Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates th...
Saved in:
Published in | Frontiers in microbiology Vol. 8; p. 644 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new
species; the first
genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as
and
. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new
species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies. |
---|---|
AbstractList | Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies. Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new species; the first genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as and . The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies. Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis . The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies. |
Author | Antunes, Luciana P. Moura, Livia M. S. Lemos, Leandro N. Martins, Layla F. da Silva, Amanda R. Pereira, Roberta V. da Silva, Aline M. Quaggio, Ronaldo B. Setubal, João C. |
AuthorAffiliation | 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil 2 Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo São Paulo, Brazil 3 Biocomplexity Institute, Virginia Tech Blacksburg, VA, USA |
AuthorAffiliation_xml | – name: 3 Biocomplexity Institute, Virginia Tech Blacksburg, VA, USA – name: 2 Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo São Paulo, Brazil – name: 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil |
Author_xml | – sequence: 1 givenname: Leandro N. surname: Lemos fullname: Lemos, Leandro N. – sequence: 2 givenname: Roberta V. surname: Pereira fullname: Pereira, Roberta V. – sequence: 3 givenname: Ronaldo B. surname: Quaggio fullname: Quaggio, Ronaldo B. – sequence: 4 givenname: Layla F. surname: Martins fullname: Martins, Layla F. – sequence: 5 givenname: Livia M. S. surname: Moura fullname: Moura, Livia M. S. – sequence: 6 givenname: Amanda R. surname: da Silva fullname: da Silva, Amanda R. – sequence: 7 givenname: Luciana P. surname: Antunes fullname: Antunes, Luciana P. – sequence: 8 givenname: Aline M. surname: da Silva fullname: da Silva, Aline M. – sequence: 9 givenname: João C. surname: Setubal fullname: Setubal, João C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28469608$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1PHCEYJo2mWvXek5mjl9kyMwwDFxMdW2ti0otNvBFgYJeGjxWYTfbfy6o1aiIHIO_7fPDyfAN7PngFwPcGLrqO0B_aGSkWLWyGBYQYoS_gsMEY1R1s7_fe3A_ASUr_YFkItmX_Cg5agjDFkByC5bXywal6VD5HI6sLz-02mVQFXfHqbqWiC-uVsaXF_VSNytrZBrvNpXDJZVbRcFuNwacQs5lddVUqGzVVOgZX6m4dUjZ-eQz2NbdJnbycR-Dvr5934-_69s_1zXhxW8uO4lxTgTTmZZpW91PXI9oLLqDEGg-4gZ1Ag2pVQxrSEyzIACekNEFEtJBzKgriCJw_665n4dQkd2Nxy9bROB63LHDD3ne8WbFl2LC-o32xLQJnLwIxPMwqZeZMkmVs7lWYE2sI7duhQ5QW6Olbr1eT_79bAPAZIGNIKSr9Cmkg22XInjJkuwzZU4aFgj9QpMk8m7B7rbGfEx8BshSjcQ |
CitedBy_id | crossref_primary_10_1007_s12649_022_01687_z crossref_primary_10_1007_s13205_024_04065_9 crossref_primary_10_4014_jmb_2106_06015 crossref_primary_10_1007_s13205_021_02962_x crossref_primary_10_3389_fmicb_2020_539438 crossref_primary_10_3390_molecules26082299 crossref_primary_10_1186_s13068_017_1008_5 crossref_primary_10_1007_s11274_022_03327_z crossref_primary_10_1186_s12864_021_07957_9 crossref_primary_10_1016_j_ijbiomac_2018_07_196 crossref_primary_10_1007_s43393_022_00105_8 crossref_primary_10_1007_s42770_019_00143_w crossref_primary_10_1016_j_wasman_2021_05_037 crossref_primary_10_1038_s41396_021_01026_5 crossref_primary_10_3389_fmicb_2018_00364 crossref_primary_10_1016_j_apsoil_2024_105354 crossref_primary_10_3389_fmicb_2020_01387 crossref_primary_10_3390_microorganisms11010162 crossref_primary_10_1371_journal_pone_0215396 crossref_primary_10_1007_s11104_022_05451_z crossref_primary_10_1007_s13399_021_02047_y crossref_primary_10_1016_j_biortech_2018_04_067 crossref_primary_10_3389_fmicb_2022_1035311 crossref_primary_10_1002_cben_202300073 crossref_primary_10_1016_j_scitotenv_2021_148530 crossref_primary_10_1186_s12934_022_01818_0 crossref_primary_10_1016_j_jenvman_2024_122751 crossref_primary_10_1016_j_scitotenv_2021_151363 crossref_primary_10_1166_jbmb_2021_2079 crossref_primary_10_1111_lam_13676 crossref_primary_10_1007_s12088_024_01248_z crossref_primary_10_3390_microorganisms8030353 crossref_primary_10_3390_ijerph18116001 crossref_primary_10_1016_j_eti_2023_103427 crossref_primary_10_1007_s11274_022_03260_1 crossref_primary_10_1016_j_biortech_2021_125369 crossref_primary_10_1016_j_biortech_2020_124599 crossref_primary_10_3389_fenrg_2019_00111 crossref_primary_10_1186_s40643_022_00601_8 crossref_primary_10_1007_s13399_020_01186_y crossref_primary_10_1007_s11783_023_1682_4 crossref_primary_10_1111_jam_15266 crossref_primary_10_1016_j_heliyon_2023_e16426 crossref_primary_10_1128_AEM_00199_20 crossref_primary_10_1186_s12866_020_01800_z |
Cites_doi | 10.3389/fmicb.2016.01033 10.1038/ncomms3304 10.1371/journal.pone.0061928 10.1093/nar/gks479 10.1016/j.molcatb.2006.09.007 10.1016/j.syapm.2010.11.017 10.1007/s00253-002-1026-4 10.1186/s40793-015-0031-z 10.1128/AEM.00032-11 10.1016/j.jbiotec.2006.03.025 10.1128/AEM.02274-15 10.1186/s13068-016-0534-x 10.1186/s13068-016-0440-2 10.1007/s00253-016-7516-6 10.1038/nmicrobiol.2016.48 10.1128/genomeA.00105-16 10.1016/j.biortech.2012.01.173 10.1371/journal.pone.0008812 10.1186/2049-2618-2-26 10.1128/genomea.00082-12 10.1099/00207713-50-1-315 10.1186/1471-2180-10-94 10.1093/bioinformatics/btq033 10.3389/fmicb.2016.01125 10.1101/gr.092759.109 10.1128/genomeA.00797-15 10.1128/AEM.66.4.1741-1743.2000 10.1128/AEM.07313-11 10.1038/srep38781 10.1038/srep13845 10.1186/s12896-014-0106-8 10.1016/j.biortech.2015.04.010 10.1371/journal.pone.0079512 10.1007/s00792-013-0524-x 10.1007/s00253-013-5253-7 10.1186/s13068-016-0565-3 10.1007/s00253-013-4857-2 10.1128/mBio.01106-16 10.1016/j.enzmictec.2010.07.013 10.1093/nar/25.17.3389 10.1128/JB.00318-12 10.1186/s13068-016-0658-z 10.1016/j.tibtech.2015.09.006 10.1089/cmb.2013.0084 10.1007/s00253-011-3762-9 10.1016/j.biortech.2010.08.074 10.1038/srep25279 10.1038/nrmicro3468 10.1038/nbt.2579 10.1093/nar/gku1223 10.1007/s10295-009-0528-9 10.1016/j.coche.2016.09.003 10.1126/science.1200387 10.1128/AEM.02795-14 10.1093/nar/gkw290 10.1186/s13068-014-0180-0 10.1101/gr.183012.114 10.1038/nmeth.1923 10.1101/gr.186072.114 10.1074/jbc.M804053200 10.3389/fmicb.2016.00469 10.3389/fmicb.2015.00358 10.1021/bi800424e 10.1016/j.jbiotec.2015.10.002 10.1186/1475-2859-11-159 10.1038/srep01030 10.1111/1758-2229.12241 10.1007/978-1-4939-3369-3_13 10.1089/omi.2008.0017 10.1128/AEM.00735-15 10.1111/jam.12609 10.1016/j.copbio.2014.07.002 10.1111/j.1574-6968.2010.02000.x 10.1186/s40168-016-0154-5 10.1128/AEM.01511-10 10.1007/s00248-015-0683-7 10.1142/9781848165632_0019 10.1111/1462-2920.13382 10.1186/s13068-015-0200-8 10.1111/1462-2920.12159 10.4056/sigs.541628 10.1007/s00253-011-3103-z 10.1007/BF00873085 10.1371/journal.pone.0068465 10.1093/nar/gkt1178 10.1038/srep38915 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal. 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal |
Copyright_xml | – notice: Copyright © 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal. 2017 Lemos, Pereira, Quaggio, Martins, Moura, da Silva, Antunes, da Silva and Setubal |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fmicb.2017.00644 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | PMC5395642 28469608 10_3389_fmicb_2017_00644 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2011/50870-6; 2013/05325-5 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c396t-9b4f6a0642f5d35495bab0c6f676103b47e2e1818586b870d4ef848b20aa9b103 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Thu Aug 21 14:30:52 EDT 2025 Fri Jul 11 02:24:24 EDT 2025 Thu Jan 02 22:26:25 EST 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 00:54:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | composting thermophilic metagenome consortium cellulolytic glycoside hydrolases bacterial genome reconstruction |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-9b4f6a0642f5d35495bab0c6f676103b47e2e1818586b870d4ef848b20aa9b103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors shared senior authorship. Reviewed by: Dimitris Tsaltas, Cyprus University of Technology, Cyprus; Alinne Castro, Universidade Católica Dom Bosco, Brazil This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology Edited by: Eric Altermann, AgResearch, New Zealand |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00644 |
PMID | 28469608 |
PQID | 1895273499 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5395642 proquest_miscellaneous_1895273499 pubmed_primary_28469608 crossref_primary_10_3389_fmicb_2017_00644 crossref_citationtrail_10_3389_fmicb_2017_00644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-19 |
PublicationDateYYYYMMDD | 2017-04-19 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Peng (B59) 2016; 14 Joshi (B38) 2011 Yin (B84) 2012; 40 Gupta (B29) 2016; 7 Simmons (B71) 2014a; 7 López-Mondéjar (B47) 2016; 6 Chen (B15) 2015; 216 Paës (B55) 2006; 125 Anand (B5) 2013; 17 Eichorst (B22) 2012; 78 Angiuoli (B6) 2008; 12 Mello (B50) 2016; 6 Neher (B52) 2013; 8 Zhang (B85) 2015; 7 Gladden (B27) 2011; 77 Shao (B69) 2011; 77 Hemsworth (B32) 2015; 33 Letunic (B44) 2016; 44 Jimenez (B36) 2015; 5 Sharon (B70) 2015; 25 Delmont (B18) 2015; 6 Vartoukian (B77) 2010; 309 Keegan (B39) 2016; 1399 Rooney (B65) 2015; 3 Parks (B57) 2015; 25 Altschul (B4) 1997; 25 Gao (B26) 2014; 98 Wongwilaiwalin (B80) 2010; 47 Yan (B83) 2012; 111 Nelson (B53) 2015; 82 Jiménez (B37) 2014; 98 Lombard (B46) 2014; 42 Quinlan (B61) 2010; 26 Takasuka (B74) 2013; 3 Nurk (B54) 2013; 20 Rakotoarivonina (B63) 2012; 11 Segata (B68) 2013; 4 Stolze (B73) 2016; 9 Allgaier (B3) 2010; 5 Hiras (B34) 2016; 7 Antunes (B7) 2016; 6 Zhu (B87) 2016; 9 Güllert (B28) 2016; 9 Zhao (B86) 2012; 194 Rosewarne (B66) 2013; 1 Touzel (B75) 2000; 50 Cartmell (B14) 2008; 283 Prosser (B60) 2015; 13 Eddy (B20) 2009; 23 Paës (B56) 2008; 47 Mhuantong (B51) 2015; 8 Brumm (B13) 2015; 10 D'Haeseleer (B19) 2013; 8 Haruta (B30) 2002; 59 Krzywinski (B42) 2009; 19 Hug (B35) 2016; 1 Araki (B8) 2000; 66 Wushke (B82) 2015; 81 Albertsen (B1) 2013; 31 Feng (B24) 2011; 102 Koeck (B41) 2014; 29 de Lima Brossi (B17) 2016; 71 Eichorst (B21) 2014; 80 Hess (B33) 2011; 331 Wang (B78) 2016; 9 Auch (B10) 2010; 2 Martins (B49) 2013; 8 Kinet (B40) 2015; 189 Albertsen (B2) 2016; 7 Ash (B9) 1993; 64 Li (B45) 2016; 7 Partanen (B58) 2010; 10 Galperin (B25) 2015; 43 Vanwonterghem (B76) 2016; 18 Zuroff (B88) 2012; 93 Wu (B81) 2014; 2 Eichorst (B23) 2013; 15 Sangwan (B67) 2016; 4 Simmons (B72) 2014b; 117 Berendsen (B11) 2016; 4 Langmead (B43) 2012; 9 Rastogi (B64) 2009; 36 Cortes-Tolalpa (B16) 2016; 100 Watanabe (B79) 2007; 44 Bhalla (B12) 2014; 14 Hayes (B31) 2011; 34 Rakotoarivonina (B62) 2011; 90 26834834 - Biotechnol Biofuels. 2016 Jan 29;9:22 27572647 - Nat Microbiol. 2016 Apr 11;1:16048 25104562 - Curr Opin Biotechnol. 2014 Oct;29:171-83 21131522 - Appl Environ Microbiol. 2011 Feb;77(3):719-26 26497460 - Appl Environ Microbiol. 2015 Oct 23;82(1):255-67 26487437 - Microb Ecol. 2016 Apr;71(3):616-27 26467717 - J Biotechnol. 2015 Dec 20;216:98-9 27151781 - Genome Announc. 2016 May 05;4(3):null 20487025 - FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7 27833656 - Biotechnol Biofuels. 2016 Nov 9;9:243 16644050 - J Biotechnol. 2006 Sep 18;125(3):338-50 19541911 - Genome Res. 2009 Sep;19(9):1639-45 10826818 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:315-20 25648696 - Biotechnol Biofuels. 2014 Dec 31;7(1):495 25532585 - BMC Biotechnol. 2014 Dec 23;14:963 26472212 - Trends Biotechnol. 2015 Dec;33(12):747-61 25879181 - Bioresour Technol. 2015;189:138-44 21273488 - Science. 2011 Jan 28;331(6016):463-7 18799462 - J Biol Chem. 2008 Dec 5;283(49):34403-13 25136443 - Microbiome. 2014 Aug 01;2:26 27170322 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7713-25 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 27458436 - Front Microbiol. 2016 Jul 04;7:1033 21279344 - Appl Microbiol Biotechnol. 2011 Apr;90(2):541-52 26442136 - Stand Genomic Sci. 2015 Oct 05;10:73 25261509 - Appl Environ Microbiol. 2014 Dec;80(23):7423-32 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 26052662 - Nat Rev Microbiol. 2015 Jul;13(7):439-46 21304686 - Stand Genomic Sci. 2010 Jan 28;2(1):142-8 23894306 - PLoS One. 2013 Jul 19;8(7):e68465 23504033 - Extremophiles. 2013 May;17(3):357-66 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 22287013 - Appl Environ Microbiol. 2012 Apr;78(7):2316-27 23637931 - PLoS One. 2013 Apr 24;8(4):e61928 25665577 - Genome Res. 2015 Apr;25(4):534-43 23241174 - Microb Cell Fact. 2012 Dec 14;11:159 23942190 - Nat Commun. 2013;4:2304 25403554 - Environ Microbiol Rep. 2015 Apr;7(2):273-81 22278256 - Appl Microbiol Biotechnol. 2012 Feb;93(4):1423-35 26343383 - Sci Rep. 2015 Sep 07;5:13845 27941835 - Sci Rep. 2016 Dec 12;6:38781 20350306 - BMC Microbiol. 2010 Mar 29;10:94 10742274 - Appl Environ Microbiol. 2000 Apr;66(4):1741-3 24278144 - PLoS One. 2013 Nov 21;8(11):e79512 23763762 - Environ Microbiol. 2013 Sep;15(9):2573-87 21724886 - Appl Environ Microbiol. 2011 Aug 15;77(16):5804-12 27148174 - Front Microbiol. 2016 Apr 12;7:469 25983722 - Front Microbiol. 2015 Apr 30;6:358 26205857 - Genome Announc. 2015 Jul 23;3(4):null 27941956 - Sci Rep. 2016 Dec 12;6:38915 27095192 - Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 12172621 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):529-34 19189143 - J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98 27317862 - Environ Microbiol. 2016 Sep;18(9):3144-58 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 26951112 - Microbiome. 2016 Mar 08;4:8 26791506 - Methods Mol Biol. 2016;1399:207-33 23707974 - Nat Biotechnol. 2013 Jun;31(6):533-8 18416670 - OMICS. 2008 Jun;12(2):137-41 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 27279900 - Biotechnol Biofuels. 2016 Jun 07;9:121 27462367 - Biotechnol Biofuels. 2016 Jul 26;9:156 22815439 - J Bacteriol. 2012 Aug;194(15):4118 21377821 - Syst Appl Microbiol. 2011 Apr;34(2):127-38 20863696 - Bioresour Technol. 2011 Jan;102(2):742-7 26048931 - Appl Environ Microbiol. 2015 Aug 15;81(16):5567-73 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 23405289 - Genome Announc. 2013 Jan;1(1):null 18563919 - Biochemistry. 2008 Jul 15;47(28):7441-51 22365718 - Bioresour Technol. 2012 May;111:49-54 27125755 - Sci Rep. 2016 Apr 29;6:25279 25977477 - Genome Res. 2015 Jul;25(7):1043-55 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803 23529681 - Appl Microbiol Biotechnol. 2014 Jan;98(1):465-74 20098679 - PLoS One. 2010 Jan 21;5(1):e8812 8085788 - Antonie Van Leeuwenhoek. 1993-1994;64(3-4):253-60 24093227 - J Comput Biol. 2013 Oct;20(10):714-37 25709713 - Biotechnol Biofuels. 2015 Feb 08;8:16 27512389 - Front Microbiol. 2016 Jul 27;7:1125 23301151 - Sci Rep. 2013;3:1030 20180275 - Genome Inform. 2009 Oct;23(1):205-11 27555310 - MBio. 2016 Aug 23;7(4):null 25066414 - J Appl Microbiol. 2014 Oct;117(4):1025-34 |
References_xml | – volume: 7 start-page: 1033 year: 2016 ident: B2 article-title: Candidatus Propionivibrio aalborgensis: a novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01033 – volume: 4 start-page: 2304 year: 2013 ident: B68 article-title: PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes publication-title: Nat. Commun. doi: 10.1038/ncomms3304 – volume: 8 start-page: e61928 year: 2013 ident: B49 article-title: Metagenomic analysis of a tropical composting operation at the Sao Paulo Zoo park reveals diversity of biomass degradation functions and organisms publication-title: PLoS ONE doi: 10.1371/journal.pone.0061928 – volume: 40 start-page: W445 year: 2012 ident: B84 article-title: dbCAN: a web resource for automated carbohydrate-active enzyme annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks479 – volume: 44 start-page: 99 year: 2007 ident: B79 article-title: Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase publication-title: J. Mol. Catal. B doi: 10.1016/j.molcatb.2006.09.007 – volume: 34 start-page: 127 year: 2011 ident: B31 article-title: Microbial ecology of autothermal thermophilic aerobic digester (ATAD) systems for treating waste activated sludge publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2010.11.017 – volume: 59 start-page: 529 year: 2002 ident: B30 article-title: Construction of a stable microbial community with high cellulose-degradation ability publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-002-1026-4 – volume: 10 start-page: 73 year: 2015 ident: B13 article-title: Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park publication-title: Stand. Genomic Sci. doi: 10.1186/s40793-015-0031-z – volume: 77 start-page: 5804 year: 2011 ident: B27 article-title: Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00032-11 – volume: 125 start-page: 338 year: 2006 ident: B55 article-title: Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.03.025 – volume: 82 start-page: 255 year: 2015 ident: B53 article-title: Identification and resolution of microdiversity through metagenomic sequencing of parallel consortia publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02274-15 – volume: 9 start-page: 121 year: 2016 ident: B28 article-title: Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0534-x – volume: 9 start-page: 22 year: 2016 ident: B78 article-title: Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0440-2 – volume: 100 start-page: 7713 year: 2016 ident: B16 article-title: Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7516-6 – volume: 1 start-page: 16048 year: 2016 ident: B35 article-title: A new view of the tree of life publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.48 – volume: 4 start-page: e00105 year: 2016 ident: B11 article-title: Draft genome sequences of seven thermophilic spore-forming bacteria isolated from foods that produce highly heat-resistant spores, comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus publication-title: Genome Announc. doi: 10.1128/genomeA.00105-16 – volume: 111 start-page: 49 year: 2012 ident: B83 article-title: Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.173 – volume: 5 start-page: e8812 year: 2010 ident: B3 article-title: Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community publication-title: PLoS ONE doi: 10.1371/journal.pone.0008812 – volume: 2 start-page: 26 year: 2014 ident: B81 article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm publication-title: Microbiome doi: 10.1186/2049-2618-2-26 – volume: 1 start-page: e00082 year: 2013 ident: B66 article-title: Draft genome sequence of Methanobacterium sp. maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water publication-title: Genome Announc. doi: 10.1128/genomea.00082-12 – volume: 50 start-page: 315 year: 2000 ident: B75 article-title: Thermobacillus xylanilyticus gen. nov., sp nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-50-1-315 – volume: 10 start-page: 94 year: 2010 ident: B58 article-title: Bacterial diversity at different stages of the composting process publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-94 – volume: 26 start-page: 841 year: 2010 ident: B61 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 7 start-page: 1125 year: 2016 ident: B45 article-title: Genomic and transcriptomic resolution of organic matter utilization among deep-sea bacteria in guaymas basin hydrothermal plumes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01125 – volume: 19 start-page: 1639 year: 2009 ident: B42 article-title: Circos: an information aesthetic for comparative genomics publication-title: Genome Res. doi: 10.1101/gr.092759.109 – volume: 3 start-page: e00797 year: 2015 ident: B65 article-title: Draft genome sequence of the cellulolytic and xylanolytic thermophile Clostridium clariflavum strain 4-2a publication-title: Genome Announc. doi: 10.1128/genomeA.00797-15 – volume: 66 start-page: 1741 year: 2000 ident: B8 article-title: Cloning, sequencing, and expression in Escherichia coli of the new gene encoding beta-1,3-xylanase from a marine bacterium, Vibrio sp strain XY-214 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.4.1741-1743.2000 – volume: 78 start-page: 2316 year: 2012 ident: B22 article-title: Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.07313-11 – volume: 6 start-page: 38781 year: 2016 ident: B50 article-title: Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia publication-title: Sci. Rep. doi: 10.1038/srep38781 – volume: 5 start-page: 13845 year: 2015 ident: B36 article-title: Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw publication-title: Sci. Rep. doi: 10.1038/srep13845 – volume: 14 start-page: 963 year: 2014 ident: B12 article-title: Highly thermostable GH39 beta-xylosidase from a Geobacillus sp strain WSUCF1 publication-title: BMC Biotechnol. doi: 10.1186/s12896-014-0106-8 – volume: 189 start-page: 138 year: 2015 ident: B40 article-title: Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.010 – volume: 8 start-page: e79512 year: 2013 ident: B52 article-title: Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times publication-title: PLoS ONE doi: 10.1371/journal.pone.0079512 – volume: 17 start-page: 357 year: 2013 ident: B5 article-title: Characteristics of thermostable endoxylanase and beta-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues publication-title: Extremophiles doi: 10.1007/s00792-013-0524-x – volume: 98 start-page: 2789 year: 2014 ident: B37 article-title: Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5253-7 – volume: 9 start-page: 156 year: 2016 ident: B73 article-title: Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0565-3 – volume: 98 start-page: 465 year: 2014 ident: B26 article-title: Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4857-2 – volume: 7 start-page: e01106 year: 2016 ident: B34 article-title: Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis publication-title: Mbio doi: 10.1128/mBio.01106-16 – volume: 47 start-page: 283 year: 2010 ident: B80 article-title: Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2010.07.013 – volume: 25 start-page: 3389 year: 1997 ident: B4 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 194 start-page: 4118 year: 2012 ident: B86 article-title: Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment publication-title: J. Bacteriol. doi: 10.1128/JB.00318-12 – volume: 9 start-page: 243 year: 2016 ident: B87 article-title: Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0658-z – volume: 33 start-page: 747 year: 2015 ident: B32 article-title: Lytic polysaccharide monooxygenases in biomass conversion publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.09.006 – volume: 20 start-page: 714 year: 2013 ident: B54 article-title: Assembling single-cell genomes and mini-metagenomes from chimeric MDA products publication-title: J. Comput. Biol. doi: 10.1089/cmb.2013.0084 – volume: 93 start-page: 1423 year: 2012 ident: B88 article-title: Developing symbiotic consortia for lignocellulosic biofuel production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3762-9 – volume: 102 start-page: 742 year: 2011 ident: B24 article-title: Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.074 – volume: 6 start-page: 25279 year: 2016 ident: B47 article-title: Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems publication-title: Sci. Rep. doi: 10.1038/srep25279 – volume: 13 start-page: 439 year: 2015 ident: B60 article-title: Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3468 – volume: 31 start-page: 533 year: 2013 ident: B1 article-title: Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2579 – volume: 43 start-page: D261 year: 2015 ident: B25 article-title: Expanded microbial genome coverage and improved protein family annotation in the COG database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1223 – volume: 36 start-page: 585 year: 2009 ident: B64 article-title: Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA publication-title: J. Indus. Microbiol. Biotechnol. doi: 10.1007/s10295-009-0528-9 – volume: 14 start-page: 103 year: 2016 ident: B59 article-title: Microbial communities for bioprocessing: lessons learned from nature publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2016.09.003 – volume: 331 start-page: 463 year: 2011 ident: B33 article-title: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen publication-title: Science doi: 10.1126/science.1200387 – volume: 80 start-page: 7423 year: 2014 ident: B21 article-title: Substrate-specific development of thermophilic bacterial consortia by using chemically pretreated switchgrass publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02795-14 – volume: 44 start-page: W242 year: 2016 ident: B44 article-title: Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw290 – volume: 7 start-page: 495 year: 2014a ident: B71 article-title: Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0180-0 – volume: 25 start-page: 534 year: 2015 ident: B70 article-title: Accurate, multi-kb reads resolve complex populations and detect rare microorganisms publication-title: Genome Res. doi: 10.1101/gr.183012.114 – volume: 9 start-page: 357 year: 2012 ident: B43 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 25 start-page: 1043 year: 2015 ident: B57 article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Res. doi: 10.1101/gr.186072.114 – volume: 283 start-page: 34403 year: 2008 ident: B14 article-title: The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804053200 – volume: 7 start-page: 469 year: 2016 ident: B29 article-title: Reconstruction of bacterial and viral genomes from multiple metagenomes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00469 – volume: 6 start-page: 358 year: 2015 ident: B18 article-title: Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00358 – volume: 47 start-page: 7441 year: 2008 ident: B56 article-title: The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit publication-title: Biochemistry doi: 10.1021/bi800424e – volume: 216 start-page: 98 year: 2015 ident: B15 article-title: Genome sequence of Geobacillus thermoglucosidasius DSM2542, a platform hosts for biotechnological applications with industrial potential publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.10.002 – year: 2011 ident: B38 publication-title: Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files – volume: 11 start-page: 159 year: 2012 ident: B63 article-title: The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-11-159 – volume: 3 start-page: 1030 year: 2013 ident: B74 article-title: Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces publication-title: Sci. Rep. doi: 10.1038/srep01030 – volume: 7 start-page: 273 year: 2015 ident: B85 article-title: Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12241 – volume: 1399 start-page: 207 year: 2016 ident: B39 article-title: MG-RAST, a Metagenomics service for analysis of microbial community structure and function publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3369-3_13 – volume: 12 start-page: 137 year: 2008 ident: B6 article-title: Toward an online repository of standard operating procedures (SOPs) for (Meta) genomic annotation publication-title: OMICS doi: 10.1089/omi.2008.0017 – volume: 81 start-page: 5567 year: 2015 ident: B82 article-title: Facultative Anaerobe Caldibacillus debilis GB1: characterization and use in a designed aerotolerant, cellulose-degrading coculture with Clostridium thermocellum publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00735-15 – volume: 117 start-page: 1025 year: 2014b ident: B72 article-title: Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12609 – volume: 29 start-page: 171 year: 2014 ident: B41 article-title: Genomics of cellulolytic bacteria publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.07.002 – volume: 309 start-page: 1 year: 2010 ident: B77 article-title: Strategies for culture of ‘unculturable’ bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2010.02000.x – volume: 4 start-page: 8 year: 2016 ident: B67 article-title: Recovering complete and draft population genomes from metagenome datasets publication-title: Microbiome doi: 10.1186/s40168-016-0154-5 – volume: 77 start-page: 719 year: 2011 ident: B69 article-title: Characterization of a Novel beta-Xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01511-10 – volume: 71 start-page: 616 year: 2016 ident: B17 article-title: Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation publication-title: Microb. Ecol. doi: 10.1007/s00248-015-0683-7 – volume: 23 start-page: 205 year: 2009 ident: B20 article-title: A new generation of homology search tools based on probabilistic inference publication-title: Genome Inform. doi: 10.1142/9781848165632_0019 – volume: 18 start-page: 3144 year: 2016 ident: B76 article-title: Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13382 – volume: 8 start-page: 16 year: 2015 ident: B51 article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0200-8 – volume: 15 start-page: 2573 year: 2013 ident: B23 article-title: Community dynamics of cellulose-adapted thermophilic bacterial consortia publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12159 – volume: 2 start-page: 142 year: 2010 ident: B10 article-title: Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs publication-title: Stand. Genomic Sci. doi: 10.4056/sigs.541628 – volume: 90 start-page: 541 year: 2011 ident: B62 article-title: A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3103-z – volume: 64 start-page: 253 year: 1993 ident: B9 article-title: Molecular identification of ribosomal RNA Group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test - proposal for the creation of a new genus Paenibacillus publication-title: Antonie Van Leeuwenhoek doi: 10.1007/BF00873085 – volume: 8 start-page: e68465 year: 2013 ident: B19 article-title: Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass publication-title: PLoS ONE doi: 10.1371/journal.pone.0068465 – volume: 42 start-page: D490 year: 2014 ident: B46 article-title: The carbohydrate-active enzymes database (CAZy) in 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1178 – volume: 6 start-page: 38915 year: 2016 ident: B7 article-title: Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics publication-title: Sci. Rep. doi: 10.1038/srep38915 – reference: 25665577 - Genome Res. 2015 Apr;25(4):534-43 – reference: 18563919 - Biochemistry. 2008 Jul 15;47(28):7441-51 – reference: 8085788 - Antonie Van Leeuwenhoek. 1993-1994;64(3-4):253-60 – reference: 21131522 - Appl Environ Microbiol. 2011 Feb;77(3):719-26 – reference: 27279900 - Biotechnol Biofuels. 2016 Jun 07;9:121 – reference: 25709713 - Biotechnol Biofuels. 2015 Feb 08;8:16 – reference: 23707974 - Nat Biotechnol. 2013 Jun;31(6):533-8 – reference: 27148174 - Front Microbiol. 2016 Apr 12;7:469 – reference: 26791506 - Methods Mol Biol. 2016;1399:207-33 – reference: 20180275 - Genome Inform. 2009 Oct;23(1):205-11 – reference: 22365718 - Bioresour Technol. 2012 May;111:49-54 – reference: 23504033 - Extremophiles. 2013 May;17(3):357-66 – reference: 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 – reference: 26205857 - Genome Announc. 2015 Jul 23;3(4):null – reference: 25879181 - Bioresour Technol. 2015;189:138-44 – reference: 27555310 - MBio. 2016 Aug 23;7(4):null – reference: 27833656 - Biotechnol Biofuels. 2016 Nov 9;9:243 – reference: 25261509 - Appl Environ Microbiol. 2014 Dec;80(23):7423-32 – reference: 24093227 - J Comput Biol. 2013 Oct;20(10):714-37 – reference: 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 – reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45 – reference: 23301151 - Sci Rep. 2013;3:1030 – reference: 26472212 - Trends Biotechnol. 2015 Dec;33(12):747-61 – reference: 23637931 - PLoS One. 2013 Apr 24;8(4):e61928 – reference: 25066414 - J Appl Microbiol. 2014 Oct;117(4):1025-34 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 21279344 - Appl Microbiol Biotechnol. 2011 Apr;90(2):541-52 – reference: 25532585 - BMC Biotechnol. 2014 Dec 23;14:963 – reference: 25104562 - Curr Opin Biotechnol. 2014 Oct;29:171-83 – reference: 16644050 - J Biotechnol. 2006 Sep 18;125(3):338-50 – reference: 27458436 - Front Microbiol. 2016 Jul 04;7:1033 – reference: 22815439 - J Bacteriol. 2012 Aug;194(15):4118 – reference: 12172621 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):529-34 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 25403554 - Environ Microbiol Rep. 2015 Apr;7(2):273-81 – reference: 21304686 - Stand Genomic Sci. 2010 Jan 28;2(1):142-8 – reference: 20350306 - BMC Microbiol. 2010 Mar 29;10:94 – reference: 20863696 - Bioresour Technol. 2011 Jan;102(2):742-7 – reference: 23241174 - Microb Cell Fact. 2012 Dec 14;11:159 – reference: 27572647 - Nat Microbiol. 2016 Apr 11;1:16048 – reference: 22287013 - Appl Environ Microbiol. 2012 Apr;78(7):2316-27 – reference: 20098679 - PLoS One. 2010 Jan 21;5(1):e8812 – reference: 25648696 - Biotechnol Biofuels. 2014 Dec 31;7(1):495 – reference: 25136443 - Microbiome. 2014 Aug 01;2:26 – reference: 20487025 - FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7 – reference: 23942190 - Nat Commun. 2013;4:2304 – reference: 26048931 - Appl Environ Microbiol. 2015 Aug 15;81(16):5567-73 – reference: 21724886 - Appl Environ Microbiol. 2011 Aug 15;77(16):5804-12 – reference: 22278256 - Appl Microbiol Biotechnol. 2012 Feb;93(4):1423-35 – reference: 19189143 - J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98 – reference: 23894306 - PLoS One. 2013 Jul 19;8(7):e68465 – reference: 10742274 - Appl Environ Microbiol. 2000 Apr;66(4):1741-3 – reference: 27941956 - Sci Rep. 2016 Dec 12;6:38915 – reference: 21273488 - Science. 2011 Jan 28;331(6016):463-7 – reference: 10826818 - Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:315-20 – reference: 26834834 - Biotechnol Biofuels. 2016 Jan 29;9:22 – reference: 18416670 - OMICS. 2008 Jun;12(2):137-41 – reference: 24278144 - PLoS One. 2013 Nov 21;8(11):e79512 – reference: 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 – reference: 27317862 - Environ Microbiol. 2016 Sep;18(9):3144-58 – reference: 23405289 - Genome Announc. 2013 Jan;1(1):null – reference: 26487437 - Microb Ecol. 2016 Apr;71(3):616-27 – reference: 26343383 - Sci Rep. 2015 Sep 07;5:13845 – reference: 27095192 - Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 – reference: 27462367 - Biotechnol Biofuels. 2016 Jul 26;9:156 – reference: 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803 – reference: 21377821 - Syst Appl Microbiol. 2011 Apr;34(2):127-38 – reference: 25977477 - Genome Res. 2015 Jul;25(7):1043-55 – reference: 26497460 - Appl Environ Microbiol. 2015 Oct 23;82(1):255-67 – reference: 26442136 - Stand Genomic Sci. 2015 Oct 05;10:73 – reference: 23763762 - Environ Microbiol. 2013 Sep;15(9):2573-87 – reference: 26052662 - Nat Rev Microbiol. 2015 Jul;13(7):439-46 – reference: 26951112 - Microbiome. 2016 Mar 08;4:8 – reference: 27125755 - Sci Rep. 2016 Apr 29;6:25279 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 27170322 - Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7713-25 – reference: 18799462 - J Biol Chem. 2008 Dec 5;283(49):34403-13 – reference: 27151781 - Genome Announc. 2016 May 05;4(3):null – reference: 26467717 - J Biotechnol. 2015 Dec 20;216:98-9 – reference: 27512389 - Front Microbiol. 2016 Jul 27;7:1125 – reference: 23529681 - Appl Microbiol Biotechnol. 2014 Jan;98(1):465-74 – reference: 27941835 - Sci Rep. 2016 Dec 12;6:38781 – reference: 25983722 - Front Microbiol. 2015 Apr 30;6:358 |
SSID | ssj0000402000 |
Score | 2.3682663 |
Snippet | Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 644 |
SubjectTerms | Microbiology |
Title | Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28469608 https://www.proquest.com/docview/1895273499 https://pubmed.ncbi.nlm.nih.gov/PMC5395642 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoCKkX1AKFpRQZqRcOgcRxnPiAEOWpSnBipb1FdjIpK2UT2Afq_vvOONmly-uSQ-KMIn92Zj6P_Q1jP6UfZqHOAy8TVMIsE-DZwAcPfGPiUPmFdLUBb27VdVf-7kW95-PRbQeO3qR2VE-qOywP_z5OT3DCHxPjRH-LCPQzS7u0SI0Q_fsntoJ-KaZpetMG--6_TFTJnUkJlKJ0gOg1ecs3jZBKMPpmDPCTRZf1Kg59uZ3yP_90-YWttYElP21Gwle2BNU6W21KTU432J8rqOoBeG41t5_xmRgJrwtuOA6W4aB-oMWVjJsq52dQlpOyLqdojf9qFJ3ROpX3xK7qTwb8HO88Qc7pfAqnv0o9oh3Um6x7eXF3du21RRY8xEiNPW1loQzRkCLKQ2SLkTXWz1ShYoysQitjEBCQW0-UxcmdSygSmViBYGqENfzGlqu6gm3GE5lHArTvQ-KjzzNaBBBpHCPaCDpw32FHs35Ms1aBnAphlCkyEQIhdSCkBELqQOiwg_kbD436xgdt92fQpDhFKO9hKqgnozRINMnMIbfrsK0Gqrm1GcYdFi-AOG9A8tuLT6r-vZPhjkLkllLsvGvzO_tMn0e5p0DvsuXxcAI_MIQZ2z1H_fF61Qv23Cj9ByuY7v8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Centric+Analysis+of+a+Thermophilic+and+Cellulolytic+Bacterial+Consortium+Derived+from+Composting&rft.jtitle=Frontiers+in+microbiology&rft.au=Lemos%2C+Leandro+N&rft.au=Pereira%2C+Roberta+V&rft.au=Quaggio%2C+Ronaldo+B&rft.au=Martins%2C+Layla+F&rft.date=2017-04-19&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft.spage=644&rft_id=info:doi/10.3389%2Ffmicb.2017.00644&rft_id=info%3Apmid%2F28469608&rft.externalDocID=28469608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |