquire quality matching of personnel recruitment. In
Tung, Tseng, Weng, Lee, Liao, Tsai (b0600) 2010; 37
Al-Zegaier, Al-Zu’bi, Barakat (b0020) 2011; 4
Wong, T.-L., Lam, W., & Chen, B. (2009). Mining employment market via text block detection and adaptive cross-domain information extraction. In
Bal, M., Bal, Y., & Ustundag, A. (2011). Knowledge representation and discovery using formal concept analysis: An HRM application. In The World congress on engineering (pp. 1068–1073). [4].
Chang (b0075) 2009; 3
[44].
[67].
(pp. 945–948).
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In
Sexton, McMurtrey, Micha
10.1016/j.eswa.2012.10.059_b0715
Hsiung (10.1016/j.eswa.2012.10.059_b0235) 2012; 23
10.1016/j.eswa.2012.10.059_b0675
10.1016/j.eswa.2012.10.059_b0710
10.1016/j.eswa.2012.10.059_b0395
10.1016/j.eswa.2012.10.059_b0670
10.1016/j.eswa.2012.10.059_b0310
10.1016/j.eswa.2012.10.059_b0040
Chen (10.1016/j.eswa.2012.10.059_b0085) 2011; 23
Kessler (10.1016/j.eswa.2012.10.059_b0320) 2008; Vol. 5333
Nagadevara (10.1016/j.eswa.2012.10.059_b0450) 2008; 16
Rok (10.1016/j.eswa.2012.10.059_b0520) 2007; 47
Strohmeier (10.1016/j.eswa.2012.10.059_b0570) 2010; 5
Lakshmipathi (10.1016/j.eswa.2012.10.059_b0355) 2010; 2
Goonawardene (10.1016/j.eswa.2012.10.059_b0190) 2010; Vol. 6064
Moehrle (10.1016/j.eswa.2012.10.059_b0440) 2005; 35
Kroll (10.1016/j.eswa.2012.10.059_b0350) 2001; 83
10.1016/j.eswa.2012.10.059_b0700
10.1016/j.eswa.2012.10.059_b0300
Huang (10.1016/j.eswa.2012.10.059_b0240) 2008; 59
10.1016/j.eswa.2012.10.059_b0785
10.1016/j.eswa.2012.10.059_b0665
10.1016/j.eswa.2012.10.059_b0780
10.1016/j.eswa.2012.10.059_b0385
Wu (10.1016/j.eswa.2012.10.059_b0645) 2009; 36
10.1016/j.eswa.2012.10.059_b0145
10.1016/j.eswa.2012.10.059_b0420
10.1016/j.eswa.2012.10.059_b0270
Min (10.1016/j.eswa.2012.10.059_b0435) 2003; 33
Quinn (10.1016/j.eswa.2012.10.059_b0495) 2002; 19
Aviad (10.1016/j.eswa.2012.10.059_b0025) 2011; 38
Jantan (10.1016/j.eswa.2012.10.059_b0285) 2010; 5
Rodrigues (10.1016/j.eswa.2012.10.059_b0515) 2006; Vol. 3865
10.1016/j.eswa.2012.10.059_b0390
Juan (10.1016/j.eswa.2012.10.059_b0295) 2009
Färber (10.1016/j.eswa.2012.10.059_b0745) 2005
Zhang (10.1016/j.eswa.2012.10.059_b0695) 2010
Kessler (10.1016/j.eswa.2012.10.059_b0330) 2007; Vol. 4827
10.1016/j.eswa.2012.10.059_b0535
Delgado-Gómez (10.1016/j.eswa.2012.10.059_b0130) 2011; 38
10.1016/j.eswa.2012.10.059_b0015
10.1016/j.eswa.2012.10.059_b0775
10.1016/j.eswa.2012.10.059_b0655
10.1016/j.eswa.2012.10.059_b0010
10.1016/j.eswa.2012.10.059_b0770
10.1016/j.eswa.2012.10.059_b0380
10.1016/j.eswa.2012.10.059_b0260
10.1016/j.eswa.2012.10.059_b0140
Chen (10.1016/j.eswa.2012.10.059_b0095) 2007; Vol. 4819
Sugimori (10.1016/j.eswa.2012.10.059_b0575) 2003; Vol. 2774
Sexton (10.1016/j.eswa.2012.10.059_b0550) 2005; 32
Jindal (10.1016/j.eswa.2012.10.059_b0290) 2011; 1
Cho (10.1016/j.eswa.2012.10.059_b0110) 2003; 20
Chien (10.1016/j.eswa.2012.10.059_b0740) 2007; 20
Coppock (10.1016/j.eswa.2012.10.059_b0125) 2003
10.1016/j.eswa.2012.10.059_b0405
10.1016/j.eswa.2012.10.059_b0245
10.1016/j.eswa.2012.10.059_b0400
Al-Zegaier (10.1016/j.eswa.2012.10.059_b0020) 2011; 4
Baker (10.1016/j.eswa.2012.10.059_b0030) 2009; 1
10.1016/j.eswa.2012.10.059_b0120
10.1016/j.eswa.2012.10.059_b0760
10.1016/j.eswa.2012.10.059_b0370
Adejuwon (10.1016/j.eswa.2012.10.059_b0005) 2010; 7
10.1016/j.eswa.2012.10.059_b0250
Cao (10.1016/j.eswa.2012.10.059_b0070) 2007; 21
10.1016/j.eswa.2012.10.059_b0090
Burgard (10.1016/j.eswa.2012.10.059_b0735) 2009
Saradhi (10.1016/j.eswa.2012.10.059_b0540) 2011; 38
10.1016/j.eswa.2012.10.059_b0755
10.1016/j.eswa.2012.10.059_b0635
10.1016/j.eswa.2012.10.059_b0630
Imai (10.1016/j.eswa.2012.10.059_b0255) 2008; 9
Zhang (10.1016/j.eswa.2012.10.059_b0685) 2011; 6
Ngai (10.1016/j.eswa.2012.10.059_b0465) 2009; 36
10.1016/j.eswa.2012.10.059_b0480
10.1016/j.eswa.2012.10.059_b0360
Jantan (10.1016/j.eswa.2012.10.059_b0265) 2009; 26
Pechenizkiy (10.1016/j.eswa.2012.10.059_b0475) 2008; 12
10.1016/j.eswa.2012.10.059_b0080
Jantan (10.1016/j.eswa.2012.10.059_b0275) 2010; Vol. 6276
Jantan (10.1016/j.eswa.2012.10.059_b0280) 2010; 2
Fayyad (10.1016/j.eswa.2012.10.059_b0175) 1996; 17
Yang (10.1016/j.eswa.2012.10.059_b0660) 2009; 36
Lockamy (10.1016/j.eswa.2012.10.059_b0410) 2011; 30
Ranjan (10.1016/j.eswa.2012.10.059_b0505) 2008; 3
Drigas (10.1016/j.eswa.2012.10.059_b0150) 2004; 26
10.1016/j.eswa.2012.10.059_b0625
10.1016/j.eswa.2012.10.059_b0345
10.1016/j.eswa.2012.10.059_b0620
10.1016/j.eswa.2012.10.059_b0225
Long (10.1016/j.eswa.2012.10.059_b0765) 2003
Hou (10.1016/j.eswa.2012.10.059_b0230) 2007; 2007
10.1016/j.eswa.2012.10.059_b0340
10.1016/j.eswa.2012.10.059_b0585
10.1016/j.eswa.2012.10.059_b0590
10.1016/j.eswa.2012.10.059_b0470
(10.1016/j.eswa.2012.10.059_b0315) 2010
Devanna (10.1016/j.eswa.2012.10.059_b0135) 1984
Kessler (10.1016/j.eswa.2012.10.059_b0325) 2009
Ly (10.1016/j.eswa.2012.10.059_b0425) 2006; Vol. 3812
Schermer (10.1016/j.eswa.2012.10.059_b0545) 2011; 27
Wu (10.1016/j.eswa.2012.10.059_b0640) 2010
Sivaram (10.1016/j.eswa.2012.10.059_b0560) 2010; 4
Li (10.1016/j.eswa.2012.10.059_b0375) 2011
10.1016/j.eswa.2012.10.059_b0730
10.1016/j.eswa.2012.10.059_b0335
Rupnik (10.1016/j.eswa.2012.10.059_b0530) 2009
10.1016/j.eswa.2012.10.059_b0610
10.1016/j.eswa.2012.10.059_b0215
10.1016/j.eswa.2012.10.059_b0055
Chang (10.1016/j.eswa.2012.10.059_b0075) 2009; 3
Choudhary (10.1016/j.eswa.2012.10.059_b0115) 2008; 20
Tung (10.1016/j.eswa.2012.10.059_b0595) 2005; 29
10.1016/j.eswa.2012.10.059_b0580
Gkoulalas-Divanis (10.1016/j.eswa.2012.10.059_b0750) 2010
Chien (10.1016/j.eswa.2012.10.059_b0105) 2008; 34
10.1016/j.eswa.2012.10.059_b0180
(10.1016/j.eswa.2012.10.059_b0155) 2005
Sharma (10.1016/j.eswa.2012.10.059_b0555) 2009; 36
Lee (10.1016/j.eswa.2012.10.059_b0365) 2010; 37
Nagadevara (10.1016/j.eswa.2012.10.059_b0455) 2008; 16
Romero (10.1016/j.eswa.2012.10.059_b0525) 2010; 40
Tzeng (10.1016/j.eswa.2012.10.059_b0605) 2004; 22
10.1016/j.eswa.2012.10.059_b0205
Poullet (10.1016/j.eswa.2012.10.059_b0485) 2006; 22
10.1016/j.eswa.2012.10.059_b0725
Hong (10.1016/j.eswa.2012.10.059_b0220) 2005; Vol. 3610
10.1016/j.eswa.2012.10.059_b0565
Hermiz (10.1016/j.eswa.2012.10.059_b0210) 1999
10.1016/j.eswa.2012.10.059_b0445
10.1016/j.eswa.2012.10.059_b0720
Cao (10.1016/j.eswa.2012.10.059_b0065) 2010; 22
Wang (10.1016/j.eswa.2012.10.059_b0615) 2009; 90
10.1016/j.eswa.2012.10.059_b0045
10.1016/j.eswa.2012.10.059_b0200
10.1016/j.eswa.2012.10.059_b0050
Fancello (10.1016/j.eswa.2012.10.059_b0160) 2011; 13
Markham (10.1016/j.eswa.2012.10.059_b0430) 2011; 8
10.1016/j.eswa.2012.10.059_b0690
Ramesh (10.1016/j.eswa.2012.10.059_b0500) 2001; 5
Tung (10.1016/j.eswa.2012.10.059_b0600) 2010; 37
Wu (10.1016/j.eswa.2012.10.059_b0650) 2005; Vol. 3642
Ngai (10.1016/j.eswa.2012.10.059_b0460) 2011; 50
10.1016/j.eswa.2012.10.059_b0170
References_xml – reference: (pp. 18–26). [58].
– volume: 22
  start-page: 206
  year: 2006
  end-page: 217
  ident: b0485
  article-title: EU data protection policy. The directive 95/46/EC: Ten years after
  publication-title: Computer Law and Security Review
– reference: Lescreve, F. J. (1999). Data integration and classification for an officer selection system. In
– start-page: 366
  year: 2003
  end-page: 381
  ident: b0765
  article-title: Data mining for human resource information systems
  publication-title: Data mining: Opportunities and challenges
– start-page: 223
  year: 2009
  end-page: 229
  ident: b0735
  article-title: Data warehouse and business intelligence systems in the context of e-HRM
  publication-title: Encyclopedia of HRIS: Challenges in e-HRM
– reference: Li, W., Xu, S., & Meng, W. (2009). A risk prediction model of construction enterprise human resources based on support vector machine. In
– volume: Vol. 4827
  start-page: 985
  year: 2007
  end-page: 995
  ident: b0330
  article-title: E-Gen: Automatic job offer processing system for human resources
  publication-title: Lecture notes in computer science
– volume: Vol. 5333
  start-page: 625
  year: 2008
  end-page: 634
  ident: b0320
  article-title: Automatic profiling system for ranking candidates answers in human resources
  publication-title: Lecture notes in computer science
– reference: Li, Y. (2011). Research of evaluation staff satisfaction based on BP neural network. In
– volume: 38
  start-page: 1999
  year: 2011
  end-page: 2006
  ident: b0540
  article-title: Employee churn prediction
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 1
  year: 2001
  end-page: 36
  ident: b0500
  article-title: GPR: A data mining tool using genetic programming
  publication-title: Communications of the Association for Information Systems
– reference: Tai, W.-S., & Hsu, C.-C. (2006). A realistic personnel selection tool based on fuzzy data mining method. In
– reference: . Retrieved from
– volume: Vol. 3812
  start-page: 177
  year: 2006
  end-page: 190
  ident: b0425
  article-title: Mining staff assignment rules from event-based data
  publication-title: Lecture Notes in Computer Science
– reference: Zhang, X., Zhu, Y., & Hua, N. (2009). Privacy parallel algorithm for mining association rules and its application in HRM. In
– reference: . [67].
– reference: (pp. 2830–2833).
– reference: Wong, T.-L., Lam, W., & Chen, B. (2009). Mining employment market via text block detection and adaptive cross-domain information extraction. In
– volume: 3
  start-page: 417
  year: 2009
  end-page: 426
  ident: b0075
  article-title: Employee turnover: A novel prediction solution with effective feature selection
  publication-title: WSEAS Transactions on Information Science and Applications
– reference: Puuronen, S., & Pechenizkiy, M. (2010). Towards the generic framework for utility considerations in data mining research. In
– volume: Vol. 3865
  start-page: 365
  year: 2006
  end-page: 374
  ident: b0515
  article-title: Recommendation for team and virtual community formations based on competence mining
  publication-title: Lecture notes in computer science
– volume: 37
  start-page: 434
  year: 2010
  end-page: 439
  ident: b0365
  article-title: Exploring high-performers’ required competencies
  publication-title: Expert Systems with Applications
– reference: . [93].
– reference: (pp. 3–14).
– reference: Honkela, T., Nordfors, R., & Tuuli, R. (2004). Document maps for competence management. In
– reference: Li, Y.-M., Lai, C.-Y., & Kao, C.-P. (2008). Incorporate personality trait with support vector machine to acquire quality matching of personnel recruitment. In
– reference: Lee, W. C., & Drasgow, F. (2001). Predicting employee retention: an examination of a retention likelihood scale (Report No. 45). Retrieved from Center for Human Resource Management website:
– reference: . [78].
– volume: 26
  start-page: 775
  year: 2009
  end-page: 783
  ident: b0265
  article-title: Knowledge discovery techniques for talent forecasting in human resource application
  publication-title: World Academy of Science, Engineering and Technology
– reference: . [D].
– volume: 2
  start-page: 2526
  year: 2010
  end-page: 2534
  ident: b0280
  article-title: Human talent prediction in HRM using c4.5 classification algorithm
  publication-title: International Journal on Computer Science and Engineering
– reference: Ning, C. (2010). The application of neural network to the allocation of enterprise human resources. In
– reference: Wahlstrom, K., Roddick, J. F., Sarre, R., Estivill-Castro, V., & DeVries, D. (2002). On the ethics of data mining. Technical Report KDM-02-006. Retrieved from Flinders University of South Australia, Knowledge Discovery and Management Laboratory website:
– reference: (pp. 57–62).
– reference: . [40].
– reference: Bernik, M., Flojancic, J., Crnigoj, D., & Bernik I. (2007). Using information technology for human resource management decisions. In
– year: 2010
  ident: b0315
  publication-title: Human resource information systems: Basics, applications and future directions
– reference: Kane-Sellers, M. L. (2007). Predictive models of employee voluntary turnover in a North American professional sales force using data-mining analysis. Doctoral dissertation, Texas A&M University. Retrieved from
– reference: . [35].
– reference: Teodorescu, R., Teodorescu, N., & Gavrila, C. (2009). Bayesian networks in outplacement. Retrieved from
– reference: Rodrigues, S., Oliveira, J., & de Souza, J. M. (2005). Competence mining for team formation and virtual community recommendation. In
– volume: 90
  start-page: 395
  year: 2009
  end-page: 426
  ident: b0615
  article-title: 3DM: Domain-oriented data-driven data mining
  publication-title: Fundamenta Informaticae
– reference: Youzheng, C., & Ming, G. (2008). Data mining to improve human resource in construction company. In
– volume: 6
  start-page: 139
  year: 2011
  end-page: 146
  ident: b0685
  article-title: The data mining of the human resources data warehouse in university based on association rule
  publication-title: Journal of Computers
– volume: 5
  start-page: 186
  year: 2010
  end-page: 197
  ident: b0570
  article-title: Informating HRM: A comparison of data querying and data mining
  publication-title: International Journal of Business Information Systems
– volume: 37
  start-page: 2427
  year: 2010
  end-page: 2438
  ident: b0600
  article-title: A rule-based CBR approach for expert finding and problem diagnosis
  publication-title: Expert Systems with Applications
– reference: . [92].
– start-page: 219
  year: 2011
  end-page: 224
  ident: b0375
  article-title: Research on talent introduction hazard and training strategy of university based on data mining
  publication-title: modeling risk management for resources and environment in China
– reference: Wang, Q., Li, B., & Hu, J. (2009a). Feature selection for human resource selection based on affinity propagation and SVM sensitivity analysis. In
– volume: 36
  start-page: 3378
  year: 2009
  end-page: 3387
  ident: b0660
  article-title: Improving scheduling of emergency physicians using data mining analysis
  publication-title: Expert Systems with Applications
– reference: (pp. 839–844).
– volume: Vol. 3642
  start-page: 484
  year: 2005
  end-page: 494
  ident: b0650
  article-title: Simplifying the manager competency model by using the rough set approach
  publication-title: Lecture notes in computer science
– start-page: 1245
  year: 2010
  end-page: 1268
  ident: b0695
  article-title: Commercial data mining software
  publication-title: Data Mining and Knowledge Discovery Handbook
– volume: Vol. 3610
  start-page: 668
  year: 2005
  end-page: 674
  ident: b0220
  article-title: Application of support vector machines in predicting employee turnover based on job performance
  publication-title: Lecture notes in computer science
– reference: . [45].
– reference: (pp. 257–259).
– reference: . [57].
– reference: Holland, A., & Fathi, M. (2005). Creating graphical models as representation of personalized skill profiles. In
– volume: 32
  start-page: 2635
  year: 2005
  end-page: 2651
  ident: b0550
  article-title: Employee turnover: A neural network solution
  publication-title: Computers and Operations Research
– reference: Jantan, H., Hamdan, A. R., & Othman, Z. A. (2009b). Potential data mining classification techniques for academic talent forecasting. In
– reference: (pp. 372–375).
– volume: 36
  start-page: 2592
  year: 2009
  end-page: 2602
  ident: b0465
  article-title: Application of data mining techniques in customer relationship management: A literature review and classification
  publication-title: Expert Systems with Applications
– reference: Imai, S., Lin, C.-W., Watada, J., & Tzeng, G.-H. (2008a). Knowledge acquisition in human resource management based on rough sets. In
– reference: . [10].
– reference: (pp. 560–568).
– reference: (pp. 1173–1178).
– reference: (pp. 1–4).
– volume: 22
  start-page: 755
  year: 2010
  end-page: 769
  ident: b0065
  article-title: Domain-driven data mining: Challenges and prospects
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 296–299).
– volume: 36
  start-page: 9574
  year: 2009
  end-page: 9579
  ident: b0645
  article-title: Exploring core competencies for R&D technical professionals
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 3
  year: 2009
  end-page: 17
  ident: b0030
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Journal of Educational Data Mining
– reference: Bole, U., Jakličb, J., Papac, G., & Žabkard, J. (2011). The critical success factors of data mining in organizations. Retrieved from
– reference: (pp. 9–16).
– reference: Zhang, H. (2009). Fuzzy evaluation on the performance of human resources management of commercial banks based on improved algorithm. In
– start-page: 375
  year: 2009
  end-page: 388
  ident: b0530
  article-title: The deployment of data mining into operational business processes
  publication-title: Data mining and knowledge discovery in real life applications
– reference: (pp. 111–117).
– reference: Zhao, X. (2008). An empirical study of data mining in performance evaluation of HRM. In
– reference: . [37].
– reference: . [24].
– reference: (pp. 1–3).
– reference: Zhao, X. (2008). A study of performance evaluation of HRM: based on data mining. In
– volume: Vol. 6064
  start-page: 532
  year: 2010
  end-page: 539
  ident: b0190
  article-title: A neural network based model for project risk and talent management
  publication-title: Lecture notes in computer science
– volume: 4
  start-page: 23
  year: 2010
  end-page: 28
  ident: b0560
  article-title: Applicability of clustering and classification algorithms for recruitment data mining
  publication-title: International Journal of Computer Applications
– volume: 1
  start-page: 108
  year: 2011
  end-page: 121
  ident: b0290
  article-title: Decision support system in human resource management (a study of HR intelligent techniques)
  publication-title: International Journal of Research in IT, Management and Engineering
– volume: 7
  start-page: 41
  year: 2010
  end-page: 44
  ident: b0005
  article-title: Domain driven data mining – Application to business
  publication-title: International Journal of Computer Science Issues
– reference: Zhang, X., Zhu, Y., & Hua, N. (2010). Improved paralled algorithm for mining frequent itemset used in HRM. 2010
– volume: 8
  start-page: 313
  year: 2011
  end-page: 332
  ident: b0430
  article-title: Assessing the prediction of employee productivity: A comparison of OLS vs. CART
  publication-title: International Journal of Productivity and Quality Management
– reference: Khosla, R., Lai, C., & Chu, M.-T. (2006). Measurement and comparison of non-verbal behavior and cognitive behavior in human resource management – Application in sales recruitment. In
– reference: Zhu, J., Goncalves, A. L., Uren, V. S., Motta, E., & Pacheco, R. (2005). Mining web data for competency management. In
– reference: . [26].
– reference: (pp. 49–45).
– start-page: 431
  year: 2009
  end-page: 441
  ident: b0325
  article-title: Job offer management: How improve the ranking of candidates
  publication-title: Foundations of intelligent systems
– reference: (pp. 280–285). [5].
– reference: Liu, H., Dai, S., & Jiang, H. (2009). Application of rough set and support vector machine in competency assessment. In
– volume: Vol. 6276
  start-page: 491
  year: 2010
  end-page: 500
  ident: b0275
  article-title: Classification and prediction of academic talent using data mining techniques
  publication-title: Lecture notes in computer science
– volume: 5
  start-page: 694
  year: 2010
  end-page: 702
  ident: b0285
  article-title: Knowledge discovery techniques for talent forecasting in human resource application
  publication-title: Journal of Human and Social Sciences
– year: 1999
  ident: b0210
  article-title: Critical success factors for data mining projects
– reference: (pp. 223–230). [100].
– reference: . [14].
– reference: (IDEAL ’11) (pp. 463–473). [72].
– volume: 22
  start-page: 232
  year: 2004
  end-page: 242
  ident: b0605
  article-title: Predicting nurses’ intention to quit with a support vector machine: A new approach to set up an early warning mechanism in human resource management
  publication-title: Computers, Informatics, Nursing
– reference: Kirby, E., Dufner, D., & Palmer, J. (1998). An analysis of applying artificial neural networks for employee selection. In
– volume: 40
  start-page: 601
  year: 2010
  end-page: 618
  ident: b0525
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
– reference: Wu, X., & Zhang, H. (2010). A talent markets analysis method based on data mining. In
– reference: Feng, D., & Gao, Y. (2009). A HRD evaluation method based on BP neural network. In
– volume: 20
  start-page: 501
  year: 2008
  end-page: 521
  ident: b0115
  article-title: Data mining in manufacturing: A review based on the kind of knowledge
  publication-title: Journal of Intelligent Manufacturing
– reference: Han, J. (2009). Application of fuzzy data mining algorithm in performance evaluation of human resource. In
– reference: Han, J., & Dong, Y. (2007). Application of association rules based on rough set in human resource management. In
– volume: 34
  start-page: 280
  year: 2008
  end-page: 290
  ident: b0105
  article-title: Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry
  publication-title: Expert Systems with Applications
– reference: Chang, H.-T., Wu, H.-J., & Ting, I.-H. (2009). Mining organizational networks for layoff prediction model construction. In
– reference: Chen, X., & Wang, F. (2010). Application of data mining on enterprise human resource performance management. In
– reference: (pp. 31–39). [29].
– reference: Luell, J. (2010). Employee fraud detection under real world conditions. Doctoral dissertation, University of Zurich, Retrieved from
– reference: Aiolli, F., de Filippo, M., & Sperduti, A. (2009). Application of the preference learning model to a human resources selection task. In
– volume: 16
  start-page: 2020
  year: 2008
  end-page: 2032
  ident: b0450
  article-title: Early prediction of employee attrition in software companies – Application of data mining techniques
  publication-title: Research and Practice in Human Resource Management
– volume: 16
  start-page: 81
  year: 2008
  end-page: 99
  ident: b0455
  article-title: Establishing a link between employee turnover and withdrawal behaviours: Application of data mining techniques
  publication-title: Research and Practice in Human Resource Management
– volume: 50
  start-page: 559
  year: 2011
  end-page: 569
  ident: b0460
  article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
  publication-title: Decision Support Systems
– reference: . [16].
– reference: (pp. 343–346).
– reference: .
– volume: 26
  start-page: 217
  year: 2004
  end-page: 224
  ident: b0150
  article-title: An expert system for job matching of the unemployed
  publication-title: Expert Systems with Applications
– reference: (2001). [49].
– reference: Ziebarth, S., Malzahn, N., & Hoppe, H. U. (2009). Using data mining techniques to support the creation of competence ontologies. In
– reference: . [27].
– reference: Ye, P. (2011). The decision tree classification and its application research in personnel management. In
– start-page: 197
  year: 2009
  end-page: 201
  ident: b0295
  article-title: Early warning model research of state-owned enterprises’ human capital risks based on improved neural network
  publication-title: International Conference on Future BioMedical Information Engineering
– reference: (pp. 969–974).
– reference: (pp. 309–312).
– reference: (pp. 28-1–28-7). [51].
– reference: (pp. 31–36).
– reference: Yang, S.-M. (2008). A self-adapting regression SVM model and its application on middle managers performance evaluation. In
– volume: 27
  start-page: 45
  year: 2011
  end-page: 52
  ident: b0545
  article-title: The limits of privacy in automated profiling and data mining
  publication-title: Computer Law & Security Review
– reference: . [22].
– reference: . [85].
– volume: 30
  start-page: 381
  year: 2011
  end-page: 401
  ident: b0410
  article-title: Modeling managerial promotion decisions using Bayesian networks: An exploratory study
  publication-title: Journal of Management Development
– reference: Pedreshi, D., Ruggieri, S., & Turini, F. (2008). Discrimination-aware data mining. In
– reference: (pp. 275–278).
– volume: 9
  start-page: 31
  year: 2008
  end-page: 42
  ident: b0255
  article-title: Rough sets approach to human resource development of information technology corporations
  publication-title: International Journal of Simulation Systems, Science and Technology
– reference: Wang, Z., Li, S., Wang, Y., & Li, S. (2009). The research of task assignment based on ant colony algorithm. In
– reference: . [54].
– reference: (pp. 407–419).
– reference: (pp. 2407–2413). [25].
– reference: Kao, W.-H., Huang, I.-M., Shen, H.-S., & Lin, C.-C. (2009). A study of weighted association rule applied in human resource job requirement. In
– reference: Mohanraj, V., Lakshmipathi, R., Chandrasekaran, M., Senthilkumar, J., & Suresh, Y. (2009). Intelligent agent based talent evaluation engine using a knowledge base. In
– volume: 38
  start-page: 8220
  year: 2011
  end-page: 8228
  ident: b0025
  article-title: Classification by clustering decision tree-like classifier based on adjusted clusters
  publication-title: Expert Systems with Applications
– reference: . [96].
– volume: 21
  start-page: 677
  year: 2007
  end-page: 692
  ident: b0070
  article-title: The evolution of KDD: Towards domain-driven data mining
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– start-page: 33
  year: 1984
  end-page: 51
  ident: b0135
  article-title: A framework for strategic human resource management
  publication-title: Strategic human resource management
– reference: (pp. 214–221).
– year: 2005
  ident: b0745
  article-title: Information systems-supported personnel selection: An automated recommendation approach
– reference: . [8]
– year: 2005
  ident: b0155
  publication-title: Handbook of personnel selection
– reference: . [53].
– volume: 23
  start-page: 1888
  year: 2012
  end-page: 1907
  ident: b0235
  article-title: Employee behavioral options in problematic working conditions: Response pattern analysis
  publication-title: The International Journal of Human Resource Management
– reference: (pp. 94–100).
– volume: 13
  start-page: 142
  year: 2011
  end-page: 173
  ident: b0160
  article-title: Prediction of arrival times and human resources allocation for container terminal
  publication-title: Maritime Economics and Logistics
– reference: Dorn, J., & Hochmeister, M. (2009). Techscreen: Mining competencies in social software. In
– reference: (pp. 198–203). [42].
– volume: 20
  start-page: 123
  year: 2003
  end-page: 132
  ident: b0110
  article-title: Data mining for selection of insurance sales agents
  publication-title: Expert Systems with Applications
– reference: Bal, M., Bal, Y., & Ustundag, A. (2011). Knowledge representation and discovery using formal concept analysis: An HRM application. In The World congress on engineering (pp. 1068–1073). [4].
– volume: 33
  start-page: 149
  year: 2003
  end-page: 162
  ident: b0435
  article-title: Developing the profiles of truck drivers for their successful recruitment and retention: A data mining approach
  publication-title: International Journal of Physical Distribution & Logistics Management
– volume: 3
  start-page: 464
  year: 2008
  end-page: 481
  ident: b0505
  article-title: Data mining techniques for better decisions in human resource management systems
  publication-title: International Journal of Business Information Systems
– reference: (pp. 1977–1980).
– volume: 2007
  start-page: 835
  year: 2007
  end-page: 838
  ident: b0230
  article-title: Application of fuzzy data mining in staff performance assessment
  publication-title: International Conference on Machine Learning and Cybernetics
– reference: (pp. 82–85).
– volume: Vol. 2774
  start-page: 126
  year: 2003
  end-page: 410
  ident: b0575
  article-title: Data mining for seeking relationships between sickness absence and Japanese worker’s profile
  publication-title: Lecture notes in computer science
– volume: 4
  start-page: 67
  year: 2011
  end-page: 75
  ident: b0020
  article-title: Investigating the link between web data mining and strategic human resources planning
  publication-title: Computer and Information Science
– reference: (pp. 44–49).
– reference: (pp. 214–218).
– volume: 17
  start-page: 36
  year: 1996
  end-page: 53
  ident: b0175
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Magazine
– reference: Khosla, R., & Goonesekera, T. (2003). An online multi-agent e-sales recruitment system. In
– reference: Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In
– volume: 59
  start-page: 259
  year: 2008
  end-page: 265
  ident: b0240
  article-title: Simplifying essential competencies for Taiwan civil servants using the rough set approach
  publication-title: Journal of the Operational Research Society
– reference: Liu, Y., Kou, Z., Perlich, C., & Lawrence, R. (2008). Intelligent system for workforce classification. In
– reference: . [33].
– reference: Karahoca, A., Karahoca, D., & Kaya, O. (2008). Data mining to cluster human performance by using online self regulating clustering method. In
– reference: Thissen-Roe, A. (2005). Adaptive selection of personality items to inform a neural network predicting job performance. Doctoral dissertation, University of Washington. Retrieved from
– reference: (pp. 283–290). [86].
– volume: 47
  start-page: 89
  year: 2007
  end-page: 104
  ident: b0520
  article-title: Integrating data mining and decision support through data mining based decision support system
  publication-title: Journal of Computer Information Systems
– reference: (pp. 45–48).
– volume: 36
  start-page: 4114
  year: 2009
  end-page: 4124
  ident: b0555
  article-title: Framework for formal implementation of the business understanding phase of data mining projects
  publication-title: Expert Systems with Applications
– year: 2003
  ident: b0125
  article-title: Data mining and modeling: So you have a model, now what?
– reference: (pp. 160–163).
– reference: (pp. 2334–2339).
– reference: (pp. 324–327).
– volume: 35
  start-page: 513
  year: 2005
  end-page: 524
  ident: b0440
  article-title: Patent-based inventor profiles as a basis for human resource decisions in research and development
  publication-title: R&D Management
– reference: (pp. 151–153).
– reference: Färber, F., Weitzel, T., & Keim, T. (2003). An automated recommendation approach to selection in personnel recruitment. In
– reference: (pp. 645–648).
– reference: . [44].
– reference: (pp. 203–210). [1].
– reference: . [94].
– reference: (pp. 124–130).
– reference: . [91].
– reference: Isaias, P., Casaca, C. & Pifano, S. (2010). Recommender systems for human resources task assignment. In
– reference: Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In
– volume: 20
  start-page: 528
  year: 2007
  end-page: 541
  ident: b0740
  article-title: Using rough set theory to recruit and retain high-potential talents for semiconductor manufacturing
  publication-title: IEEE Transactions on Semiconductor Manufacturing
– reference: Huang, Y. (2009). Study of college human resources data mining based on the SOM algorithm. In
– reference: (pp. 349–351).
– reference: Clyde, S., Zhang, J., & Yao, C.-C. (1995). An object-oriented implementation of an adaptive classification of job openings. In
– reference: . [55].
– reference: . [97].
– reference: Han, J., Ren, J., & Dong, Y. (2008). Research on time series model for human resource management based on web technique. In
– volume: 29
  start-page: 783
  year: 2005
  end-page: 794
  ident: b0595
  article-title: Mining the generation Xers’ job attitudes by artificial neural network and decision tree – Empirical evidence in Taiwan
  publication-title: Expert Systems with Applications
– reference: . [80].
– reference: . [79].
– volume: 38
  start-page: 5129
  year: 2011
  end-page: 5132
  ident: b0130
  article-title: Improving sale performance prediction using support vector machines
  publication-title: Expert Systems with Applications
– reference: (pp. 130–133). [6].
– reference: (pp. 744–750).
– reference: (pp. 560–565).
– reference: Li, X.-H., Zhao, J.-H., & Li, B.-H. (2004). Investigation of fuzzy mathematical model for general evaluation of administrators in university. In
– reference: Sáiz, L., Pérez, A., Herrero, A., & Corchado, E. (2011). Analyzing key factors of human resources management. In
– reference: . [41].
– start-page: 125
  year: 2010
  end-page: 141
  ident: b0750
  article-title: Privacy preserving data mining: How far can we go?
  publication-title: Data mining in private and public sectors: Organizational and governmental applications
– volume: 83
  start-page: 62
  year: 2001
  end-page: 64
  ident: b0350
  article-title: Data-mining technology lets retailers indentify which job candidates are likely to remain on the job
  publication-title: Stores Magazine
– reference: . [71]
– reference: . [65].
– reference: (pp. 115–126). [17].
– reference: (pp. 1–11). [56].
– reference: . [98].
– volume: 12
  start-page: 237
  year: 2008
  end-page: 249
  ident: b0475
  article-title: Towards more relevance-oriented data mining research
  publication-title: Intelligent Data Analysis
– volume: 19
  start-page: 65
  year: 2002
  end-page: 85
  ident: b0495
  article-title: Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression
  publication-title: Journal of Technology in Human Services
– reference: Doctor, F., Hagras, H., Roberts, D., & Callaghan, V. (2009). A neuro-fuzzy based agent for group decision support in applicant ranking within human resources systems. In
– reference: Beccera-Fernandez, I., & Rodriguez, J. (2001). Web data mining techniques for expertise-locator knowledge management systems. In
– reference: . [89].
– reference: Weiss, G. M. (2009). Data mining in the real world: Experiences, challenges, and recommendations. In
– reference: (pp. 2329–2339). [21].
– volume: Vol. 4819
  start-page: 3
  year: 2007
  end-page: 14
  ident: b0095
  article-title: A survey of open source data mining systems
  publication-title: Lecture notes in computer science
– reference: (pp. 411–416).
– reference: . [84].
– reference: (pp. 11554–11557).
– start-page: 53
  year: 2010
  end-page: 66
  ident: b0640
  article-title: Integrating SNA and DM technology into HR practice and research: Layoff prediction model
  publication-title: Studies in computational intelligence
– reference: (pp. 945–948).
– reference: Ye, J., Hu, H., & Chai, C. (2009). A talent classification method based on SVM. In
– reference: (pp. 76–77). [46].
– volume: 2
  start-page: 231
  year: 2010
  end-page: 236
  ident: b0355
  article-title: An intelligent agent based talent evaluation system, using a knowledge base
  publication-title: International Journal of Information Technology and Knowledge Management
– volume: 23
  start-page: 263
  year: 2011
  end-page: 289
  ident: b0085
  article-title: Manufacturing intelligence for class prediction and rule generation to support human capital decisions for high-tech industries
  publication-title: Flexible Services and Manufacturing Journal
– reference: Bernik, M., & Bernik, I. (2011). Knowledge management and information technology in analyzing human resource processes. In
– reference: . [99].
– ident: 10.1016/j.eswa.2012.10.059_b0480
  doi: 10.1145/1401890.1401959
– volume: 5
  start-page: 694
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0285
  article-title: Knowledge discovery techniques for talent forecasting in human resource application
  publication-title: Journal of Human and Social Sciences
– ident: 10.1016/j.eswa.2012.10.059_b0760
  doi: 10.1109/JCPC.2009.5420070
– volume: 5
  start-page: 186
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0570
  article-title: Informating HRM: A comparison of data querying and data mining
  publication-title: International Journal of Business Information Systems
  doi: 10.1504/IJBIS.2010.030629
– ident: 10.1016/j.eswa.2012.10.059_b0580
  doi: 10.2991/jcis.2006.46
– volume: 17
  start-page: 36
  issue: 3
  year: 1996
  ident: 10.1016/j.eswa.2012.10.059_b0175
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Magazine
– start-page: 1245
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0695
  article-title: Commercial data mining software
– volume: 26
  start-page: 775
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0265
  article-title: Knowledge discovery techniques for talent forecasting in human resource application
  publication-title: World Academy of Science, Engineering and Technology
– volume: 16
  start-page: 2020
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0450
  article-title: Early prediction of employee attrition in software companies – Application of data mining techniques
  publication-title: Research and Practice in Human Resource Management
– ident: 10.1016/j.eswa.2012.10.059_b0620
  doi: 10.1109/NABIC.2009.5393596
– volume: 4
  start-page: 23
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0560
  article-title: Applicability of clustering and classification algorithms for recruitment data mining
  publication-title: International Journal of Computer Applications
  doi: 10.5120/823-1165
– ident: 10.1016/j.eswa.2012.10.059_b0140
  doi: 10.1109/FUZZY.2009.5277379
– volume: 9
  start-page: 31
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0255
  article-title: Rough sets approach to human resource development of information technology corporations
  publication-title: International Journal of Simulation Systems, Science and Technology
– ident: 10.1016/j.eswa.2012.10.059_b0445
  doi: 10.1109/ARTCom.2009.214
– volume: 23
  start-page: 263
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0085
  article-title: Manufacturing intelligence for class prediction and rule generation to support human capital decisions for high-tech industries
  publication-title: Flexible Services and Manufacturing Journal
  doi: 10.1007/s10696-010-9068-x
– start-page: 366
  year: 2003
  ident: 10.1016/j.eswa.2012.10.059_b0765
  article-title: Data mining for human resource information systems
– volume: 30
  start-page: 381
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0410
  article-title: Modeling managerial promotion decisions using Bayesian networks: An exploratory study
  publication-title: Journal of Management Development
  doi: 10.1108/02621711111126846
– volume: 29
  start-page: 783
  year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0595
  article-title: Mining the generation Xers’ job attitudes by artificial neural network and decision tree – Empirical evidence in Taiwan
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.06.012
– ident: 10.1016/j.eswa.2012.10.059_b0390
  doi: 10.1109/PACCS.2011.5990180
– ident: 10.1016/j.eswa.2012.10.059_b0625
  doi: 10.1109/ICMA.2009.5246570
– volume: 50
  start-page: 559
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0460
  article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.08.006
– year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0745
– volume: 20
  start-page: 123
  year: 2003
  ident: 10.1016/j.eswa.2012.10.059_b0110
  article-title: Data mining for selection of insurance sales agents
  publication-title: Expert Systems with Applications
  doi: 10.1111/1468-0394.00235
– ident: 10.1016/j.eswa.2012.10.059_b0715
  doi: 10.1109/FITME.2008.133
– volume: 13
  start-page: 142
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0160
  article-title: Prediction of arrival times and human resources allocation for container terminal
  publication-title: Maritime Economics and Logistics
  doi: 10.1057/mel.2011.3
– volume: 90
  start-page: 395
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0615
  article-title: 3DM: Domain-oriented data-driven data mining
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2009-0026
– volume: 35
  start-page: 513
  year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0440
  article-title: Patent-based inventor profiles as a basis for human resource decisions in research and development
  publication-title: R&D Management
  doi: 10.1111/j.1467-9310.2005.00408.x
– ident: 10.1016/j.eswa.2012.10.059_b0725
– volume: 3
  start-page: 417
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0075
  article-title: Employee turnover: A novel prediction solution with effective feature selection
  publication-title: WSEAS Transactions on Information Science and Applications
– ident: 10.1016/j.eswa.2012.10.059_b0050
– ident: 10.1016/j.eswa.2012.10.059_b0565
– volume: Vol. 4827
  start-page: 985
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0330
  article-title: E-Gen: Automatic job offer processing system for human resources
  doi: 10.1007/978-3-540-76631-5_94
– volume: 47
  start-page: 89
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0520
  article-title: Integrating data mining and decision support through data mining based decision support system
  publication-title: Journal of Computer Information Systems
– ident: 10.1016/j.eswa.2012.10.059_b0360
– start-page: 125
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0750
  article-title: Privacy preserving data mining: How far can we go?
– volume: 38
  start-page: 8220
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0025
  article-title: Classification by clustering decision tree-like classifier based on adjusted clusters
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.001
– volume: 19
  start-page: 65
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2012.10.059_b0495
  article-title: Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression
  publication-title: Journal of Technology in Human Services
  doi: 10.1300/J017v19v04_05
– volume: 4
  start-page: 67
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0020
  article-title: Investigating the link between web data mining and strategic human resources planning
  publication-title: Computer and Information Science
  doi: 10.5539/cis.v4n3p67
– volume: 1
  start-page: 3
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0030
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Journal of Educational Data Mining
– ident: 10.1016/j.eswa.2012.10.059_b0170
– volume: 32
  start-page: 2635
  year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0550
  article-title: Employee turnover: A neural network solution
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2004.06.022
– volume: 38
  start-page: 5129
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0130
  article-title: Improving sale performance prediction using support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.003
– ident: 10.1016/j.eswa.2012.10.059_b0395
– volume: Vol. 3865
  start-page: 365
  year: 2006
  ident: 10.1016/j.eswa.2012.10.059_b0515
  article-title: Recommendation for team and virtual community formations based on competence mining
  doi: 10.1007/11686699_37
– ident: 10.1016/j.eswa.2012.10.059_b0585
– ident: 10.1016/j.eswa.2012.10.059_b0015
  doi: 10.1109/CIDM.2009.4938650
– ident: 10.1016/j.eswa.2012.10.059_b0405
– volume: 5
  start-page: 1
  year: 2001
  ident: 10.1016/j.eswa.2012.10.059_b0500
  article-title: GPR: A data mining tool using genetic programming
  publication-title: Communications of the Association for Information Systems
  doi: 10.17705/1CAIS.00506
– volume: 1
  start-page: 108
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0290
  article-title: Decision support system in human resource management (a study of HR intelligent techniques)
  publication-title: International Journal of Research in IT, Management and Engineering
– ident: 10.1016/j.eswa.2012.10.059_b0770
  doi: 10.3233/978-1-60750-633-1-49
– ident: 10.1016/j.eswa.2012.10.059_b0340
  doi: 10.1109/CIMSA.2006.250749
– ident: 10.1016/j.eswa.2012.10.059_b0690
  doi: 10.1109/PEITS.2009.5407033
– volume: 37
  start-page: 434
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0365
  article-title: Exploring high-performers’ required competencies
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.05.064
– start-page: 431
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0325
  article-title: Job offer management: How improve the ranking of candidates
– volume: Vol. 3812
  start-page: 177
  year: 2006
  ident: 10.1016/j.eswa.2012.10.059_b0425
  article-title: Mining staff assignment rules from event-based data
  doi: 10.1007/11678564_16
– start-page: 33
  year: 1984
  ident: 10.1016/j.eswa.2012.10.059_b0135
  article-title: A framework for strategic human resource management
– volume: 23
  start-page: 1888
  year: 2012
  ident: 10.1016/j.eswa.2012.10.059_b0235
  article-title: Employee behavioral options in problematic working conditions: Response pattern analysis
  publication-title: The International Journal of Human Resource Management
  doi: 10.1080/09585192.2011.610340
– ident: 10.1016/j.eswa.2012.10.059_b0250
  doi: 10.1109/PICMET.2008.4599705
– volume: Vol. 6064
  start-page: 532
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0190
  article-title: A neural network based model for project risk and talent management
  doi: 10.1007/978-3-642-13318-3_66
– start-page: 375
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0530
  article-title: The deployment of data mining into operational business processes
– volume: 22
  start-page: 232
  year: 2004
  ident: 10.1016/j.eswa.2012.10.059_b0605
  article-title: Predicting nurses’ intention to quit with a support vector machine: A new approach to set up an early warning mechanism in human resource management
  publication-title: Computers, Informatics, Nursing
  doi: 10.1097/00024665-200407000-00012
– ident: 10.1016/j.eswa.2012.10.059_b0245
  doi: 10.1109/APCIP.2009.89
– year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0315
– volume: 33
  start-page: 149
  year: 2003
  ident: 10.1016/j.eswa.2012.10.059_b0435
  article-title: Developing the profiles of truck drivers for their successful recruitment and retention: A data mining approach
  publication-title: International Journal of Physical Distribution & Logistics Management
  doi: 10.1108/09600030310469153
– ident: 10.1016/j.eswa.2012.10.059_b0180
  doi: 10.1109/ISISE.2009.55
– ident: 10.1016/j.eswa.2012.10.059_b0045
– ident: 10.1016/j.eswa.2012.10.059_b0345
– ident: 10.1016/j.eswa.2012.10.059_b0775
  doi: 10.1109/CSCWD.2005.194143
– volume: 21
  start-page: 677
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0070
  article-title: The evolution of KDD: Towards domain-driven data mining
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001407005612
– ident: 10.1016/j.eswa.2012.10.059_b0205
  doi: 10.1109/WiCom.2008.2687
– volume: Vol. 6276
  start-page: 491
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0275
  article-title: Classification and prediction of academic talent using data mining techniques
  doi: 10.1007/978-3-642-15387-7_53
– volume: 22
  start-page: 206
  year: 2006
  ident: 10.1016/j.eswa.2012.10.059_b0485
  article-title: EU data protection policy. The directive 95/46/EC: Ten years after
  publication-title: Computer Law and Security Review
  doi: 10.1016/j.clsr.2006.03.004
– volume: 36
  start-page: 4114
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0555
  article-title: Framework for formal implementation of the business understanding phase of data mining projects
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.03.021
– ident: 10.1016/j.eswa.2012.10.059_b0200
– volume: 83
  start-page: 62
  year: 2001
  ident: 10.1016/j.eswa.2012.10.059_b0350
  article-title: Data-mining technology lets retailers indentify which job candidates are likely to remain on the job
  publication-title: Stores Magazine
– volume: 59
  start-page: 259
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0240
  article-title: Simplifying essential competencies for Taiwan civil servants using the rough set approach
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2602516
– ident: 10.1016/j.eswa.2012.10.059_b0040
– ident: 10.1016/j.eswa.2012.10.059_b0710
  doi: 10.1109/IITA.Workshops.2008.235
– volume: 37
  start-page: 2427
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0600
  article-title: A rule-based CBR approach for expert finding and problem diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.07.037
– ident: 10.1016/j.eswa.2012.10.059_b0630
– ident: 10.1016/j.eswa.2012.10.059_b0755
  doi: 10.1109/IFCSTA.2009.90
– ident: 10.1016/j.eswa.2012.10.059_b0370
– volume: 34
  start-page: 280
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0105
  article-title: Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.09.003
– volume: 38
  start-page: 1999
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0540
  article-title: Employee churn prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.134
– ident: 10.1016/j.eswa.2012.10.059_b0730
– ident: 10.1016/j.eswa.2012.10.059_b0300
– year: 1999
  ident: 10.1016/j.eswa.2012.10.059_b0210
– ident: 10.1016/j.eswa.2012.10.059_b0010
  doi: 10.1109/ICDE.1995.380415
– ident: 10.1016/j.eswa.2012.10.059_b0780
  doi: 10.1109/ISBIM.2008.187
– volume: Vol. 3642
  start-page: 484
  year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0650
  article-title: Simplifying the manager competency model by using the rough set approach
  doi: 10.1007/11548706_51
– volume: 36
  start-page: 9574
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0645
  article-title: Exploring core competencies for R&D technical professionals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.052
– ident: 10.1016/j.eswa.2012.10.059_b0535
  doi: 10.1007/978-3-642-23878-9_55
– volume: 20
  start-page: 501
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0115
  article-title: Data mining in manufacturing: A review based on the kind of knowledge
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-008-0145-x
– volume: Vol. 4819
  start-page: 3
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0095
  article-title: A survey of open source data mining systems
  doi: 10.1007/978-3-540-77018-3_2
– ident: 10.1016/j.eswa.2012.10.059_b0380
  doi: 10.1109/ICICTA.2009.235
– volume: 8
  start-page: 313
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0430
  article-title: Assessing the prediction of employee productivity: A comparison of OLS vs. CART
  publication-title: International Journal of Productivity and Quality Management
  doi: 10.1504/IJPQM.2011.042511
– volume: 3
  start-page: 464
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0505
  article-title: Data mining techniques for better decisions in human resource management systems
  publication-title: International Journal of Business Information Systems
  doi: 10.1504/IJBIS.2008.018597
– volume: 40
  start-page: 601
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0525
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2010.2053532
– year: 2003
  ident: 10.1016/j.eswa.2012.10.059_b0125
– volume: 7
  start-page: 41
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0005
  article-title: Domain driven data mining – Application to business
  publication-title: International Journal of Computer Science Issues
– volume: Vol. 3610
  start-page: 668
  year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0220
  article-title: Application of support vector machines in predicting employee turnover based on job performance
  doi: 10.1007/11539087_85
– ident: 10.1016/j.eswa.2012.10.059_b0700
  doi: 10.1109/ISCID.2009.220
– ident: 10.1016/j.eswa.2012.10.059_b0270
  doi: 10.1109/ISDA.2009.64
– ident: 10.1016/j.eswa.2012.10.059_b0385
  doi: 10.1109/ICMLC.2004.1382104
– start-page: 219
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0375
  article-title: Research on talent introduction hazard and training strategy of university based on data mining
– start-page: 223
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0735
  article-title: Data warehouse and business intelligence systems in the context of e-HRM
– volume: 2
  start-page: 2526
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0280
  article-title: Human talent prediction in HRM using c4.5 classification algorithm
  publication-title: International Journal on Computer Science and Engineering
– volume: 12
  start-page: 237
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0475
  article-title: Towards more relevance-oriented data mining research
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2008-12206
– ident: 10.1016/j.eswa.2012.10.059_b0055
– ident: 10.1016/j.eswa.2012.10.059_b0145
– volume: Vol. 5333
  start-page: 625
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0320
  article-title: Automatic profiling system for ranking candidates answers in human resources
  doi: 10.1007/978-3-540-88875-8_86
– ident: 10.1016/j.eswa.2012.10.059_b0420
– volume: 16
  start-page: 81
  year: 2008
  ident: 10.1016/j.eswa.2012.10.059_b0455
  article-title: Establishing a link between employee turnover and withdrawal behaviours: Application of data mining techniques
  publication-title: Research and Practice in Human Resource Management
– ident: 10.1016/j.eswa.2012.10.059_b0720
  doi: 10.1109/WI.2005.99
– volume: 26
  start-page: 217
  year: 2004
  ident: 10.1016/j.eswa.2012.10.059_b0150
  article-title: An expert system for job matching of the unemployed
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(03)00136-2
– ident: 10.1016/j.eswa.2012.10.059_b0080
  doi: 10.1109/ASONAM.2009.52
– volume: 36
  start-page: 2592
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0465
  article-title: Application of data mining techniques in customer relationship management: A literature review and classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.021
– volume: 22
  start-page: 755
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0065
  article-title: Domain-driven data mining: Challenges and prospects
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.32
– ident: 10.1016/j.eswa.2012.10.059_b0225
– ident: 10.1016/j.eswa.2012.10.059_b0675
  doi: 10.1109/ICEOE.2011.6013123
– ident: 10.1016/j.eswa.2012.10.059_b0400
  doi: 10.1109/BICTA.2009.5338100
– ident: 10.1016/j.eswa.2012.10.059_b0590
– ident: 10.1016/j.eswa.2012.10.059_b0090
  doi: 10.1109/ICIII.2010.200
– volume: 36
  start-page: 3378
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0660
  article-title: Improving scheduling of emergency physicians using data mining analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.069
– ident: 10.1016/j.eswa.2012.10.059_b0335
  doi: 10.1109/WI.2003.1241181
– volume: 20
  start-page: 528
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0740
  article-title: Using rough set theory to recruit and retain high-potential talents for semiconductor manufacturing
  publication-title: IEEE Transactions on Semiconductor Manufacturing
  doi: 10.1109/TSM.2007.907630
– volume: 6
  start-page: 139
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0685
  article-title: The data mining of the human resources data warehouse in university based on association rule
  publication-title: Journal of Computers
  doi: 10.4304/jcp.6.1.139-146
– ident: 10.1016/j.eswa.2012.10.059_b0655
  doi: 10.1109/ICICISYS.2010.5658634
– ident: 10.1016/j.eswa.2012.10.059_b0260
  doi: 10.1109/AINA.2010.168
– ident: 10.1016/j.eswa.2012.10.059_b0310
– ident: 10.1016/j.eswa.2012.10.059_b0470
  doi: 10.1109/EBISS.2010.5473417
– volume: 27
  start-page: 45
  year: 2011
  ident: 10.1016/j.eswa.2012.10.059_b0545
  article-title: The limits of privacy in automated profiling and data mining
  publication-title: Computer Law & Security Review
  doi: 10.1016/j.clsr.2010.11.009
– ident: 10.1016/j.eswa.2012.10.059_b0610
– start-page: 53
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0640
  article-title: Integrating SNA and DM technology into HR practice and research: Layoff prediction model
  doi: 10.1007/978-3-642-13422-7_4
– ident: 10.1016/j.eswa.2012.10.059_b0665
  doi: 10.1109/ICMLC.2008.4620484
– ident: 10.1016/j.eswa.2012.10.059_b0635
  doi: 10.1145/1571941.1571991
– ident: 10.1016/j.eswa.2012.10.059_b0120
  doi: 10.1109/CAIA.1995.378795
– year: 2005
  ident: 10.1016/j.eswa.2012.10.059_b0155
– volume: 2007
  start-page: 835
  year: 2007
  ident: 10.1016/j.eswa.2012.10.059_b0230
  article-title: Application of fuzzy data mining in staff performance assessment
  publication-title: International Conference on Machine Learning and Cybernetics
– start-page: 197
  year: 2009
  ident: 10.1016/j.eswa.2012.10.059_b0295
  article-title: Early warning model research of state-owned enterprises’ human capital risks based on improved neural network
  publication-title: International Conference on Future BioMedical Information Engineering
– volume: Vol. 2774
  start-page: 126
  year: 2003
  ident: 10.1016/j.eswa.2012.10.059_b0575
  article-title: Data mining for seeking relationships between sickness absence and Japanese worker’s profile
  doi: 10.1007/978-3-540-45226-3_56
– ident: 10.1016/j.eswa.2012.10.059_b0785
  doi: 10.1109/FSKD.2010.5569250
– ident: 10.1016/j.eswa.2012.10.059_b0215
  doi: 10.1109/ICSMC.2005.1571205
– ident: 10.1016/j.eswa.2012.10.059_b0670
  doi: 10.1109/IUCE.2009.63
– volume: 2
  start-page: 231
  year: 2010
  ident: 10.1016/j.eswa.2012.10.059_b0355
  article-title: An intelligent agent based talent evaluation system, using a knowledge base
  publication-title: International Journal of Information Technology and Knowledge Management
SSID ssj0017007
Score 2.421975
Snippet ► We review data mining in human resource management as a new and prospering field of research using a domain driven framework. ► Findings show a large number...
An increasing number of publications concerning data mining in the subject of human resource management (HRM) indicate the presence of a prospering new...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2410
SubjectTerms Applied sciences
Computer science; control theory; systems
Data mining
Data processing. List processing. Character string processing
Documents
Domain driven data mining
Electronic human resource management (e-HRM)
Exact sciences and technology
Expert systems
Firm modelling
HR data mining
HRM
Human resource management
Legal
Literature review
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Recognition
Software
Title Domain driven data mining in human resource management: A review of current research
URI https://dx.doi.org/10.1016/j.eswa.2012.10.059
https://www.proquest.com/docview/1448720108
https://www.proquest.com/docview/1701098538
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yXgRxF8dliOBN6nRP420YlVHRiwreSpoFR5zpMAve_O2-16QFUeYg9BQSWl7St7Tf-z5CzjjkAIIlxvMNSphlyvdEgcipWIQq4oqxqj364TEdvMR3r8nrCunXvTAIq3S-3_r0ylu7ka6zZncyHHafIDmAcAgXxjCI89jBHjM85RdfDcwD6eeY5dtjHs52jTMW46Vnn8g9FIQXiPBCvtK_g9P6RMzAZMZqXfxy21UsutkiGy6JpD37nNtkRY93yGYt0EDd-7pLnq_KEVT-VE3Rp1FEg9JRpQhBYbSS56NT9_2ejhogzCXtUdvSQktDpWVwoo4W6G2PvNxcP_cHnpNR8GTE0znYHptreSBVEWqU2uAC6xyWpJHxdaClSqJY8lAEmqms8IVfcG0EhDYVFZAtRPukNS7H-oDQNDCKq0gYyWFJGhcy4HFmdCZUmOlEtklQ2y-XjmMcpS4-8hpM9p6jzXO0OY6BzdvkvFkzsQwbS2cn9bbkP85JDiFg6brOjz1sbhUivRFUyW1yWm9qDm8Y_jYRY10uZlAcQVGHoIFsyRyGvxgh9ckO__mAR2QttEobnh8ck9Z8utAnkO_Mi051oDtktXd7P3j8BudP_zc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKASog-oCNB0K_WGTPy2l1sEjUwTcmmQuFnrfYhU5KEkiL_PjHcdCVHlgOTTake2Znfn4f1mPoBfHGMAkSXG8w1RmOXK90RFyKlYhCriKsvq8ujbUVrcxX_uk_sduGpqYQhW6Wy_tem1tXYjXafN7mIy6f7F4ADdIT7kw9DPf4Bd6k6VtGC3dzMoRpvLhMy3VdM43yMBVztjYV569Uzth4LwgkBe1LL0__5pfyFWqDVj6S7eWO7aHfU_w4GLI1nPfuoX2NGzr_Cp4Whg7sgewvh6PsXkn6klmTVGgFA2rUkhGI7WDH1s6X7hs-kGC3PJesxWtbC5YdI2cWKuM9DDEdz1f4-vCs8xKXgy4uka1U_1tTyQqgo1sW1wQalOlqSR8XWgpUqiWPJQBDpTeeULv-LaCPRuKqowYIi-QWs2n-ljYGlgFFeRMJKjSBpXMuBxbnQuVJjrRLYhaPRXStdmnNguHssGT_avJJ2XpHMaQ5234Xwjs7BNNrbOTpplKV9tlRK9wFa5zqs13LwqpA5HmCi34WezqCUeMro5ETM9f1phfoR5HeEG8i1zMrplxOgnP3nnB_6AvWJ8OyyHN6PBKXwMLfGG5wdn0Fovn_R3DH_WVcdt7xegggH3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+driven+data+mining+in+human+resource+management%3A+A+review+of+current+research&rft.jtitle=Expert+systems+with+applications&rft.au=Strohmeier%2C+S&rft.au=Piazza%2C+F&rft.date=2013-06-01&rft.issn=0957-4174&rft.volume=40&rft.issue=7&rft.spage=2410&rft.epage=2420&rft_id=info:doi/10.1016%2Fj.eswa.2012.10.059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon