Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting

Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates th...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 644
Main Authors Lemos, Leandro N., Pereira, Roberta V., Quaggio, Ronaldo B., Martins, Layla F., Moura, Livia M. S., da Silva, Amanda R., Antunes, Luciana P., da Silva, Aline M., Setubal, João C.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 19.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new species; the first genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as and . The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
AbstractList Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new species; the first genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as and . The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis . The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Author Antunes, Luciana P.
Moura, Livia M. S.
Lemos, Leandro N.
Martins, Layla F.
da Silva, Amanda R.
Pereira, Roberta V.
da Silva, Aline M.
Quaggio, Ronaldo B.
Setubal, João C.
AuthorAffiliation 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
2 Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo São Paulo, Brazil
3 Biocomplexity Institute, Virginia Tech Blacksburg, VA, USA
AuthorAffiliation_xml – name: 3 Biocomplexity Institute, Virginia Tech Blacksburg, VA, USA
– name: 2 Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo São Paulo, Brazil
– name: 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
Author_xml – sequence: 1
  givenname: Leandro N.
  surname: Lemos
  fullname: Lemos, Leandro N.
– sequence: 2
  givenname: Roberta V.
  surname: Pereira
  fullname: Pereira, Roberta V.
– sequence: 3
  givenname: Ronaldo B.
  surname: Quaggio
  fullname: Quaggio, Ronaldo B.
– sequence: 4
  givenname: Layla F.
  surname: Martins
  fullname: Martins, Layla F.
– sequence: 5
  givenname: Livia M. S.
  surname: Moura
  fullname: Moura, Livia M. S.
– sequence: 6
  givenname: Amanda R.
  surname: da Silva
  fullname: da Silva, Amanda R.
– sequence: 7
  givenname: Luciana P.
  surname: Antunes
  fullname: Antunes, Luciana P.
– sequence: 8
  givenname: Aline M.
  surname: da Silva
  fullname: da Silva, Aline M.
– sequence: 9
  givenname: João C.
  surname: Setubal
  fullname: Setubal, João C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28469608$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1PHCEYJo2mWvXek5mjl9kyMwwDFxMdW2ti0otNvBFgYJeGjxWYTfbfy6o1aiIHIO_7fPDyfAN7PngFwPcGLrqO0B_aGSkWLWyGBYQYoS_gsMEY1R1s7_fe3A_ASUr_YFkItmX_Cg5agjDFkByC5bXywal6VD5HI6sLz-02mVQFXfHqbqWiC-uVsaXF_VSNytrZBrvNpXDJZVbRcFuNwacQs5lddVUqGzVVOgZX6m4dUjZ-eQz2NbdJnbycR-Dvr5934-_69s_1zXhxW8uO4lxTgTTmZZpW91PXI9oLLqDEGg-4gZ1Ag2pVQxrSEyzIACekNEFEtJBzKgriCJw_665n4dQkd2Nxy9bROB63LHDD3ne8WbFl2LC-o32xLQJnLwIxPMwqZeZMkmVs7lWYE2sI7duhQ5QW6Olbr1eT_79bAPAZIGNIKSr9Cmkg22XInjJkuwzZU4aFgj9QpMk8m7B7rbGfEx8BshSjcQ
CitedBy_id crossref_primary_10_1007_s12649_022_01687_z
crossref_primary_10_1007_s13205_024_04065_9
crossref_primary_10_4014_jmb_2106_06015
crossref_primary_10_1007_s13205_021_02962_x
crossref_primary_10_3389_fmicb_2020_539438
crossref_primary_10_3390_molecules26082299
crossref_primary_10_1186_s13068_017_1008_5
crossref_primary_10_1007_s11274_022_03327_z
crossref_primary_10_1186_s12864_021_07957_9
crossref_primary_10_1016_j_ijbiomac_2018_07_196
crossref_primary_10_1007_s43393_022_00105_8
crossref_primary_10_1007_s42770_019_00143_w
crossref_primary_10_1016_j_wasman_2021_05_037
crossref_primary_10_1038_s41396_021_01026_5
crossref_primary_10_3389_fmicb_2018_00364
crossref_primary_10_1016_j_apsoil_2024_105354
crossref_primary_10_3389_fmicb_2020_01387
crossref_primary_10_3390_microorganisms11010162
crossref_primary_10_1371_journal_pone_0215396
crossref_primary_10_1007_s11104_022_05451_z
crossref_primary_10_1007_s13399_021_02047_y
crossref_primary_10_1016_j_biortech_2018_04_067
crossref_primary_10_3389_fmicb_2022_1035311
crossref_primary_10_1002_cben_202300073
crossref_primary_10_1016_j_scitotenv_2021_148530
crossref_primary_10_1186_s12934_022_01818_0
crossref_primary_10_1016_j_jenvman_2024_122751
crossref_primary_10_1016_j_scitotenv_2021_151363
crossref_primary_10_1166_jbmb_2021_2079
crossref_primary_10_1111_lam_13676
crossref_primary_10_1007_s12088_024_01248_z
crossref_primary_10_3390_microorganisms8030353
crossref_primary_10_3390_ijerph18116001
crossref_primary_10_1016_j_eti_2023_103427
crossref_primary_10_1007_s11274_022_03260_1
crossref_primary_10_1016_j_biortech_2021_125369
crossref_primary_10_1016_j_biortech_2020_124599
crossref_primary_10_3389_fenrg_2019_00111
crossref_primary_10_1186_s40643_022_00601_8
crossref_primary_10_1007_s13399_020_01186_y
crossref_primary_10_1007_s11783_023_1682_4
crossref_primary_10_1111_jam_15266
crossref_primary_10_1016_j_heliyon_2023_e16426
crossref_primary_10_1128_AEM_00199_20
crossref_primary_10_1186_s12866_020_01800_z
Cites_doi 10.3389/fmicb.2016.01033
10.1038/ncomms3304
10.1371/journal.pone.0061928
10.1093/nar/gks479
10.1016/j.molcatb.2006.09.007
10.1016/j.syapm.2010.11.017
10.1007/s00253-002-1026-4
10.1186/s40793-015-0031-z
10.1128/AEM.00032-11
10.1016/j.jbiotec.2006.03.025
10.1128/AEM.02274-15
10.1186/s13068-016-0534-x
10.1186/s13068-016-0440-2
10.1007/s00253-016-7516-6
10.1038/nmicrobiol.2016.48
10.1128/genomeA.00105-16
10.1016/j.biortech.2012.01.173
10.1371/journal.pone.0008812
10.1186/2049-2618-2-26
10.1128/genomea.00082-12
10.1099/00207713-50-1-315
10.1186/1471-2180-10-94
10.1093/bioinformatics/btq033
10.3389/fmicb.2016.01125
10.1101/gr.092759.109
10.1128/genomeA.00797-15
10.1128/AEM.66.4.1741-1743.2000
10.1128/AEM.07313-11
10.1038/srep38781
10.1038/srep13845
10.1186/s12896-014-0106-8
10.1016/j.biortech.2015.04.010
10.1371/journal.pone.0079512
10.1007/s00792-013-0524-x
10.1007/s00253-013-5253-7
10.1186/s13068-016-0565-3
10.1007/s00253-013-4857-2
10.1128/mBio.01106-16
10.1016/j.enzmictec.2010.07.013
10.1093/nar/25.17.3389
10.1128/JB.00318-12
10.1186/s13068-016-0658-z
10.1016/j.tibtech.2015.09.006
10.1089/cmb.2013.0084
10.1007/s00253-011-3762-9
10.1016/j.biortech.2010.08.074
10.1038/srep25279
10.1038/nrmicro3468
10.1038/nbt.2579
10.1093/nar/gku1223
10.1007/s10295-009-0528-9
10.1016/j.coche.2016.09.003
10.1126/science.1200387
10.1128/AEM.02795-14
10.1093/nar/gkw290
10.1186/s13068-014-0180-0
10.1101/gr.183012.114
10.1038/nmeth.1923
10.1101/gr.186072.114
10.1074/jbc.M804053200
10.3389/fmicb.2016.00469
10.3389/fmicb.2015.00358
10.1021/bi800424e
10.1016/j.jbiotec.2015.10.002
10.1186/1475-2859-11-159
10.1038/srep01030
10.1111/1758-2229.12241
10.1007/978-1-4939-3369-3_13
10.1089/omi.2008.0017
10.1128/AEM.00735-15
10.1111/jam.12609
10.1016/j.copbio.2014.07.002
10.1111/j.1574-6968.2010.02000.x
10.1186/s40168-016-0154-5
10.1128/AEM.01511-10
10.1007/s00248-015-0683-7
10.1142/9781848165632_0019
10.1111/1462-2920.13382
10.1186/s13068-015-0200-8
10.1111/1462-2920.12159
10.4056/sigs.541628
10.1007/s00253-011-3103-z
10.1007/BF00873085
10.1371/journal.pone.0068465
10.1093/nar/gkt1178
10.1038/srep38915
ContentType Journal Article
Copyright Copyright © 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal. 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal
Copyright_xml – notice: Copyright © 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal. 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/fmicb.2017.00644
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID PMC5395642
28469608
10_3389_fmicb_2017_00644
Genre Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2011/50870-6; 2013/05325-5
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c396t-9b4f6a0642f5d35495bab0c6f676103b47e2e1818586b870d4ef848b20aa9b103
IEDL.DBID M48
ISSN 1664-302X
IngestDate Thu Aug 21 14:30:52 EDT 2025
Fri Jul 11 02:24:24 EDT 2025
Thu Jan 02 22:26:25 EST 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 00:54:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords composting
thermophilic
metagenome
consortium
cellulolytic
glycoside hydrolases
bacterial genome reconstruction
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-9b4f6a0642f5d35495bab0c6f676103b47e2e1818586b870d4ef848b20aa9b103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors shared senior authorship.
Reviewed by: Dimitris Tsaltas, Cyprus University of Technology, Cyprus; Alinne Castro, Universidade Católica Dom Bosco, Brazil
This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Eric Altermann, AgResearch, New Zealand
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00644
PMID 28469608
PQID 1895273499
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5395642
proquest_miscellaneous_1895273499
pubmed_primary_28469608
crossref_primary_10_3389_fmicb_2017_00644
crossref_citationtrail_10_3389_fmicb_2017_00644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-19
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Peng (B59) 2016; 14
Joshi (B38) 2011
Yin (B84) 2012; 40
Gupta (B29) 2016; 7
Simmons (B71) 2014a; 7
López-Mondéjar (B47) 2016; 6
Chen (B15) 2015; 216
Paës (B55) 2006; 125
Anand (B5) 2013; 17
Eichorst (B22) 2012; 78
Angiuoli (B6) 2008; 12
Mello (B50) 2016; 6
Neher (B52) 2013; 8
Zhang (B85) 2015; 7
Gladden (B27) 2011; 77
Shao (B69) 2011; 77
Hemsworth (B32) 2015; 33
Letunic (B44) 2016; 44
Jimenez (B36) 2015; 5
Sharon (B70) 2015; 25
Delmont (B18) 2015; 6
Vartoukian (B77) 2010; 309
Keegan (B39) 2016; 1399
Rooney (B65) 2015; 3
Parks (B57) 2015; 25
Altschul (B4) 1997; 25
Gao (B26) 2014; 98
Wongwilaiwalin (B80) 2010; 47
Yan (B83) 2012; 111
Nelson (B53) 2015; 82
Jiménez (B37) 2014; 98
Lombard (B46) 2014; 42
Quinlan (B61) 2010; 26
Takasuka (B74) 2013; 3
Nurk (B54) 2013; 20
Rakotoarivonina (B63) 2012; 11
Segata (B68) 2013; 4
Stolze (B73) 2016; 9
Allgaier (B3) 2010; 5
Hiras (B34) 2016; 7
Antunes (B7) 2016; 6
Zhu (B87) 2016; 9
Güllert (B28) 2016; 9
Zhao (B86) 2012; 194
Rosewarne (B66) 2013; 1
Touzel (B75) 2000; 50
Cartmell (B14) 2008; 283
Prosser (B60) 2015; 13
Eddy (B20) 2009; 23
Paës (B56) 2008; 47
Mhuantong (B51) 2015; 8
Brumm (B13) 2015; 10
D'Haeseleer (B19) 2013; 8
Haruta (B30) 2002; 59
Krzywinski (B42) 2009; 19
Hug (B35) 2016; 1
Araki (B8) 2000; 66
Wushke (B82) 2015; 81
Albertsen (B1) 2013; 31
Feng (B24) 2011; 102
Koeck (B41) 2014; 29
de Lima Brossi (B17) 2016; 71
Eichorst (B21) 2014; 80
Hess (B33) 2011; 331
Wang (B78) 2016; 9
Auch (B10) 2010; 2
Martins (B49) 2013; 8
Kinet (B40) 2015; 189
Albertsen (B2) 2016; 7
Ash (B9) 1993; 64
Li (B45) 2016; 7
Partanen (B58) 2010; 10
Galperin (B25) 2015; 43
Vanwonterghem (B76) 2016; 18
Zuroff (B88) 2012; 93
Wu (B81) 2014; 2
Eichorst (B23) 2013; 15
Sangwan (B67) 2016; 4
Simmons (B72) 2014b; 117
Berendsen (B11) 2016; 4
Langmead (B43) 2012; 9
Rastogi (B64) 2009; 36
Cortes-Tolalpa (B16) 2016; 100
Watanabe (B79) 2007; 44
Bhalla (B12) 2014; 14
Hayes (B31) 2011; 34
Rakotoarivonina (B62) 2011; 90
26834834 - Biotechnol Biofuels. 2016 Jan 29;9:22
27572647 - Nat Microbiol. 2016 Apr 11;1:16048
25104562 - Curr Opin Biotechnol. 2014 Oct;29:171-83
21131522 - Appl Environ Microbiol. 2011 Feb;77(3):719-26
26497460 - Appl Environ Microbiol. 2015 Oct 23;82(1):255-67
26487437 - Microb Ecol. 2016 Apr;71(3):616-27
26467717 - J Biotechnol. 2015 Dec 20;216:98-9
27151781 - Genome Announc. 2016 May 05;4(3):null
20487025 - FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7
27833656 - Biotechnol Biofuels. 2016 Nov 9;9:243
16644050 - J Biotechnol. 2006 Sep 18;125(3):338-50
19541911 - Genome Res. 2009 Sep;19(9):1639-45
10826818 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:315-20
25648696 - Biotechnol Biofuels. 2014 Dec 31;7(1):495
25532585 - BMC Biotechnol. 2014 Dec 23;14:963
26472212 - Trends Biotechnol. 2015 Dec;33(12):747-61
25879181 - Bioresour Technol. 2015;189:138-44
21273488 - Science. 2011 Jan 28;331(6016):463-7
18799462 - J Biol Chem. 2008 Dec 5;283(49):34403-13
25136443 - Microbiome. 2014 Aug 01;2:26
27170322 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7713-25
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
27458436 - Front Microbiol. 2016 Jul 04;7:1033
21279344 - Appl Microbiol Biotechnol. 2011 Apr;90(2):541-52
26442136 - Stand Genomic Sci. 2015 Oct 05;10:73
25261509 - Appl Environ Microbiol. 2014 Dec;80(23):7423-32
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
26052662 - Nat Rev Microbiol. 2015 Jul;13(7):439-46
21304686 - Stand Genomic Sci. 2010 Jan 28;2(1):142-8
23894306 - PLoS One. 2013 Jul 19;8(7):e68465
23504033 - Extremophiles. 2013 May;17(3):357-66
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
22287013 - Appl Environ Microbiol. 2012 Apr;78(7):2316-27
23637931 - PLoS One. 2013 Apr 24;8(4):e61928
25665577 - Genome Res. 2015 Apr;25(4):534-43
23241174 - Microb Cell Fact. 2012 Dec 14;11:159
23942190 - Nat Commun. 2013;4:2304
25403554 - Environ Microbiol Rep. 2015 Apr;7(2):273-81
22278256 - Appl Microbiol Biotechnol. 2012 Feb;93(4):1423-35
26343383 - Sci Rep. 2015 Sep 07;5:13845
27941835 - Sci Rep. 2016 Dec 12;6:38781
20350306 - BMC Microbiol. 2010 Mar 29;10:94
10742274 - Appl Environ Microbiol. 2000 Apr;66(4):1741-3
24278144 - PLoS One. 2013 Nov 21;8(11):e79512
23763762 - Environ Microbiol. 2013 Sep;15(9):2573-87
21724886 - Appl Environ Microbiol. 2011 Aug 15;77(16):5804-12
27148174 - Front Microbiol. 2016 Apr 12;7:469
25983722 - Front Microbiol. 2015 Apr 30;6:358
26205857 - Genome Announc. 2015 Jul 23;3(4):null
27941956 - Sci Rep. 2016 Dec 12;6:38915
27095192 - Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
12172621 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):529-34
19189143 - J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98
27317862 - Environ Microbiol. 2016 Sep;18(9):3144-58
25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
26951112 - Microbiome. 2016 Mar 08;4:8
26791506 - Methods Mol Biol. 2016;1399:207-33
23707974 - Nat Biotechnol. 2013 Jun;31(6):533-8
18416670 - OMICS. 2008 Jun;12(2):137-41
22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
27279900 - Biotechnol Biofuels. 2016 Jun 07;9:121
27462367 - Biotechnol Biofuels. 2016 Jul 26;9:156
22815439 - J Bacteriol. 2012 Aug;194(15):4118
21377821 - Syst Appl Microbiol. 2011 Apr;34(2):127-38
20863696 - Bioresour Technol. 2011 Jan;102(2):742-7
26048931 - Appl Environ Microbiol. 2015 Aug 15;81(16):5567-73
24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
23405289 - Genome Announc. 2013 Jan;1(1):null
18563919 - Biochemistry. 2008 Jul 15;47(28):7441-51
22365718 - Bioresour Technol. 2012 May;111:49-54
27125755 - Sci Rep. 2016 Apr 29;6:25279
25977477 - Genome Res. 2015 Jul;25(7):1043-55
24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803
23529681 - Appl Microbiol Biotechnol. 2014 Jan;98(1):465-74
20098679 - PLoS One. 2010 Jan 21;5(1):e8812
8085788 - Antonie Van Leeuwenhoek. 1993-1994;64(3-4):253-60
24093227 - J Comput Biol. 2013 Oct;20(10):714-37
25709713 - Biotechnol Biofuels. 2015 Feb 08;8:16
27512389 - Front Microbiol. 2016 Jul 27;7:1125
23301151 - Sci Rep. 2013;3:1030
20180275 - Genome Inform. 2009 Oct;23(1):205-11
27555310 - MBio. 2016 Aug 23;7(4):null
25066414 - J Appl Microbiol. 2014 Oct;117(4):1025-34
References_xml – volume: 7
  start-page: 1033
  year: 2016
  ident: B2
  article-title: Candidatus Propionivibrio aalborgensis: a novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01033
– volume: 4
  start-page: 2304
  year: 2013
  ident: B68
  article-title: PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3304
– volume: 8
  start-page: e61928
  year: 2013
  ident: B49
  article-title: Metagenomic analysis of a tropical composting operation at the Sao Paulo Zoo park reveals diversity of biomass degradation functions and organisms
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061928
– volume: 40
  start-page: W445
  year: 2012
  ident: B84
  article-title: dbCAN: a web resource for automated carbohydrate-active enzyme annotation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks479
– volume: 44
  start-page: 99
  year: 2007
  ident: B79
  article-title: Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase
  publication-title: J. Mol. Catal. B
  doi: 10.1016/j.molcatb.2006.09.007
– volume: 34
  start-page: 127
  year: 2011
  ident: B31
  article-title: Microbial ecology of autothermal thermophilic aerobic digester (ATAD) systems for treating waste activated sludge
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2010.11.017
– volume: 59
  start-page: 529
  year: 2002
  ident: B30
  article-title: Construction of a stable microbial community with high cellulose-degradation ability
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-002-1026-4
– volume: 10
  start-page: 73
  year: 2015
  ident: B13
  article-title: Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park
  publication-title: Stand. Genomic Sci.
  doi: 10.1186/s40793-015-0031-z
– volume: 77
  start-page: 5804
  year: 2011
  ident: B27
  article-title: Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00032-11
– volume: 125
  start-page: 338
  year: 2006
  ident: B55
  article-title: Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.03.025
– volume: 82
  start-page: 255
  year: 2015
  ident: B53
  article-title: Identification and resolution of microdiversity through metagenomic sequencing of parallel consortia
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02274-15
– volume: 9
  start-page: 121
  year: 2016
  ident: B28
  article-title: Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0534-x
– volume: 9
  start-page: 22
  year: 2016
  ident: B78
  article-title: Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0440-2
– volume: 100
  start-page: 7713
  year: 2016
  ident: B16
  article-title: Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7516-6
– volume: 1
  start-page: 16048
  year: 2016
  ident: B35
  article-title: A new view of the tree of life
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.48
– volume: 4
  start-page: e00105
  year: 2016
  ident: B11
  article-title: Draft genome sequences of seven thermophilic spore-forming bacteria isolated from foods that produce highly heat-resistant spores, comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00105-16
– volume: 111
  start-page: 49
  year: 2012
  ident: B83
  article-title: Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.173
– volume: 5
  start-page: e8812
  year: 2010
  ident: B3
  article-title: Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008812
– volume: 2
  start-page: 26
  year: 2014
  ident: B81
  article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-26
– volume: 1
  start-page: e00082
  year: 2013
  ident: B66
  article-title: Draft genome sequence of Methanobacterium sp. maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water
  publication-title: Genome Announc.
  doi: 10.1128/genomea.00082-12
– volume: 50
  start-page: 315
  year: 2000
  ident: B75
  article-title: Thermobacillus xylanilyticus gen. nov., sp nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/00207713-50-1-315
– volume: 10
  start-page: 94
  year: 2010
  ident: B58
  article-title: Bacterial diversity at different stages of the composting process
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-94
– volume: 26
  start-page: 841
  year: 2010
  ident: B61
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 7
  start-page: 1125
  year: 2016
  ident: B45
  article-title: Genomic and transcriptomic resolution of organic matter utilization among deep-sea bacteria in guaymas basin hydrothermal plumes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01125
– volume: 19
  start-page: 1639
  year: 2009
  ident: B42
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
  doi: 10.1101/gr.092759.109
– volume: 3
  start-page: e00797
  year: 2015
  ident: B65
  article-title: Draft genome sequence of the cellulolytic and xylanolytic thermophile Clostridium clariflavum strain 4-2a
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00797-15
– volume: 66
  start-page: 1741
  year: 2000
  ident: B8
  article-title: Cloning, sequencing, and expression in Escherichia coli of the new gene encoding beta-1,3-xylanase from a marine bacterium, Vibrio sp strain XY-214
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.4.1741-1743.2000
– volume: 78
  start-page: 2316
  year: 2012
  ident: B22
  article-title: Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.07313-11
– volume: 6
  start-page: 38781
  year: 2016
  ident: B50
  article-title: Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia
  publication-title: Sci. Rep.
  doi: 10.1038/srep38781
– volume: 5
  start-page: 13845
  year: 2015
  ident: B36
  article-title: Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw
  publication-title: Sci. Rep.
  doi: 10.1038/srep13845
– volume: 14
  start-page: 963
  year: 2014
  ident: B12
  article-title: Highly thermostable GH39 beta-xylosidase from a Geobacillus sp strain WSUCF1
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-014-0106-8
– volume: 189
  start-page: 138
  year: 2015
  ident: B40
  article-title: Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.04.010
– volume: 8
  start-page: e79512
  year: 2013
  ident: B52
  article-title: Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079512
– volume: 17
  start-page: 357
  year: 2013
  ident: B5
  article-title: Characteristics of thermostable endoxylanase and beta-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues
  publication-title: Extremophiles
  doi: 10.1007/s00792-013-0524-x
– volume: 98
  start-page: 2789
  year: 2014
  ident: B37
  article-title: Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5253-7
– volume: 9
  start-page: 156
  year: 2016
  ident: B73
  article-title: Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0565-3
– volume: 98
  start-page: 465
  year: 2014
  ident: B26
  article-title: Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4857-2
– volume: 7
  start-page: e01106
  year: 2016
  ident: B34
  article-title: Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis
  publication-title: Mbio
  doi: 10.1128/mBio.01106-16
– volume: 47
  start-page: 283
  year: 2010
  ident: B80
  article-title: Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2010.07.013
– volume: 25
  start-page: 3389
  year: 1997
  ident: B4
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 194
  start-page: 4118
  year: 2012
  ident: B86
  article-title: Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00318-12
– volume: 9
  start-page: 243
  year: 2016
  ident: B87
  article-title: Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0658-z
– volume: 33
  start-page: 747
  year: 2015
  ident: B32
  article-title: Lytic polysaccharide monooxygenases in biomass conversion
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2015.09.006
– volume: 20
  start-page: 714
  year: 2013
  ident: B54
  article-title: Assembling single-cell genomes and mini-metagenomes from chimeric MDA products
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2013.0084
– volume: 93
  start-page: 1423
  year: 2012
  ident: B88
  article-title: Developing symbiotic consortia for lignocellulosic biofuel production
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3762-9
– volume: 102
  start-page: 742
  year: 2011
  ident: B24
  article-title: Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.074
– volume: 6
  start-page: 25279
  year: 2016
  ident: B47
  article-title: Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems
  publication-title: Sci. Rep.
  doi: 10.1038/srep25279
– volume: 13
  start-page: 439
  year: 2015
  ident: B60
  article-title: Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3468
– volume: 31
  start-page: 533
  year: 2013
  ident: B1
  article-title: Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2579
– volume: 43
  start-page: D261
  year: 2015
  ident: B25
  article-title: Expanded microbial genome coverage and improved protein family annotation in the COG database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1223
– volume: 36
  start-page: 585
  year: 2009
  ident: B64
  article-title: Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA
  publication-title: J. Indus. Microbiol. Biotechnol.
  doi: 10.1007/s10295-009-0528-9
– volume: 14
  start-page: 103
  year: 2016
  ident: B59
  article-title: Microbial communities for bioprocessing: lessons learned from nature
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2016.09.003
– volume: 331
  start-page: 463
  year: 2011
  ident: B33
  article-title: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen
  publication-title: Science
  doi: 10.1126/science.1200387
– volume: 80
  start-page: 7423
  year: 2014
  ident: B21
  article-title: Substrate-specific development of thermophilic bacterial consortia by using chemically pretreated switchgrass
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02795-14
– volume: 44
  start-page: W242
  year: 2016
  ident: B44
  article-title: Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw290
– volume: 7
  start-page: 495
  year: 2014a
  ident: B71
  article-title: Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-014-0180-0
– volume: 25
  start-page: 534
  year: 2015
  ident: B70
  article-title: Accurate, multi-kb reads resolve complex populations and detect rare microorganisms
  publication-title: Genome Res.
  doi: 10.1101/gr.183012.114
– volume: 9
  start-page: 357
  year: 2012
  ident: B43
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 25
  start-page: 1043
  year: 2015
  ident: B57
  article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
  publication-title: Genome Res.
  doi: 10.1101/gr.186072.114
– volume: 283
  start-page: 34403
  year: 2008
  ident: B14
  article-title: The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804053200
– volume: 7
  start-page: 469
  year: 2016
  ident: B29
  article-title: Reconstruction of bacterial and viral genomes from multiple metagenomes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00469
– volume: 6
  start-page: 358
  year: 2015
  ident: B18
  article-title: Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00358
– volume: 47
  start-page: 7441
  year: 2008
  ident: B56
  article-title: The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit
  publication-title: Biochemistry
  doi: 10.1021/bi800424e
– volume: 216
  start-page: 98
  year: 2015
  ident: B15
  article-title: Genome sequence of Geobacillus thermoglucosidasius DSM2542, a platform hosts for biotechnological applications with industrial potential
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.10.002
– year: 2011
  ident: B38
  publication-title: Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files
– volume: 11
  start-page: 159
  year: 2012
  ident: B63
  article-title: The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-11-159
– volume: 3
  start-page: 1030
  year: 2013
  ident: B74
  article-title: Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces
  publication-title: Sci. Rep.
  doi: 10.1038/srep01030
– volume: 7
  start-page: 273
  year: 2015
  ident: B85
  article-title: Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12241
– volume: 1399
  start-page: 207
  year: 2016
  ident: B39
  article-title: MG-RAST, a Metagenomics service for analysis of microbial community structure and function
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3369-3_13
– volume: 12
  start-page: 137
  year: 2008
  ident: B6
  article-title: Toward an online repository of standard operating procedures (SOPs) for (Meta) genomic annotation
  publication-title: OMICS
  doi: 10.1089/omi.2008.0017
– volume: 81
  start-page: 5567
  year: 2015
  ident: B82
  article-title: Facultative Anaerobe Caldibacillus debilis GB1: characterization and use in a designed aerotolerant, cellulose-degrading coculture with Clostridium thermocellum
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00735-15
– volume: 117
  start-page: 1025
  year: 2014b
  ident: B72
  article-title: Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12609
– volume: 29
  start-page: 171
  year: 2014
  ident: B41
  article-title: Genomics of cellulolytic bacteria
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.07.002
– volume: 309
  start-page: 1
  year: 2010
  ident: B77
  article-title: Strategies for culture of ‘unculturable’ bacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2010.02000.x
– volume: 4
  start-page: 8
  year: 2016
  ident: B67
  article-title: Recovering complete and draft population genomes from metagenome datasets
  publication-title: Microbiome
  doi: 10.1186/s40168-016-0154-5
– volume: 77
  start-page: 719
  year: 2011
  ident: B69
  article-title: Characterization of a Novel beta-Xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01511-10
– volume: 71
  start-page: 616
  year: 2016
  ident: B17
  article-title: Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-015-0683-7
– volume: 23
  start-page: 205
  year: 2009
  ident: B20
  article-title: A new generation of homology search tools based on probabilistic inference
  publication-title: Genome Inform.
  doi: 10.1142/9781848165632_0019
– volume: 18
  start-page: 3144
  year: 2016
  ident: B76
  article-title: Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13382
– volume: 8
  start-page: 16
  year: 2015
  ident: B51
  article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0200-8
– volume: 15
  start-page: 2573
  year: 2013
  ident: B23
  article-title: Community dynamics of cellulose-adapted thermophilic bacterial consortia
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12159
– volume: 2
  start-page: 142
  year: 2010
  ident: B10
  article-title: Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs
  publication-title: Stand. Genomic Sci.
  doi: 10.4056/sigs.541628
– volume: 90
  start-page: 541
  year: 2011
  ident: B62
  article-title: A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3103-z
– volume: 64
  start-page: 253
  year: 1993
  ident: B9
  article-title: Molecular identification of ribosomal RNA Group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test - proposal for the creation of a new genus Paenibacillus
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/BF00873085
– volume: 8
  start-page: e68465
  year: 2013
  ident: B19
  article-title: Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068465
– volume: 42
  start-page: D490
  year: 2014
  ident: B46
  article-title: The carbohydrate-active enzymes database (CAZy) in 2013
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1178
– volume: 6
  start-page: 38915
  year: 2016
  ident: B7
  article-title: Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics
  publication-title: Sci. Rep.
  doi: 10.1038/srep38915
– reference: 25665577 - Genome Res. 2015 Apr;25(4):534-43
– reference: 18563919 - Biochemistry. 2008 Jul 15;47(28):7441-51
– reference: 8085788 - Antonie Van Leeuwenhoek. 1993-1994;64(3-4):253-60
– reference: 21131522 - Appl Environ Microbiol. 2011 Feb;77(3):719-26
– reference: 27279900 - Biotechnol Biofuels. 2016 Jun 07;9:121
– reference: 25709713 - Biotechnol Biofuels. 2015 Feb 08;8:16
– reference: 23707974 - Nat Biotechnol. 2013 Jun;31(6):533-8
– reference: 27148174 - Front Microbiol. 2016 Apr 12;7:469
– reference: 26791506 - Methods Mol Biol. 2016;1399:207-33
– reference: 20180275 - Genome Inform. 2009 Oct;23(1):205-11
– reference: 22365718 - Bioresour Technol. 2012 May;111:49-54
– reference: 23504033 - Extremophiles. 2013 May;17(3):357-66
– reference: 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
– reference: 26205857 - Genome Announc. 2015 Jul 23;3(4):null
– reference: 25879181 - Bioresour Technol. 2015;189:138-44
– reference: 27555310 - MBio. 2016 Aug 23;7(4):null
– reference: 27833656 - Biotechnol Biofuels. 2016 Nov 9;9:243
– reference: 25261509 - Appl Environ Microbiol. 2014 Dec;80(23):7423-32
– reference: 24093227 - J Comput Biol. 2013 Oct;20(10):714-37
– reference: 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
– reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45
– reference: 23301151 - Sci Rep. 2013;3:1030
– reference: 26472212 - Trends Biotechnol. 2015 Dec;33(12):747-61
– reference: 23637931 - PLoS One. 2013 Apr 24;8(4):e61928
– reference: 25066414 - J Appl Microbiol. 2014 Oct;117(4):1025-34
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 21279344 - Appl Microbiol Biotechnol. 2011 Apr;90(2):541-52
– reference: 25532585 - BMC Biotechnol. 2014 Dec 23;14:963
– reference: 25104562 - Curr Opin Biotechnol. 2014 Oct;29:171-83
– reference: 16644050 - J Biotechnol. 2006 Sep 18;125(3):338-50
– reference: 27458436 - Front Microbiol. 2016 Jul 04;7:1033
– reference: 22815439 - J Bacteriol. 2012 Aug;194(15):4118
– reference: 12172621 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):529-34
– reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
– reference: 25403554 - Environ Microbiol Rep. 2015 Apr;7(2):273-81
– reference: 21304686 - Stand Genomic Sci. 2010 Jan 28;2(1):142-8
– reference: 20350306 - BMC Microbiol. 2010 Mar 29;10:94
– reference: 20863696 - Bioresour Technol. 2011 Jan;102(2):742-7
– reference: 23241174 - Microb Cell Fact. 2012 Dec 14;11:159
– reference: 27572647 - Nat Microbiol. 2016 Apr 11;1:16048
– reference: 22287013 - Appl Environ Microbiol. 2012 Apr;78(7):2316-27
– reference: 20098679 - PLoS One. 2010 Jan 21;5(1):e8812
– reference: 25648696 - Biotechnol Biofuels. 2014 Dec 31;7(1):495
– reference: 25136443 - Microbiome. 2014 Aug 01;2:26
– reference: 20487025 - FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7
– reference: 23942190 - Nat Commun. 2013;4:2304
– reference: 26048931 - Appl Environ Microbiol. 2015 Aug 15;81(16):5567-73
– reference: 21724886 - Appl Environ Microbiol. 2011 Aug 15;77(16):5804-12
– reference: 22278256 - Appl Microbiol Biotechnol. 2012 Feb;93(4):1423-35
– reference: 19189143 - J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98
– reference: 23894306 - PLoS One. 2013 Jul 19;8(7):e68465
– reference: 10742274 - Appl Environ Microbiol. 2000 Apr;66(4):1741-3
– reference: 27941956 - Sci Rep. 2016 Dec 12;6:38915
– reference: 21273488 - Science. 2011 Jan 28;331(6016):463-7
– reference: 10826818 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:315-20
– reference: 26834834 - Biotechnol Biofuels. 2016 Jan 29;9:22
– reference: 18416670 - OMICS. 2008 Jun;12(2):137-41
– reference: 24278144 - PLoS One. 2013 Nov 21;8(11):e79512
– reference: 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
– reference: 27317862 - Environ Microbiol. 2016 Sep;18(9):3144-58
– reference: 23405289 - Genome Announc. 2013 Jan;1(1):null
– reference: 26487437 - Microb Ecol. 2016 Apr;71(3):616-27
– reference: 26343383 - Sci Rep. 2015 Sep 07;5:13845
– reference: 27095192 - Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
– reference: 27462367 - Biotechnol Biofuels. 2016 Jul 26;9:156
– reference: 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803
– reference: 21377821 - Syst Appl Microbiol. 2011 Apr;34(2):127-38
– reference: 25977477 - Genome Res. 2015 Jul;25(7):1043-55
– reference: 26497460 - Appl Environ Microbiol. 2015 Oct 23;82(1):255-67
– reference: 26442136 - Stand Genomic Sci. 2015 Oct 05;10:73
– reference: 23763762 - Environ Microbiol. 2013 Sep;15(9):2573-87
– reference: 26052662 - Nat Rev Microbiol. 2015 Jul;13(7):439-46
– reference: 26951112 - Microbiome. 2016 Mar 08;4:8
– reference: 27125755 - Sci Rep. 2016 Apr 29;6:25279
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 27170322 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7713-25
– reference: 18799462 - J Biol Chem. 2008 Dec 5;283(49):34403-13
– reference: 27151781 - Genome Announc. 2016 May 05;4(3):null
– reference: 26467717 - J Biotechnol. 2015 Dec 20;216:98-9
– reference: 27512389 - Front Microbiol. 2016 Jul 27;7:1125
– reference: 23529681 - Appl Microbiol Biotechnol. 2014 Jan;98(1):465-74
– reference: 27941835 - Sci Rep. 2016 Dec 12;6:38781
– reference: 25983722 - Front Microbiol. 2015 Apr 30;6:358
SSID ssj0000402000
Score 2.3682663
Snippet Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 644
SubjectTerms Microbiology
Title Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting
URI https://www.ncbi.nlm.nih.gov/pubmed/28469608
https://www.proquest.com/docview/1895273499
https://pubmed.ncbi.nlm.nih.gov/PMC5395642
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoCKkX1AKFpRQZqRcOgcRxnPiAEOWpSnBipb1FdjIpK2UT2Afq_vvOONmly-uSQ-KMIn92Zj6P_Q1jP6UfZqHOAy8TVMIsE-DZwAcPfGPiUPmFdLUBb27VdVf-7kW95-PRbQeO3qR2VE-qOywP_z5OT3DCHxPjRH-LCPQzS7u0SI0Q_fsntoJ-KaZpetMG--6_TFTJnUkJlKJ0gOg1ecs3jZBKMPpmDPCTRZf1Kg59uZ3yP_90-YWttYElP21Gwle2BNU6W21KTU432J8rqOoBeG41t5_xmRgJrwtuOA6W4aB-oMWVjJsq52dQlpOyLqdojf9qFJ3ROpX3xK7qTwb8HO88Qc7pfAqnv0o9oh3Um6x7eXF3du21RRY8xEiNPW1loQzRkCLKQ2SLkTXWz1ShYoysQitjEBCQW0-UxcmdSygSmViBYGqENfzGlqu6gm3GE5lHArTvQ-KjzzNaBBBpHCPaCDpw32FHs35Ms1aBnAphlCkyEQIhdSCkBELqQOiwg_kbD436xgdt92fQpDhFKO9hKqgnozRINMnMIbfrsK0Gqrm1GcYdFi-AOG9A8tuLT6r-vZPhjkLkllLsvGvzO_tMn0e5p0DvsuXxcAI_MIQZ2z1H_fF61Qv23Cj9ByuY7v8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Centric+Analysis+of+a+Thermophilic+and+Cellulolytic+Bacterial+Consortium+Derived+from+Composting&rft.jtitle=Frontiers+in+microbiology&rft.au=Lemos%2C+Leandro+N&rft.au=Pereira%2C+Roberta+V&rft.au=Quaggio%2C+Ronaldo+B&rft.au=Martins%2C+Layla+F&rft.date=2017-04-19&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft.spage=644&rft_id=info:doi/10.3389%2Ffmicb.2017.00644&rft_id=info%3Apmid%2F28469608&rft.externalDocID=28469608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon