Non-invasive monitoring of microalgae cultivations using hyperspectral imager

High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive m...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied phycology Vol. 36; no. 4; pp. 1653 - 1665
Main Authors Pääkkönen, Salli, Pölönen, Ilkka, Raita-Hakola, Anna-Maria, Carneiro, Mariana, Cardoso, Helena, Mauricio, Dinis, Rodrigues, Alexandre Miguel Cavaco, Salmi, Pauliina
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-8971
1573-5176
DOI10.1007/s10811-024-03256-4

Cover

Loading…
Abstract High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the different species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems.
AbstractList High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the different species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems.
Author Pölönen, Ilkka
Mauricio, Dinis
Rodrigues, Alexandre Miguel Cavaco
Raita-Hakola, Anna-Maria
Cardoso, Helena
Carneiro, Mariana
Pääkkönen, Salli
Salmi, Pauliina
Author_xml – sequence: 1
  givenname: Salli
  surname: Pääkkönen
  fullname: Pääkkönen, Salli
  email: salli.k.paakkonen@jyu.fi
  organization: Faculty of Information Technology, University of Jyväskylä
– sequence: 2
  givenname: Ilkka
  surname: Pölönen
  fullname: Pölönen, Ilkka
  organization: Faculty of Information Technology, University of Jyväskylä
– sequence: 3
  givenname: Anna-Maria
  surname: Raita-Hakola
  fullname: Raita-Hakola, Anna-Maria
  organization: Faculty of Information Technology, University of Jyväskylä
– sequence: 4
  givenname: Mariana
  surname: Carneiro
  fullname: Carneiro, Mariana
  organization: Necton SA
– sequence: 5
  givenname: Helena
  surname: Cardoso
  fullname: Cardoso, Helena
  organization: ALLMICROALGAE - Natural Products
– sequence: 6
  givenname: Dinis
  surname: Mauricio
  fullname: Mauricio, Dinis
  organization: ALLMICROALGAE - Natural Products
– sequence: 7
  givenname: Alexandre Miguel Cavaco
  surname: Rodrigues
  fullname: Rodrigues, Alexandre Miguel Cavaco
  organization: Necton SA
– sequence: 8
  givenname: Pauliina
  surname: Salmi
  fullname: Salmi, Pauliina
  organization: Faculty of Information Technology, University of Jyväskylä
BookMark eNp9kD1vFDEQQC2USLkk_IFUK9HQGDye9ceWKIKAFKBJb3nN3OFoz17s3ZPy7_HlkJBSpLKL90Yz75KdpZyIsRsQH0AI87GCsABcyJ4LlErz_g3bgDLIFRh9xjZikMDtYOCCXdb6KIQYLNgN-_4jJx7Twdd4oG6fU1xyiWnX5W23j6FkP-08dWGdlnjwS8ypdms9Ar-fZip1prAUP3Vx73dUrtn51k-V3v57r9jDl88Pt1_5_c-7b7ef7nnAQS_ca-O1lqEftbSjHsDTSBKFsFv8pRUhqUEBAQ4jSDLBhPb1ehylgB4VXrH3p7FzyX9WqovbxxpomnyivFaHoND02Fto6LsX6GNeS2rLORQWEZU0plHyRLWDay20dXNpF5UnB8IdA7tTYNcCu-fArm-SfSGFuDwnakXi9LqKJ7XOx9hU_m_1ivUXZbuRgg
CitedBy_id crossref_primary_10_1016_j_algal_2024_103855
crossref_primary_10_1016_j_algal_2025_103979
crossref_primary_10_1007_s10811_024_03397_6
crossref_primary_10_1016_j_algal_2024_103649
Cites_doi 10.3390/en15030875
10.3390/s140100001
10.1016/j.algal.2020.101932
10.3390/plants10020341
10.1007/s10811-022-02735-w
10.1016/j.biotechadv.2011.11.008
10.1016/j.biotechadv.2020.107631
10.1364/OE.406036
10.1016/j.rse.2008.01.021
10.1093/plankt/10.5.851
10.1016/j.biortech.2024.130520
10.1016/j.mimet.2011.02.005
10.1128/aem.62.5.1570-1573.1996
10.1111/tpj.15643
10.1016/j.algal.2014.12.002
10.3390/app12041924
10.1016/j.algal.2023.103071
10.1016/j.rse.2019.111350
10.1080/05704928.2020.1763380
10.1002/btpr.1714
10.1002/btpr.1843
10.1007/s11676-020-01155-1
10.1016/j.algal.2020.102018
10.3389/fenvs.2021.649528
10.1016/j.algal.2019.101680
10.1111/j.0022-3646.1972.00010.x
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TN
7X2
8FE
8FH
8FK
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M0K
M7N
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
DOI 10.1007/s10811-024-03256-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Agriculture Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Agricultural Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
Botany
Economics
EISSN 1573-5176
EndPage 1665
ExternalDocumentID 10_1007_s10811_024_03256_4
GrantInformation_xml – fundername: European Union - NExtGenerationEU via Business Finland
  grantid: 7134/31/2021; 7134/31/2021
– fundername: University of Jyväskylä (JYU)
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1OL
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
XOL
YLTOR
YQT
Z45
Z5O
Z7U
Z7V
Z7W
Z7Z
Z81
Z83
Z86
Z8O
Z8P
Z8Q
Z8T
Z8U
Z8W
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7TN
8FK
ABRTQ
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
M7N
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c396t-a67a662c4b628b691aebe23008f3d65e3e5951e139b12e7c7c139a6bb2014353
IEDL.DBID BENPR
ISSN 0921-8971
IngestDate Tue Aug 05 10:50:55 EDT 2025
Sat Aug 23 14:56:47 EDT 2025
Tue Jul 01 04:26:08 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Fri Feb 21 02:40:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Model comparison
Green microalgae
Non-invasive monitoring
Vegetation indices
Convolutional neural network
Hyperspectral imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-a67a662c4b628b691aebe23008f3d65e3e5951e139b12e7c7c139a6bb2014353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s10811-024-03256-4
PQID 3083335277
PQPubID 2034534
PageCount 13
ParticipantIDs proquest_miscellaneous_3153743481
proquest_journals_3083335277
crossref_primary_10_1007_s10811_024_03256_4
crossref_citationtrail_10_1007_s10811_024_03256_4
springer_journals_10_1007_s10811_024_03256_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied phycology
PublicationTitleAbbrev J Appl Phycol
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References PantGYadavDPGaurAResNeXt convolution neural network topology-based deep learning model for identification and classification of PediastrumAlgal Res20204810.1016/j.algal.2020.101932
Dierssen HM, Ackleson SG, Joyce KE, Hestir EL, Castagna A, Lavender S, McManus MA (2021) Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook. Front Environ Sci 9649528
MehrubeogluMTengMYZimbaPVResolving mixed algal species in hyperspectral imagesSensors20141412110.3390/s140100001
Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14
ChazauxMSchiphorstCLazzariGCaffarriSPrecise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determinationPlant J2022109163016481:CAS:528:DC%2BB38XisVOgug%3D%3D10.1111/tpj.1564334932254
KirkJTLight and photosynthesis in aquatic ecosystems2011CambridgeCambridge University Press
GoirisKVan ColenWWilchesILeón-TamarizFDe CoomanLMuylaertKImpact of nutrient stress on antioxidant production in three species of microalgaeAlgal Res20157515710.1016/j.algal.2014.12.002
HachichaRElleuchFHlimaHBDubessayPde BaynastHDelattreCPierreGHachichaRAbdelkafiSMichaudPImenFBiomolecules from microalgae and cyanobacteria: Applications and market surveyAppl Sci20221219241:CAS:528:DC%2BB38XltVamsrw%3D10.3390/app12041924
MorgadoDFanesiAMartinTTebbaniSBernardOLopesFNon-destructive monitoring of microalgae biofilmsBioresour Technol20243981:CAS:528:DC%2BB2cXlsVKksbw%3D10.1016/j.biortech.2024.13052038432541
BricaudABédhommeAMorelAOptical properties of diverse phytoplanktonic species: experimental results and theoretical interpretationJ Plankton Res1988108518731:CAS:528:DyaL1cXmtVynu70%3D10.1093/plankt/10.5.851
HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJ. For Res2021321610.1007/s11676-020-01155-1
XuZJiangYJiJForsbergELiYHeSClassification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learningOptics Express20202830686307001:CAS:528:DC%2BB3cXitlSqu7zM10.1364/OE.40603633115064
TengSYYewGYSukačováKShowPLMášaVChangJMicroalgae with artificial intelligence: A digitalized perspective on genetics, systems and productsBiotech Adv2020441:CAS:528:DC%2BB3cXhvVKnsrfF10.1016/j.biotechadv.2020.107631
GriffithsMJGarcinCvan HilleRPHarrisonSTLInterference by pigment in the estimation of microalgal biomass concentration by optical densityJ Microbiol Meth2011851191231:CAS:528:DC%2BC3MXkt1yrtbk%3D10.1016/j.mimet.2011.02.005
Annala L (2020) Convolutional neural networks and stochastic modelling in hyperspectral data analysis. Dissertation, University of Jyväskylä, Finland, pp 56
SolovchenkoASeeing good and bad: Optical sensing of microalgal culture conditionAlgal Res20237110.1016/j.algal.2023.103071
LiuJZengLRenZThe application of spectroscopy technology in the monitoring of microalgae cells concentrationAppl Spectrosc Rev2021561711921:CAS:528:DC%2BB3cXhtVahtLnP10.1080/05704928.2020.1763380
PyoJDuanHBaekSKimMSJeonTKwonYSLeeHChonKHA convolutional neural network regression for quantifying cyanobacteria using hyperspectral imageryRemote Sens Environ201923310.1016/j.rse.2019.111350
HavlikIBeutelSScheperTReardonKFOn-line monitoring of biological parameters in microalgal bioprocesses using optical methodsEnergies2022158759021:CAS:528:DC%2BB38Xkt1yjsbo%3D10.3390/en15030875
NairASathyendranathSPlattTMoralesJStuartVForgetMDeyredEBoumanHRemote sensing of phytoplankton functional typesRemote Sens Environ.20081123366337510.1016/j.rse.2008.01.021
YadavDPJalaASGarlapatiDHossainKGoyalAPantGDeep learning-based ResNeXt model in phycological studies for futureAlgal Res20205010.1016/j.algal.2020.102018
LamMKLeeKTMicroalgae biofuels: a critical review of issues, problems and the way forwardBiotechnol Adv2012306736901:CAS:528:DC%2BC38XivFOltL0%3D10.1016/j.biotechadv.2011.11.00822166620
SalmiPEskelinenMALeppänenMTPölönenIRapid quantification of microalgae growth with hyperspectral camera and vegetation indicesPlants2021103411:CAS:528:DC%2BB3MXptFeltL8%3D10.3390/plants10020341335789207916729
Raita-Hakola AM (2022) From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications. Dissertation, University of Jyväskylä, Finland, pp 132
MurphyTEMaconKBerberogluHRapid algal culture diagnostics for open ponds using multispectral image analysisBiotechnol Prog2014302332401:CAS:528:DC%2BC2cXitVeis7Y%3D10.1002/btpr.184324265121
BengioYGoodfellowICourvilleADeep learning2017Massachusetts, USAMIT Press
SalmiPCalderiniMPääkkönenSTaipaleSPölönenIAssessment of microalgae species, biomass, and distribution from spectral images using a convolution neural networkJ Appl Phycol202234156515751:CAS:528:DC%2BB38XhsVChsbnN10.1007/s10811-022-02735-w
GitelsonAQiuangHRichmondAPhotic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensisAppl Environ Microbiol199662157015731:CAS:528:DyaK28XislyltL8%3D10.1128/aem.62.5.1570-1573.1996165353091388847
MurphyTEMaconKBerberogluHMultispectral image analysis for algal biomass quantificationBiotechnol Prog2013298088161:CAS:528:DC%2BC3sXhtVajsb3E10.1002/btpr.171423554374
LiXChenKHeYIn situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging techniqueAlgal Res20204510.1016/j.algal.2019.101680
MJ Griffiths (3256_CR8) 2011; 85
3256_CR9
D Morgado (3256_CR18) 2024; 398
P Salmi (3256_CR25) 2021; 10
X Li (3256_CR15) 2020; 45
G Pant (3256_CR22) 2020; 48
3256_CR1
SY Teng (3256_CR28) 2020; 44
3256_CR5
R Hachicha (3256_CR10) 2022; 12
J Pyo (3256_CR23) 2019; 233
A Solovchenko (3256_CR27) 2023; 71
S Huang (3256_CR12) 2021; 32
J Liu (3256_CR16) 2021; 56
3256_CR24
Y Bengio (3256_CR2) 2017
JT Kirk (3256_CR13) 2011
P Salmi (3256_CR26) 2022; 34
Z Xu (3256_CR30) 2020; 28
TE Murphy (3256_CR19) 2014; 30
M Mehrubeoglu (3256_CR17) 2014; 14
I Havlik (3256_CR11) 2022; 15
MK Lam (3256_CR14) 2012; 30
A Bricaud (3256_CR3) 1988; 10
DP Yadav (3256_CR29) 2020; 50
A Gitelson (3256_CR6) 1996; 62
M Chazaux (3256_CR4) 2022; 109
K Goiris (3256_CR7) 2015; 7
A Nair (3256_CR21) 2008; 112
TE Murphy (3256_CR20) 2013; 29
References_xml – reference: ChazauxMSchiphorstCLazzariGCaffarriSPrecise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determinationPlant J2022109163016481:CAS:528:DC%2BB38XisVOgug%3D%3D10.1111/tpj.1564334932254
– reference: GriffithsMJGarcinCvan HilleRPHarrisonSTLInterference by pigment in the estimation of microalgal biomass concentration by optical densityJ Microbiol Meth2011851191231:CAS:528:DC%2BC3MXkt1yrtbk%3D10.1016/j.mimet.2011.02.005
– reference: LiuJZengLRenZThe application of spectroscopy technology in the monitoring of microalgae cells concentrationAppl Spectrosc Rev2021561711921:CAS:528:DC%2BB3cXhtVahtLnP10.1080/05704928.2020.1763380
– reference: Raita-Hakola AM (2022) From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications. Dissertation, University of Jyväskylä, Finland, pp 132 
– reference: MehrubeogluMTengMYZimbaPVResolving mixed algal species in hyperspectral imagesSensors20141412110.3390/s140100001
– reference: MurphyTEMaconKBerberogluHMultispectral image analysis for algal biomass quantificationBiotechnol Prog2013298088161:CAS:528:DC%2BC3sXhtVajsb3E10.1002/btpr.171423554374
– reference: MurphyTEMaconKBerberogluHRapid algal culture diagnostics for open ponds using multispectral image analysisBiotechnol Prog2014302332401:CAS:528:DC%2BC2cXitVeis7Y%3D10.1002/btpr.184324265121
– reference: Dierssen HM, Ackleson SG, Joyce KE, Hestir EL, Castagna A, Lavender S, McManus MA (2021) Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook. Front Environ Sci 9649528
– reference: SolovchenkoASeeing good and bad: Optical sensing of microalgal culture conditionAlgal Res20237110.1016/j.algal.2023.103071
– reference: HavlikIBeutelSScheperTReardonKFOn-line monitoring of biological parameters in microalgal bioprocesses using optical methodsEnergies2022158759021:CAS:528:DC%2BB38Xkt1yjsbo%3D10.3390/en15030875
– reference: Annala L (2020) Convolutional neural networks and stochastic modelling in hyperspectral data analysis. Dissertation, University of Jyväskylä, Finland, pp 56
– reference: TengSYYewGYSukačováKShowPLMášaVChangJMicroalgae with artificial intelligence: A digitalized perspective on genetics, systems and productsBiotech Adv2020441:CAS:528:DC%2BB3cXhvVKnsrfF10.1016/j.biotechadv.2020.107631
– reference: KirkJTLight and photosynthesis in aquatic ecosystems2011CambridgeCambridge University Press
– reference: MorgadoDFanesiAMartinTTebbaniSBernardOLopesFNon-destructive monitoring of microalgae biofilmsBioresour Technol20243981:CAS:528:DC%2BB2cXlsVKksbw%3D10.1016/j.biortech.2024.13052038432541
– reference: SalmiPCalderiniMPääkkönenSTaipaleSPölönenIAssessment of microalgae species, biomass, and distribution from spectral images using a convolution neural networkJ Appl Phycol202234156515751:CAS:528:DC%2BB38XhsVChsbnN10.1007/s10811-022-02735-w
– reference: XuZJiangYJiJForsbergELiYHeSClassification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learningOptics Express20202830686307001:CAS:528:DC%2BB3cXitlSqu7zM10.1364/OE.40603633115064
– reference: BricaudABédhommeAMorelAOptical properties of diverse phytoplanktonic species: experimental results and theoretical interpretationJ Plankton Res1988108518731:CAS:528:DyaL1cXmtVynu70%3D10.1093/plankt/10.5.851
– reference: Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14
– reference: LamMKLeeKTMicroalgae biofuels: a critical review of issues, problems and the way forwardBiotechnol Adv2012306736901:CAS:528:DC%2BC38XivFOltL0%3D10.1016/j.biotechadv.2011.11.00822166620
– reference: GoirisKVan ColenWWilchesILeón-TamarizFDe CoomanLMuylaertKImpact of nutrient stress on antioxidant production in three species of microalgaeAlgal Res20157515710.1016/j.algal.2014.12.002
– reference: YadavDPJalaASGarlapatiDHossainKGoyalAPantGDeep learning-based ResNeXt model in phycological studies for futureAlgal Res20205010.1016/j.algal.2020.102018
– reference: NairASathyendranathSPlattTMoralesJStuartVForgetMDeyredEBoumanHRemote sensing of phytoplankton functional typesRemote Sens Environ.20081123366337510.1016/j.rse.2008.01.021
– reference: HachichaRElleuchFHlimaHBDubessayPde BaynastHDelattreCPierreGHachichaRAbdelkafiSMichaudPImenFBiomolecules from microalgae and cyanobacteria: Applications and market surveyAppl Sci20221219241:CAS:528:DC%2BB38XltVamsrw%3D10.3390/app12041924
– reference: BengioYGoodfellowICourvilleADeep learning2017Massachusetts, USAMIT Press
– reference: GitelsonAQiuangHRichmondAPhotic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensisAppl Environ Microbiol199662157015731:CAS:528:DyaK28XislyltL8%3D10.1128/aem.62.5.1570-1573.1996165353091388847
– reference: HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJ. For Res2021321610.1007/s11676-020-01155-1
– reference: PantGYadavDPGaurAResNeXt convolution neural network topology-based deep learning model for identification and classification of PediastrumAlgal Res20204810.1016/j.algal.2020.101932
– reference: PyoJDuanHBaekSKimMSJeonTKwonYSLeeHChonKHA convolutional neural network regression for quantifying cyanobacteria using hyperspectral imageryRemote Sens Environ201923310.1016/j.rse.2019.111350
– reference: LiXChenKHeYIn situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging techniqueAlgal Res20204510.1016/j.algal.2019.101680
– reference: SalmiPEskelinenMALeppänenMTPölönenIRapid quantification of microalgae growth with hyperspectral camera and vegetation indicesPlants2021103411:CAS:528:DC%2BB3MXptFeltL8%3D10.3390/plants10020341335789207916729
– volume: 15
  start-page: 875
  year: 2022
  ident: 3256_CR11
  publication-title: Energies
  doi: 10.3390/en15030875
– volume-title: Deep learning
  year: 2017
  ident: 3256_CR2
– volume: 14
  start-page: 1
  year: 2014
  ident: 3256_CR17
  publication-title: Sensors
  doi: 10.3390/s140100001
– volume: 48
  year: 2020
  ident: 3256_CR22
  publication-title: Algal Res
  doi: 10.1016/j.algal.2020.101932
– volume: 10
  start-page: 341
  year: 2021
  ident: 3256_CR25
  publication-title: Plants
  doi: 10.3390/plants10020341
– volume: 34
  start-page: 1565
  year: 2022
  ident: 3256_CR26
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-022-02735-w
– volume: 30
  start-page: 673
  year: 2012
  ident: 3256_CR14
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2011.11.008
– volume: 44
  year: 2020
  ident: 3256_CR28
  publication-title: Biotech Adv
  doi: 10.1016/j.biotechadv.2020.107631
– volume: 28
  start-page: 30686
  year: 2020
  ident: 3256_CR30
  publication-title: Optics Express
  doi: 10.1364/OE.406036
– ident: 3256_CR1
– volume: 112
  start-page: 3366
  year: 2008
  ident: 3256_CR21
  publication-title: Remote Sens Environ.
  doi: 10.1016/j.rse.2008.01.021
– volume: 10
  start-page: 851
  year: 1988
  ident: 3256_CR3
  publication-title: J Plankton Res
  doi: 10.1093/plankt/10.5.851
– volume-title: Light and photosynthesis in aquatic ecosystems
  year: 2011
  ident: 3256_CR13
– volume: 398
  year: 2024
  ident: 3256_CR18
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2024.130520
– volume: 85
  start-page: 119
  year: 2011
  ident: 3256_CR8
  publication-title: J Microbiol Meth
  doi: 10.1016/j.mimet.2011.02.005
– volume: 62
  start-page: 1570
  year: 1996
  ident: 3256_CR6
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.62.5.1570-1573.1996
– volume: 109
  start-page: 1630
  year: 2022
  ident: 3256_CR4
  publication-title: Plant J
  doi: 10.1111/tpj.15643
– volume: 7
  start-page: 51
  year: 2015
  ident: 3256_CR7
  publication-title: Algal Res
  doi: 10.1016/j.algal.2014.12.002
– volume: 12
  start-page: 1924
  year: 2022
  ident: 3256_CR10
  publication-title: Appl Sci
  doi: 10.3390/app12041924
– volume: 71
  year: 2023
  ident: 3256_CR27
  publication-title: Algal Res
  doi: 10.1016/j.algal.2023.103071
– volume: 233
  year: 2019
  ident: 3256_CR23
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111350
– volume: 56
  start-page: 171
  year: 2021
  ident: 3256_CR16
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2020.1763380
– ident: 3256_CR24
– volume: 29
  start-page: 808
  year: 2013
  ident: 3256_CR20
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.1714
– volume: 30
  start-page: 233
  year: 2014
  ident: 3256_CR19
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.1843
– volume: 32
  start-page: 1
  year: 2021
  ident: 3256_CR12
  publication-title: J. For Res
  doi: 10.1007/s11676-020-01155-1
– volume: 50
  year: 2020
  ident: 3256_CR29
  publication-title: Algal Res
  doi: 10.1016/j.algal.2020.102018
– ident: 3256_CR5
  doi: 10.3389/fenvs.2021.649528
– volume: 45
  year: 2020
  ident: 3256_CR15
  publication-title: Algal Res
  doi: 10.1016/j.algal.2019.101680
– ident: 3256_CR9
  doi: 10.1111/j.0022-3646.1972.00010.x
SSID ssj0009818
Score 2.4624052
Snippet High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1653
SubjectTerms Algae
Aquatic microorganisms
Aquatic plants
Artificial neural networks
biochemical compounds
Biomass
Biomedical and Life Sciences
Biomolecules
Control methods
Cultivation
Ecology
Economics
Freshwater & Marine Ecology
hyperspectral imagery
Hyperspectral imaging
Laboratory experimentation
Life Sciences
Microalgae
Monitoring
Monitoring methods
Monoculture
Neural networks
Phytoplankton
Plant Physiology
Plant Sciences
profitability
regression analysis
Regression models
Robust control
species
standard deviation
vegetation
Vegetation index
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KuiD6FScX1TwTQPrJU3axymKCNuTgm8lyeIHuFb2Iey_95K1TkUF3wq9JuUuyf2S3P0O4MQai9o6y1ChZSLVyGjNMwzReG-ouA3VG7o9eX0nbu6T-yopbFRHu9dXkmGl_pTslvrjPBSszclRM7EISwnt3f24vsPOnGo3Dad67QxjlmYqrlJlfm7jqzuaY8xv16LB21xtwHoFE6POzK6bsOCKJqx1HocVVYZrwsqsjOS0CcvnJUE8eli5DBzU0y3o9sqCPRdv2kenR4MwcX1PUfkQDXwMnk_hcJFvrCpvNop8CPxj9EQb01n-5ZB-4HngOS624fbq8vbimlWVE5jlmRwzLZWWEq0wElMjs1iTrWiz0U4feF8mjruEkJUj9GdidMoqS49aGoOe7i_hO9AoysLtQtTnJGaT1KHSwiSZRrRZwgX51iwTfduCuNZfbitWcV_c4iWf8yF7neek8zzoPBctOP345nXGqfGn9EFtlryaX6OcE3L02WJKteD44zXNDH_doQtXTkiGFnPCRyKNW3BWm3PexO897v1PfB9WMYwoHxV4AI3xcOIOCamMzVEYmO9yWNzs
  priority: 102
  providerName: Springer Nature
Title Non-invasive monitoring of microalgae cultivations using hyperspectral imager
URI https://link.springer.com/article/10.1007/s10811-024-03256-4
https://www.proquest.com/docview/3083335277
https://www.proquest.com/docview/3153743481
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xdQh4QFBAdGxVJvEGFo3t2M4TakvLBFo1TZs0niLb9cYkmoy2Q-K_313qLAJpe0ksxYmjO_vu5_N9ALz3znPrg2dcc8-ksZyhzHOMc0faUAtfV284mqnDM_ntPDuPBrdVdKtsZGItqOeVJxv5J4FYgeKDtP58_ZtR1Sg6XY0lNLaggyLY4AzvjCaz45M27a6pLXyDnKfM5DqNYTMxeM6QeZBLNhCo-Jn8VzW1ePO_I9Ja80xfwPMIGZPhhscv4VEou_BseLmMaTNCFx5vSkr-7cLOqEK4h40nTcjx6hUczaqSXZV_LPmqJ4t6GdNYSXWRLMgjjwI6QkKfi8XOVgk5xF8mP3GbuonGXOIvXC0o48VrOJ1OTseHLNZRYF7kas2s0lYp7qVT3DiVpxY5h1uPgbkQc5UFETLEWQGxoEt50F57bFrlHKfkf5l4A9tlVYa3kMwFdvOZCVxb6bLccu7zTEjUtHku574HaUPBwscc41Tq4lfRZkcmqhdI9aKmeiF78OHunetNho0He-81jCnialsV7dzowcHdY1wndPhhy1DdYB8U7YiWpEl78LFhaPuJ-0fcfXjEd_CU13OIfAL3YHu9vAn7iFPWrg-d4ejLaEr3rz--T_pxcvZha6zGeD3jw1sE6ecR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5NHWjjAUEBURhgJHgCi8Z27OQBoQ02dWytECrS3iLb9cakNRltB9qP4j9ylziLQGJve4sUJ07O57vP9t19AK-888L64LkwwnOVWcHR5jkuhCNvaKSv2RvGEz36pj4fpUdr8LvNhaGwytYm1oZ6VnnaI38nEStQfpAxH85_cGKNotPVlkKjUYuDcPkLl2zL9_ufcHxfC7G3O_044pFVgHuZ6xW32lithVdOi8zpPLH4HwjEh9mxnOk0yJAi6giIjFwigvHG46XVzgkqhUckEWjx15VEpNCD9Z3dyZevXZXfrN5QHOYi4VlukpilE3P1MtqNFIoPJeIMrv72hB28_edEtnZ0e_fgbkSobLtRqfuwFso-3Nk-WcQqHaEPtxsGy8s-3NqpEF3ixUab4bx8AONJVfLT8qel0Hg2r60G9cWqYzanAEDKHwmMXhe51ZaM4u9P2HdcFTfJnwv8hNM5Fdh4CNObEPAj6JVVGR4Dm0ls5tMsCGOVS3MrhM9TqdCx57ma-QEkrQQLH0uaE7PGWdEVYyapFyj1opZ6oQbw5uqZ86agx7Wtt9qBKeLkXhadKg7g5dVtnJZ01mLLUF1gG_QkCM5UlgzgbTug3Sv-3-OT63t8ARuj6fiwONyfHDyFTVHrE4UjbkFvtbgIzxAirdzzqJgMihueCn8AjS8dWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW54HBAuoCwWMBCewunEcOzkg1NKuWkpXFSpSb5bt9ZZK3aTsbkH9afw7ZhKnEUj01pulOHYynsdnex4Ab7zzwvrgudDCc5lbwVHnOS6EI2uoU19XbzgYq91v8vNxdrwCv9tYGHKrbHViragnlacz8o0UsQLFB2m9MY1uEYfbo4_nPzhVkKKb1racRsMi--HyF27fFh_2tnGt3wox2jn6tMtjhQHu00ItuVXaKiW8dErkThWJxX9CUD7Mp-lEZSENGSKQgCjJJSJorz02rXJOUFo8KhiB2n9VU_RoD1a3dsaHX7uMv3l9uDgsRMLzQicxYifG7eV0MikkH6aIObj82yp2UPef29na6I0ewoOIVtlmw16PYCWUfbi_eTKPGTtCH2431Swv-3Brq0KkiY27bbTz4jEcjKuSn5Y_LbnJs1mtQWguVk3ZjJwBKZYkMBou1llbMPLFP2HfcYfcBILO8RNOZ5Rs4wkc3QSBn0KvrMqwBmySYjef5UFoK11WWCF8kaUSjXxRyIkfQNJS0PiY3pyqbJyZLjEzUd0g1U1NdSMH8O7qnfMmuce1vdfbhTFR0BemY8sBvL56jCJK9y62DNUF9kGrgkBN5skA3rcL2g3x_xmfXT_jK7iDImC-7I33n8M9UbMTeSauQ285vwgvEC0t3cvIlwzMDUvCHxoCIZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+monitoring+of+microalgae+cultivations+using+hyperspectral+imager&rft.jtitle=Journal+of+applied+phycology&rft.au=P%C3%A4%C3%A4kk%C3%B6nen%2C+Salli&rft.au=P%C3%B6l%C3%B6nen%2C+Ilkka&rft.au=Raita-Hakola%2C+Anna-Maria&rft.au=Carneiro%2C+Mariana&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=36&rft.issue=4&rft.spage=1653&rft.epage=1665&rft_id=info:doi/10.1007%2Fs10811-024-03256-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon