Non-invasive monitoring of microalgae cultivations using hyperspectral imager
High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive m...
Saved in:
Published in | Journal of applied phycology Vol. 36; no. 4; pp. 1653 - 1665 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0921-8971 1573-5176 |
DOI | 10.1007/s10811-024-03256-4 |
Cover
Loading…
Abstract | High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the different species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems. |
---|---|
AbstractList | High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the different species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems. |
Author | Pölönen, Ilkka Mauricio, Dinis Rodrigues, Alexandre Miguel Cavaco Raita-Hakola, Anna-Maria Cardoso, Helena Carneiro, Mariana Pääkkönen, Salli Salmi, Pauliina |
Author_xml | – sequence: 1 givenname: Salli surname: Pääkkönen fullname: Pääkkönen, Salli email: salli.k.paakkonen@jyu.fi organization: Faculty of Information Technology, University of Jyväskylä – sequence: 2 givenname: Ilkka surname: Pölönen fullname: Pölönen, Ilkka organization: Faculty of Information Technology, University of Jyväskylä – sequence: 3 givenname: Anna-Maria surname: Raita-Hakola fullname: Raita-Hakola, Anna-Maria organization: Faculty of Information Technology, University of Jyväskylä – sequence: 4 givenname: Mariana surname: Carneiro fullname: Carneiro, Mariana organization: Necton SA – sequence: 5 givenname: Helena surname: Cardoso fullname: Cardoso, Helena organization: ALLMICROALGAE - Natural Products – sequence: 6 givenname: Dinis surname: Mauricio fullname: Mauricio, Dinis organization: ALLMICROALGAE - Natural Products – sequence: 7 givenname: Alexandre Miguel Cavaco surname: Rodrigues fullname: Rodrigues, Alexandre Miguel Cavaco organization: Necton SA – sequence: 8 givenname: Pauliina surname: Salmi fullname: Salmi, Pauliina organization: Faculty of Information Technology, University of Jyväskylä |
BookMark | eNp9kD1vFDEQQC2USLkk_IFUK9HQGDye9ceWKIKAFKBJb3nN3OFoz17s3ZPy7_HlkJBSpLKL90Yz75KdpZyIsRsQH0AI87GCsABcyJ4LlErz_g3bgDLIFRh9xjZikMDtYOCCXdb6KIQYLNgN-_4jJx7Twdd4oG6fU1xyiWnX5W23j6FkP-08dWGdlnjwS8ypdms9Ar-fZip1prAUP3Vx73dUrtn51k-V3v57r9jDl88Pt1_5_c-7b7ef7nnAQS_ca-O1lqEftbSjHsDTSBKFsFv8pRUhqUEBAQ4jSDLBhPb1ehylgB4VXrH3p7FzyX9WqovbxxpomnyivFaHoND02Fto6LsX6GNeS2rLORQWEZU0plHyRLWDay20dXNpF5UnB8IdA7tTYNcCu-fArm-SfSGFuDwnakXi9LqKJ7XOx9hU_m_1ivUXZbuRgg |
CitedBy_id | crossref_primary_10_1016_j_algal_2024_103855 crossref_primary_10_1016_j_algal_2025_103979 crossref_primary_10_1007_s10811_024_03397_6 crossref_primary_10_1016_j_algal_2024_103649 |
Cites_doi | 10.3390/en15030875 10.3390/s140100001 10.1016/j.algal.2020.101932 10.3390/plants10020341 10.1007/s10811-022-02735-w 10.1016/j.biotechadv.2011.11.008 10.1016/j.biotechadv.2020.107631 10.1364/OE.406036 10.1016/j.rse.2008.01.021 10.1093/plankt/10.5.851 10.1016/j.biortech.2024.130520 10.1016/j.mimet.2011.02.005 10.1128/aem.62.5.1570-1573.1996 10.1111/tpj.15643 10.1016/j.algal.2014.12.002 10.3390/app12041924 10.1016/j.algal.2023.103071 10.1016/j.rse.2019.111350 10.1080/05704928.2020.1763380 10.1002/btpr.1714 10.1002/btpr.1843 10.1007/s11676-020-01155-1 10.1016/j.algal.2020.102018 10.3389/fenvs.2021.649528 10.1016/j.algal.2019.101680 10.1111/j.0022-3646.1972.00010.x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7TN 7X2 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M0K M7N M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 |
DOI | 10.1007/s10811-024-03256-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Oceanic Abstracts Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Agriculture Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology Botany Economics |
EISSN | 1573-5176 |
EndPage | 1665 |
ExternalDocumentID | 10_1007_s10811_024_03256_4 |
GrantInformation_xml | – fundername: European Union - NExtGenerationEU via Business Finland grantid: 7134/31/2021; 7134/31/2021 – fundername: University of Jyväskylä (JYU) |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OL 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT XOL YLTOR YQT Z45 Z5O Z7U Z7V Z7W Z7Z Z81 Z83 Z86 Z8O Z8P Z8Q Z8T Z8U Z8W ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7TN 8FK ABRTQ AZQEC DWQXO F1W GNUQQ H95 L.G M7N PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-a67a662c4b628b691aebe23008f3d65e3e5951e139b12e7c7c139a6bb2014353 |
IEDL.DBID | BENPR |
ISSN | 0921-8971 |
IngestDate | Tue Aug 05 10:50:55 EDT 2025 Sat Aug 23 14:56:47 EDT 2025 Tue Jul 01 04:26:08 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Fri Feb 21 02:40:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Model comparison Green microalgae Non-invasive monitoring Vegetation indices Convolutional neural network Hyperspectral imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-a67a662c4b628b691aebe23008f3d65e3e5951e139b12e7c7c139a6bb2014353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s10811-024-03256-4 |
PQID | 3083335277 |
PQPubID | 2034534 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3153743481 proquest_journals_3083335277 crossref_primary_10_1007_s10811_024_03256_4 crossref_citationtrail_10_1007_s10811_024_03256_4 springer_journals_10_1007_s10811_024_03256_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of applied phycology |
PublicationTitleAbbrev | J Appl Phycol |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | PantGYadavDPGaurAResNeXt convolution neural network topology-based deep learning model for identification and classification of PediastrumAlgal Res20204810.1016/j.algal.2020.101932 Dierssen HM, Ackleson SG, Joyce KE, Hestir EL, Castagna A, Lavender S, McManus MA (2021) Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook. Front Environ Sci 9649528 MehrubeogluMTengMYZimbaPVResolving mixed algal species in hyperspectral imagesSensors20141412110.3390/s140100001 Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14 ChazauxMSchiphorstCLazzariGCaffarriSPrecise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determinationPlant J2022109163016481:CAS:528:DC%2BB38XisVOgug%3D%3D10.1111/tpj.1564334932254 KirkJTLight and photosynthesis in aquatic ecosystems2011CambridgeCambridge University Press GoirisKVan ColenWWilchesILeón-TamarizFDe CoomanLMuylaertKImpact of nutrient stress on antioxidant production in three species of microalgaeAlgal Res20157515710.1016/j.algal.2014.12.002 HachichaRElleuchFHlimaHBDubessayPde BaynastHDelattreCPierreGHachichaRAbdelkafiSMichaudPImenFBiomolecules from microalgae and cyanobacteria: Applications and market surveyAppl Sci20221219241:CAS:528:DC%2BB38XltVamsrw%3D10.3390/app12041924 MorgadoDFanesiAMartinTTebbaniSBernardOLopesFNon-destructive monitoring of microalgae biofilmsBioresour Technol20243981:CAS:528:DC%2BB2cXlsVKksbw%3D10.1016/j.biortech.2024.13052038432541 BricaudABédhommeAMorelAOptical properties of diverse phytoplanktonic species: experimental results and theoretical interpretationJ Plankton Res1988108518731:CAS:528:DyaL1cXmtVynu70%3D10.1093/plankt/10.5.851 HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJ. For Res2021321610.1007/s11676-020-01155-1 XuZJiangYJiJForsbergELiYHeSClassification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learningOptics Express20202830686307001:CAS:528:DC%2BB3cXitlSqu7zM10.1364/OE.40603633115064 TengSYYewGYSukačováKShowPLMášaVChangJMicroalgae with artificial intelligence: A digitalized perspective on genetics, systems and productsBiotech Adv2020441:CAS:528:DC%2BB3cXhvVKnsrfF10.1016/j.biotechadv.2020.107631 GriffithsMJGarcinCvan HilleRPHarrisonSTLInterference by pigment in the estimation of microalgal biomass concentration by optical densityJ Microbiol Meth2011851191231:CAS:528:DC%2BC3MXkt1yrtbk%3D10.1016/j.mimet.2011.02.005 Annala L (2020) Convolutional neural networks and stochastic modelling in hyperspectral data analysis. Dissertation, University of Jyväskylä, Finland, pp 56 SolovchenkoASeeing good and bad: Optical sensing of microalgal culture conditionAlgal Res20237110.1016/j.algal.2023.103071 LiuJZengLRenZThe application of spectroscopy technology in the monitoring of microalgae cells concentrationAppl Spectrosc Rev2021561711921:CAS:528:DC%2BB3cXhtVahtLnP10.1080/05704928.2020.1763380 PyoJDuanHBaekSKimMSJeonTKwonYSLeeHChonKHA convolutional neural network regression for quantifying cyanobacteria using hyperspectral imageryRemote Sens Environ201923310.1016/j.rse.2019.111350 HavlikIBeutelSScheperTReardonKFOn-line monitoring of biological parameters in microalgal bioprocesses using optical methodsEnergies2022158759021:CAS:528:DC%2BB38Xkt1yjsbo%3D10.3390/en15030875 NairASathyendranathSPlattTMoralesJStuartVForgetMDeyredEBoumanHRemote sensing of phytoplankton functional typesRemote Sens Environ.20081123366337510.1016/j.rse.2008.01.021 YadavDPJalaASGarlapatiDHossainKGoyalAPantGDeep learning-based ResNeXt model in phycological studies for futureAlgal Res20205010.1016/j.algal.2020.102018 LamMKLeeKTMicroalgae biofuels: a critical review of issues, problems and the way forwardBiotechnol Adv2012306736901:CAS:528:DC%2BC38XivFOltL0%3D10.1016/j.biotechadv.2011.11.00822166620 SalmiPEskelinenMALeppänenMTPölönenIRapid quantification of microalgae growth with hyperspectral camera and vegetation indicesPlants2021103411:CAS:528:DC%2BB3MXptFeltL8%3D10.3390/plants10020341335789207916729 Raita-Hakola AM (2022) From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications. Dissertation, University of Jyväskylä, Finland, pp 132 MurphyTEMaconKBerberogluHRapid algal culture diagnostics for open ponds using multispectral image analysisBiotechnol Prog2014302332401:CAS:528:DC%2BC2cXitVeis7Y%3D10.1002/btpr.184324265121 BengioYGoodfellowICourvilleADeep learning2017Massachusetts, USAMIT Press SalmiPCalderiniMPääkkönenSTaipaleSPölönenIAssessment of microalgae species, biomass, and distribution from spectral images using a convolution neural networkJ Appl Phycol202234156515751:CAS:528:DC%2BB38XhsVChsbnN10.1007/s10811-022-02735-w GitelsonAQiuangHRichmondAPhotic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensisAppl Environ Microbiol199662157015731:CAS:528:DyaK28XislyltL8%3D10.1128/aem.62.5.1570-1573.1996165353091388847 MurphyTEMaconKBerberogluHMultispectral image analysis for algal biomass quantificationBiotechnol Prog2013298088161:CAS:528:DC%2BC3sXhtVajsb3E10.1002/btpr.171423554374 LiXChenKHeYIn situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging techniqueAlgal Res20204510.1016/j.algal.2019.101680 MJ Griffiths (3256_CR8) 2011; 85 3256_CR9 D Morgado (3256_CR18) 2024; 398 P Salmi (3256_CR25) 2021; 10 X Li (3256_CR15) 2020; 45 G Pant (3256_CR22) 2020; 48 3256_CR1 SY Teng (3256_CR28) 2020; 44 3256_CR5 R Hachicha (3256_CR10) 2022; 12 J Pyo (3256_CR23) 2019; 233 A Solovchenko (3256_CR27) 2023; 71 S Huang (3256_CR12) 2021; 32 J Liu (3256_CR16) 2021; 56 3256_CR24 Y Bengio (3256_CR2) 2017 JT Kirk (3256_CR13) 2011 P Salmi (3256_CR26) 2022; 34 Z Xu (3256_CR30) 2020; 28 TE Murphy (3256_CR19) 2014; 30 M Mehrubeoglu (3256_CR17) 2014; 14 I Havlik (3256_CR11) 2022; 15 MK Lam (3256_CR14) 2012; 30 A Bricaud (3256_CR3) 1988; 10 DP Yadav (3256_CR29) 2020; 50 A Gitelson (3256_CR6) 1996; 62 M Chazaux (3256_CR4) 2022; 109 K Goiris (3256_CR7) 2015; 7 A Nair (3256_CR21) 2008; 112 TE Murphy (3256_CR20) 2013; 29 |
References_xml | – reference: ChazauxMSchiphorstCLazzariGCaffarriSPrecise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determinationPlant J2022109163016481:CAS:528:DC%2BB38XisVOgug%3D%3D10.1111/tpj.1564334932254 – reference: GriffithsMJGarcinCvan HilleRPHarrisonSTLInterference by pigment in the estimation of microalgal biomass concentration by optical densityJ Microbiol Meth2011851191231:CAS:528:DC%2BC3MXkt1yrtbk%3D10.1016/j.mimet.2011.02.005 – reference: LiuJZengLRenZThe application of spectroscopy technology in the monitoring of microalgae cells concentrationAppl Spectrosc Rev2021561711921:CAS:528:DC%2BB3cXhtVahtLnP10.1080/05704928.2020.1763380 – reference: Raita-Hakola AM (2022) From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications. Dissertation, University of Jyväskylä, Finland, pp 132 – reference: MehrubeogluMTengMYZimbaPVResolving mixed algal species in hyperspectral imagesSensors20141412110.3390/s140100001 – reference: MurphyTEMaconKBerberogluHMultispectral image analysis for algal biomass quantificationBiotechnol Prog2013298088161:CAS:528:DC%2BC3sXhtVajsb3E10.1002/btpr.171423554374 – reference: MurphyTEMaconKBerberogluHRapid algal culture diagnostics for open ponds using multispectral image analysisBiotechnol Prog2014302332401:CAS:528:DC%2BC2cXitVeis7Y%3D10.1002/btpr.184324265121 – reference: Dierssen HM, Ackleson SG, Joyce KE, Hestir EL, Castagna A, Lavender S, McManus MA (2021) Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook. Front Environ Sci 9649528 – reference: SolovchenkoASeeing good and bad: Optical sensing of microalgal culture conditionAlgal Res20237110.1016/j.algal.2023.103071 – reference: HavlikIBeutelSScheperTReardonKFOn-line monitoring of biological parameters in microalgal bioprocesses using optical methodsEnergies2022158759021:CAS:528:DC%2BB38Xkt1yjsbo%3D10.3390/en15030875 – reference: Annala L (2020) Convolutional neural networks and stochastic modelling in hyperspectral data analysis. Dissertation, University of Jyväskylä, Finland, pp 56 – reference: TengSYYewGYSukačováKShowPLMášaVChangJMicroalgae with artificial intelligence: A digitalized perspective on genetics, systems and productsBiotech Adv2020441:CAS:528:DC%2BB3cXhvVKnsrfF10.1016/j.biotechadv.2020.107631 – reference: KirkJTLight and photosynthesis in aquatic ecosystems2011CambridgeCambridge University Press – reference: MorgadoDFanesiAMartinTTebbaniSBernardOLopesFNon-destructive monitoring of microalgae biofilmsBioresour Technol20243981:CAS:528:DC%2BB2cXlsVKksbw%3D10.1016/j.biortech.2024.13052038432541 – reference: SalmiPCalderiniMPääkkönenSTaipaleSPölönenIAssessment of microalgae species, biomass, and distribution from spectral images using a convolution neural networkJ Appl Phycol202234156515751:CAS:528:DC%2BB38XhsVChsbnN10.1007/s10811-022-02735-w – reference: XuZJiangYJiJForsbergELiYHeSClassification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learningOptics Express20202830686307001:CAS:528:DC%2BB3cXitlSqu7zM10.1364/OE.40603633115064 – reference: BricaudABédhommeAMorelAOptical properties of diverse phytoplanktonic species: experimental results and theoretical interpretationJ Plankton Res1988108518731:CAS:528:DyaL1cXmtVynu70%3D10.1093/plankt/10.5.851 – reference: Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14 – reference: LamMKLeeKTMicroalgae biofuels: a critical review of issues, problems and the way forwardBiotechnol Adv2012306736901:CAS:528:DC%2BC38XivFOltL0%3D10.1016/j.biotechadv.2011.11.00822166620 – reference: GoirisKVan ColenWWilchesILeón-TamarizFDe CoomanLMuylaertKImpact of nutrient stress on antioxidant production in three species of microalgaeAlgal Res20157515710.1016/j.algal.2014.12.002 – reference: YadavDPJalaASGarlapatiDHossainKGoyalAPantGDeep learning-based ResNeXt model in phycological studies for futureAlgal Res20205010.1016/j.algal.2020.102018 – reference: NairASathyendranathSPlattTMoralesJStuartVForgetMDeyredEBoumanHRemote sensing of phytoplankton functional typesRemote Sens Environ.20081123366337510.1016/j.rse.2008.01.021 – reference: HachichaRElleuchFHlimaHBDubessayPde BaynastHDelattreCPierreGHachichaRAbdelkafiSMichaudPImenFBiomolecules from microalgae and cyanobacteria: Applications and market surveyAppl Sci20221219241:CAS:528:DC%2BB38XltVamsrw%3D10.3390/app12041924 – reference: BengioYGoodfellowICourvilleADeep learning2017Massachusetts, USAMIT Press – reference: GitelsonAQiuangHRichmondAPhotic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensisAppl Environ Microbiol199662157015731:CAS:528:DyaK28XislyltL8%3D10.1128/aem.62.5.1570-1573.1996165353091388847 – reference: HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJ. For Res2021321610.1007/s11676-020-01155-1 – reference: PantGYadavDPGaurAResNeXt convolution neural network topology-based deep learning model for identification and classification of PediastrumAlgal Res20204810.1016/j.algal.2020.101932 – reference: PyoJDuanHBaekSKimMSJeonTKwonYSLeeHChonKHA convolutional neural network regression for quantifying cyanobacteria using hyperspectral imageryRemote Sens Environ201923310.1016/j.rse.2019.111350 – reference: LiXChenKHeYIn situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging techniqueAlgal Res20204510.1016/j.algal.2019.101680 – reference: SalmiPEskelinenMALeppänenMTPölönenIRapid quantification of microalgae growth with hyperspectral camera and vegetation indicesPlants2021103411:CAS:528:DC%2BB3MXptFeltL8%3D10.3390/plants10020341335789207916729 – volume: 15 start-page: 875 year: 2022 ident: 3256_CR11 publication-title: Energies doi: 10.3390/en15030875 – volume-title: Deep learning year: 2017 ident: 3256_CR2 – volume: 14 start-page: 1 year: 2014 ident: 3256_CR17 publication-title: Sensors doi: 10.3390/s140100001 – volume: 48 year: 2020 ident: 3256_CR22 publication-title: Algal Res doi: 10.1016/j.algal.2020.101932 – volume: 10 start-page: 341 year: 2021 ident: 3256_CR25 publication-title: Plants doi: 10.3390/plants10020341 – volume: 34 start-page: 1565 year: 2022 ident: 3256_CR26 publication-title: J Appl Phycol doi: 10.1007/s10811-022-02735-w – volume: 30 start-page: 673 year: 2012 ident: 3256_CR14 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2011.11.008 – volume: 44 year: 2020 ident: 3256_CR28 publication-title: Biotech Adv doi: 10.1016/j.biotechadv.2020.107631 – volume: 28 start-page: 30686 year: 2020 ident: 3256_CR30 publication-title: Optics Express doi: 10.1364/OE.406036 – ident: 3256_CR1 – volume: 112 start-page: 3366 year: 2008 ident: 3256_CR21 publication-title: Remote Sens Environ. doi: 10.1016/j.rse.2008.01.021 – volume: 10 start-page: 851 year: 1988 ident: 3256_CR3 publication-title: J Plankton Res doi: 10.1093/plankt/10.5.851 – volume-title: Light and photosynthesis in aquatic ecosystems year: 2011 ident: 3256_CR13 – volume: 398 year: 2024 ident: 3256_CR18 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2024.130520 – volume: 85 start-page: 119 year: 2011 ident: 3256_CR8 publication-title: J Microbiol Meth doi: 10.1016/j.mimet.2011.02.005 – volume: 62 start-page: 1570 year: 1996 ident: 3256_CR6 publication-title: Appl Environ Microbiol doi: 10.1128/aem.62.5.1570-1573.1996 – volume: 109 start-page: 1630 year: 2022 ident: 3256_CR4 publication-title: Plant J doi: 10.1111/tpj.15643 – volume: 7 start-page: 51 year: 2015 ident: 3256_CR7 publication-title: Algal Res doi: 10.1016/j.algal.2014.12.002 – volume: 12 start-page: 1924 year: 2022 ident: 3256_CR10 publication-title: Appl Sci doi: 10.3390/app12041924 – volume: 71 year: 2023 ident: 3256_CR27 publication-title: Algal Res doi: 10.1016/j.algal.2023.103071 – volume: 233 year: 2019 ident: 3256_CR23 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111350 – volume: 56 start-page: 171 year: 2021 ident: 3256_CR16 publication-title: Appl Spectrosc Rev doi: 10.1080/05704928.2020.1763380 – ident: 3256_CR24 – volume: 29 start-page: 808 year: 2013 ident: 3256_CR20 publication-title: Biotechnol Prog doi: 10.1002/btpr.1714 – volume: 30 start-page: 233 year: 2014 ident: 3256_CR19 publication-title: Biotechnol Prog doi: 10.1002/btpr.1843 – volume: 32 start-page: 1 year: 2021 ident: 3256_CR12 publication-title: J. For Res doi: 10.1007/s11676-020-01155-1 – volume: 50 year: 2020 ident: 3256_CR29 publication-title: Algal Res doi: 10.1016/j.algal.2020.102018 – ident: 3256_CR5 doi: 10.3389/fenvs.2021.649528 – volume: 45 year: 2020 ident: 3256_CR15 publication-title: Algal Res doi: 10.1016/j.algal.2019.101680 – ident: 3256_CR9 doi: 10.1111/j.0022-3646.1972.00010.x |
SSID | ssj0009818 |
Score | 2.4624052 |
Snippet | High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1653 |
SubjectTerms | Algae Aquatic microorganisms Aquatic plants Artificial neural networks biochemical compounds Biomass Biomedical and Life Sciences Biomolecules Control methods Cultivation Ecology Economics Freshwater & Marine Ecology hyperspectral imagery Hyperspectral imaging Laboratory experimentation Life Sciences Microalgae Monitoring Monitoring methods Monoculture Neural networks Phytoplankton Plant Physiology Plant Sciences profitability regression analysis Regression models Robust control species standard deviation vegetation Vegetation index |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KuiD6FScX1TwTQPrJU3axymKCNuTgm8lyeIHuFb2Iey_95K1TkUF3wq9JuUuyf2S3P0O4MQai9o6y1ChZSLVyGjNMwzReG-ouA3VG7o9eX0nbu6T-yopbFRHu9dXkmGl_pTslvrjPBSszclRM7EISwnt3f24vsPOnGo3Dad67QxjlmYqrlJlfm7jqzuaY8xv16LB21xtwHoFE6POzK6bsOCKJqx1HocVVYZrwsqsjOS0CcvnJUE8eli5DBzU0y3o9sqCPRdv2kenR4MwcX1PUfkQDXwMnk_hcJFvrCpvNop8CPxj9EQb01n-5ZB-4HngOS624fbq8vbimlWVE5jlmRwzLZWWEq0wElMjs1iTrWiz0U4feF8mjruEkJUj9GdidMoqS49aGoOe7i_hO9AoysLtQtTnJGaT1KHSwiSZRrRZwgX51iwTfduCuNZfbitWcV_c4iWf8yF7neek8zzoPBctOP345nXGqfGn9EFtlryaX6OcE3L02WJKteD44zXNDH_doQtXTkiGFnPCRyKNW3BWm3PexO897v1PfB9WMYwoHxV4AI3xcOIOCamMzVEYmO9yWNzs priority: 102 providerName: Springer Nature |
Title | Non-invasive monitoring of microalgae cultivations using hyperspectral imager |
URI | https://link.springer.com/article/10.1007/s10811-024-03256-4 https://www.proquest.com/docview/3083335277 https://www.proquest.com/docview/3153743481 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xdQh4QFBAdGxVJvEGFo3t2M4TakvLBFo1TZs0niLb9cYkmoy2Q-K_313qLAJpe0ksxYmjO_vu5_N9ALz3znPrg2dcc8-ksZyhzHOMc0faUAtfV284mqnDM_ntPDuPBrdVdKtsZGItqOeVJxv5J4FYgeKDtP58_ZtR1Sg6XY0lNLaggyLY4AzvjCaz45M27a6pLXyDnKfM5DqNYTMxeM6QeZBLNhCo-Jn8VzW1ePO_I9Ja80xfwPMIGZPhhscv4VEou_BseLmMaTNCFx5vSkr-7cLOqEK4h40nTcjx6hUczaqSXZV_LPmqJ4t6GdNYSXWRLMgjjwI6QkKfi8XOVgk5xF8mP3GbuonGXOIvXC0o48VrOJ1OTseHLNZRYF7kas2s0lYp7qVT3DiVpxY5h1uPgbkQc5UFETLEWQGxoEt50F57bFrlHKfkf5l4A9tlVYa3kMwFdvOZCVxb6bLccu7zTEjUtHku574HaUPBwscc41Tq4lfRZkcmqhdI9aKmeiF78OHunetNho0He-81jCnialsV7dzowcHdY1wndPhhy1DdYB8U7YiWpEl78LFhaPuJ-0fcfXjEd_CU13OIfAL3YHu9vAn7iFPWrg-d4ejLaEr3rz--T_pxcvZha6zGeD3jw1sE6ecR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5NHWjjAUEBURhgJHgCi8Z27OQBoQ02dWytECrS3iLb9cakNRltB9qP4j9ylziLQGJve4sUJ07O57vP9t19AK-888L64LkwwnOVWcHR5jkuhCNvaKSv2RvGEz36pj4fpUdr8LvNhaGwytYm1oZ6VnnaI38nEStQfpAxH85_cGKNotPVlkKjUYuDcPkLl2zL9_ufcHxfC7G3O_044pFVgHuZ6xW32lithVdOi8zpPLH4HwjEh9mxnOk0yJAi6giIjFwigvHG46XVzgkqhUckEWjx15VEpNCD9Z3dyZevXZXfrN5QHOYi4VlukpilE3P1MtqNFIoPJeIMrv72hB28_edEtnZ0e_fgbkSobLtRqfuwFso-3Nk-WcQqHaEPtxsGy8s-3NqpEF3ixUab4bx8AONJVfLT8qel0Hg2r60G9cWqYzanAEDKHwmMXhe51ZaM4u9P2HdcFTfJnwv8hNM5Fdh4CNObEPAj6JVVGR4Dm0ls5tMsCGOVS3MrhM9TqdCx57ma-QEkrQQLH0uaE7PGWdEVYyapFyj1opZ6oQbw5uqZ86agx7Wtt9qBKeLkXhadKg7g5dVtnJZ01mLLUF1gG_QkCM5UlgzgbTug3Sv-3-OT63t8ARuj6fiwONyfHDyFTVHrE4UjbkFvtbgIzxAirdzzqJgMihueCn8AjS8dWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW54HBAuoCwWMBCewunEcOzkg1NKuWkpXFSpSb5bt9ZZK3aTsbkH9afw7ZhKnEUj01pulOHYynsdnex4Ab7zzwvrgudDCc5lbwVHnOS6EI2uoU19XbzgYq91v8vNxdrwCv9tYGHKrbHViragnlacz8o0UsQLFB2m9MY1uEYfbo4_nPzhVkKKb1racRsMi--HyF27fFh_2tnGt3wox2jn6tMtjhQHu00ItuVXaKiW8dErkThWJxX9CUD7Mp-lEZSENGSKQgCjJJSJorz02rXJOUFo8KhiB2n9VU_RoD1a3dsaHX7uMv3l9uDgsRMLzQicxYifG7eV0MikkH6aIObj82yp2UPef29na6I0ewoOIVtlmw16PYCWUfbi_eTKPGTtCH2431Swv-3Brq0KkiY27bbTz4jEcjKuSn5Y_LbnJs1mtQWguVk3ZjJwBKZYkMBou1llbMPLFP2HfcYfcBILO8RNOZ5Rs4wkc3QSBn0KvrMqwBmySYjef5UFoK11WWCF8kaUSjXxRyIkfQNJS0PiY3pyqbJyZLjEzUd0g1U1NdSMH8O7qnfMmuce1vdfbhTFR0BemY8sBvL56jCJK9y62DNUF9kGrgkBN5skA3rcL2g3x_xmfXT_jK7iDImC-7I33n8M9UbMTeSauQ285vwgvEC0t3cvIlwzMDUvCHxoCIZk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+monitoring+of+microalgae+cultivations+using+hyperspectral+imager&rft.jtitle=Journal+of+applied+phycology&rft.au=P%C3%A4%C3%A4kk%C3%B6nen%2C+Salli&rft.au=P%C3%B6l%C3%B6nen%2C+Ilkka&rft.au=Raita-Hakola%2C+Anna-Maria&rft.au=Carneiro%2C+Mariana&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=36&rft.issue=4&rft.spage=1653&rft.epage=1665&rft_id=info:doi/10.1007%2Fs10811-024-03256-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon |