Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease

Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 417; pp. 1 - 9
Main Authors Segovia, F., Ramírez, J., Castillo-Barnes, D., Salas-Gonzalez, D., Gómez-Río, M., Sopena-Novales, P., Phillips, C., Zhang, Y., Górriz, J.M.
Format Journal Article Web Resource
LanguageEnglish
Published Elsevier B.V 05.12.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol. In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classifiers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-off between sensitivity and specificity and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages.
AbstractList Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18FFluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol. In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classi ers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-o between sensitivity and speci city and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages.
Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol. In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classifiers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-off between sensitivity and specificity and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages.
Author Górriz, J.M.
Segovia, F.
Phillips, C.
Castillo-Barnes, D.
Ramírez, J.
Gómez-Río, M.
Salas-Gonzalez, D.
Sopena-Novales, P.
Zhang, Y.
Author_xml – sequence: 1
  givenname: F.
  surname: Segovia
  fullname: Segovia, F.
  email: fegovia@ugr.es
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 2
  givenname: J.
  surname: Ramírez
  fullname: Ramírez, J.
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 3
  givenname: D.
  surname: Castillo-Barnes
  fullname: Castillo-Barnes, D.
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 4
  givenname: D.
  surname: Salas-Gonzalez
  fullname: Salas-Gonzalez, D.
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 5
  givenname: M.
  surname: Gómez-Río
  fullname: Gómez-Río, M.
  organization: Department of Nuclear Medicine, “Virgen de las Nieves” University Hospital, Granada, Spain
– sequence: 6
  givenname: P.
  surname: Sopena-Novales
  fullname: Sopena-Novales, P.
  organization: Department of Nuclear Medicine, “9 de Octubre” Hospital, Valencia, Spain
– sequence: 7
  givenname: C.
  surname: Phillips
  fullname: Phillips, C.
  organization: Cyclotron Research Centre, University of Liége, Liége, Belgium
– sequence: 8
  givenname: Y.
  surname: Zhang
  fullname: Zhang, Y.
  organization: Department of Informatics, University of Leicester, Leicester, United Kingdom
– sequence: 9
  givenname: J.M.
  surname: Górriz
  fullname: Górriz, J.M.
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
BookMark eNqFkE1OHDEQRq2ISBlIbpCFL9CNf7rd7SyQEIKARAQLsraMuzzUyGMj2zPSZMU1cr2cJI2aFYtkVVX66n2Ld0yOYopAyFfOWs64Ot20EXYubVvBBGuZatnIP5AVHwfRjGJUR2TFtOgbIbn4RI5L2TDGBy70iuCPXai4txltBWqjDYeChSZPp50NzXPCWKndHkLCid5fPtD5hjjBRGuitsy_ldYnoBPadUxv6Hn49QS4hfzn5XeZowK2wGfy0dtQ4MvbPCE_ry4fLq6b27vvNxfnt42TWtVG88E7PaipE530Vvdc953n2jvpmbBSgtTcud6BHJQANvTA3CBY53vVjczJEyKX3oCwBpPyI5q9MMnisu_C2lhnHsEIoUYjOs35MFPdQrmcSsngzXPGrc0Hw5l5lWw2ZpFsXiUbpswseca-vcMcVlsxxZothv_BZwsMs449QjbFIUQHE2Zw1UwJ_13wF31OnqY
CitedBy_id crossref_primary_10_1007_s00521_022_07204_6
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_32604_csse_2022_018520
crossref_primary_10_1002_mco2_778
crossref_primary_10_1016_j_media_2024_103448
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_1016_j_inffus_2022_12_010
crossref_primary_10_1038_s41598_024_53733_6
crossref_primary_10_25259_JNRP_431_2024
crossref_primary_10_1007_s00521_024_10399_5
Cites_doi 10.1007/s00259-009-1264-0
10.1016/j.neuroimage.2017.03.057
10.1038/s41598-018-22871-z
10.3389/fninf.2017.00065
10.1016/j.media.2018.02.002
10.1007/s00259-016-3353-1
10.1016/j.eswa.2012.07.071
10.1016/S0031-3203(96)00142-2
10.1016/j.zemedi.2018.11.002
10.1016/j.nicl.2016.10.005
10.1136/bmj.b158
10.3233/JAD-180232
10.1016/j.neucom.2014.09.072
10.1006/nimg.2001.0978
10.1007/s00330-014-3311-x
10.2967/jnumed.115.168732
10.1016/j.compbiomed.2015.01.003
10.1007/978-3-319-67389-9_16
10.1109/JBHI.2019.2914970
10.1016/j.neuroimage.2005.02.018
10.1093/jigpal/jzy026
10.3389/fpsyt.2016.00050
10.3389/fninf.2017.00066
10.1016/j.inffus.2020.01.001
10.1118/1.4730289
ContentType Journal Article
Web Resource
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
Q33
DOI 10.1016/j.neucom.2020.06.081
DatabaseName CrossRef
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 9
ExternalDocumentID oai_orbi_ulg_ac_be_2268_249117
10_1016_j_neucom_2020_06_081
S0925231220310699
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
EFKBS
Q33
ID FETCH-LOGICAL-c396t-917fc976d4243fa951954f19fc3f02a33e391cc5ce3762e075e0c7204f56480c3
IEDL.DBID .~1
ISSN 0925-2312
1872-8286
IngestDate Fri Aug 01 18:59:31 EDT 2025
Tue Jul 01 01:46:51 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Fri Feb 23 02:45:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Late fusion
Multiple kernel learning
Alzheimer’s disease
Amyloid PET imaging
Multimodal systems
Computer aided diagnosis
Support vector machine
Partial least squares
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-917fc976d4243fa951954f19fc3f02a33e391cc5ce3762e075e0c7204f56480c3
Notes scopus-id:2-s2.0-85089342703
OpenAccessLink http://orbi.ulg.ac.be/handle/2268/249117
PageCount 9
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_249117
crossref_primary_10_1016_j_neucom_2020_06_081
crossref_citationtrail_10_1016_j_neucom_2020_06_081
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-05
PublicationDateYYYYMMDD 2020-12-05
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References J.M. Górriz, J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. Segovia, J. Suckling, M. Leming, Y.-D. Zhang, J.R. Álvarez-Sánchez, G. Bologna, P. Bonomini, F.E. Casado, D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R.J. Duro, A. Fernández-Caballero, E. Fernández-Jover, P. Gómez-Vilda, M. Graña, F. Herrera, R. Iglesias, A. Lekova, J. Lope, E. López-Rubio, R.M. Tomás, M.A. Molina-Cabello, A.S. Montemayor, P. Novais, D. Palacios-Alonso, J.J. Pantrigo, B.R. Payne, F. la Paz López, M.A. Pinninghoff, M. Rincón, J. Santos, K. Thurnhofer-Hemsi, A. Tsanas, R. Varela, J.M. Ferrández, Artificial intelligence within the interplay between natural and artificial Computation: Advances in data science, trends and applications, Neurocomputing 410 (2020) 237–270.
Segovia, Górriz, Ramírez, Álvarez, Jiménez-Hoyuela, Ortega (b0130) 2012; 39
Zhou, Thung, Zhu, Shen (b0140) 2017; 10541
Lu, Popuri, Ding, Balachandar, Beg (b0160) 2018; 46
D. Castillo-Barnes, L. Su, J. Ramírez, D. Salas-Gonzalez, F.J. Martinez-Murcia, I.A. Illan, F. Segovia, A. Ortiz, C. Cruchaga, M.R. Farlow, C. Xiong, N.R. Graff-Radford, P.R. Schofield, C.L. Masters, S. Salloway, M. Jucker, H. Mori, J. Levin, J.M. Gorriz, D.I.A.N. (dian), Autosomal dominantly inherited alzheimer disease: Analysis of genetic subgroups by machine learning, Information Fusion 58 (2020) 153–167. doi:10.1016/j.inffus.2020.01.001.
Gönen, Alpaydin (b0110) 2011; 12
Lu, Popuri, Ding, Balachandar, Beg (b0135) 2018; 8
A. Selvikvåg Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik doi:10.1016/j.zemedi.2018.11.002.
F. Segovia Román, J.M. Gorriz, J. Ramírez Pérez de Inestrosa, F.J. Martinez-Murcia, M. García-Pérez, Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders, Logic J. IGPL 26 (6) (2018) 618–628. doi:10.1093/jigpal/jzy026.
Noble (b0105) 2004
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (b0120) 2002; 15
Burns, Iliffe (b0005) 2009; 338
Daerr, Brendel, Zach, Mille, Schilling, Zacherl, Bürger, Danek, Pogarell, Schildan, Patt, Barthel, Sabri, Bartenstein, Rominger (b0045) 2016; 14
Varrone, Asenbaum, Borght, Booij, Nobili, Någren, Darcourt, Kapucu, Tatsch, Bartenstein, Laere (b0060) 2009; 36
Frisoni, Fox, Jack, Scheltens, Thompson (b0015) 2010; 6
Segovia, Gómez-Río, Sánchez-Vañó, Górriz, Ramírez, Triviño-Ibáñez, Carnero Pardo, Lozano Martínez, Sopena-Novales (b0050) 2018; 65
Vapnik (b0070) 2000
Martinez-Murcia, Ortiz, Gorriz, Ramirez, Castillo-Barnes (b0155) 2020; 24
Cabral, Morgado, Campos Costa, Silveira (b0025) 2015; 58
Khedher, Ramírez, Górriz, Brahim, Segovia (b0100) 2015; 151
H.G. Schnack, R.S. Kahn, Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters, Front. Psychiatry 7. doi:10.3389/fpsyt.2016.00050.
D. Castillo-Barnes, I. Peis, F.J. Martínez-Murcia, F. Segovia, I.A. Illán, J.M. Gorriz, J. Ramírez, D. Salas-Gonzalez, A heavy tailed Expectation Maximization Hidden Markov Random field model with applications to segmentation of MRI, Front. Neuroinformatics 11. doi:10.3389/fninf.2017.00066.
J. Stoeckel, N. Ayache, G. Malandain, P.M. Koulibaly, K.P. Ebmeier, J. Darcourt, Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects, in: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, no. 3217 in Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 2004, pp. 654–662.
Ashburner, Friston (b0065) 2005; 26
Segovia, Górriz, Ramírez, Salas-González, Álvarez (b0115) 2013; 40
F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, I.A. Illán, F. Segovia, D. Castillo-Barnes, D. Salas-Gonzalez, Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases, Frontiers in Neuroinformatics 11. doi:10.3389/fninf.2017.00065.
Theodoridis, Koutroumbas (b0085) 2008
Varmuza, Filzmoser (b0095) 2009
S. Rathore, M. Habes, M.A. Iftikhar, A. Shacklett, C. Davatzikos, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages, NeuroImage 155 (Supplement C) (2017) 530–548. doi:10.1016/j.neuroimage.2017.03.057.
Tiepolt, Hesse, Patt, Luthardt, Schroeter, Hoffmann, Weise, Gertz, Sabri, Barthel (b0040) 2016; 43
Bradley (b0125) 1997; 30
Rodriguez-Vieitez, Carter, Chiotis, Saint-Aubert, Leuzy, Schöll, Almkvist, Wall, Långström, Nordberg (b0090) 2016; 57
Fu, Liu, Zhang, Xu, Fan, Tian (b0150) 2014; 24
Theodoridis (10.1016/j.neucom.2020.06.081_b0085) 2008
10.1016/j.neucom.2020.06.081_b0010
10.1016/j.neucom.2020.06.081_b0055
10.1016/j.neucom.2020.06.081_b0030
10.1016/j.neucom.2020.06.081_b0075
Lu (10.1016/j.neucom.2020.06.081_b0135) 2018; 8
Gönen (10.1016/j.neucom.2020.06.081_b0110) 2011; 12
10.1016/j.neucom.2020.06.081_b0035
Segovia (10.1016/j.neucom.2020.06.081_b0130) 2012; 39
Frisoni (10.1016/j.neucom.2020.06.081_b0015) 2010; 6
Burns (10.1016/j.neucom.2020.06.081_b0005) 2009; 338
Varmuza (10.1016/j.neucom.2020.06.081_b0095) 2009
Ashburner (10.1016/j.neucom.2020.06.081_b0065) 2005; 26
Daerr (10.1016/j.neucom.2020.06.081_b0045) 2016; 14
Segovia (10.1016/j.neucom.2020.06.081_b0115) 2013; 40
Tiepolt (10.1016/j.neucom.2020.06.081_b0040) 2016; 43
Lu (10.1016/j.neucom.2020.06.081_b0160) 2018; 46
10.1016/j.neucom.2020.06.081_b0080
Fu (10.1016/j.neucom.2020.06.081_b0150) 2014; 24
Zhou (10.1016/j.neucom.2020.06.081_b0140) 2017; 10541
Segovia (10.1016/j.neucom.2020.06.081_b0050) 2018; 65
Vapnik (10.1016/j.neucom.2020.06.081_b0070) 2000
10.1016/j.neucom.2020.06.081_b0165
10.1016/j.neucom.2020.06.081_b0020
Cabral (10.1016/j.neucom.2020.06.081_b0025) 2015; 58
Khedher (10.1016/j.neucom.2020.06.081_b0100) 2015; 151
Tzourio-Mazoyer (10.1016/j.neucom.2020.06.081_b0120) 2002; 15
10.1016/j.neucom.2020.06.081_b0145
Bradley (10.1016/j.neucom.2020.06.081_b0125) 1997; 30
Noble (10.1016/j.neucom.2020.06.081_b0105) 2004
Martinez-Murcia (10.1016/j.neucom.2020.06.081_b0155) 2020; 24
Varrone (10.1016/j.neucom.2020.06.081_b0060) 2009; 36
Rodriguez-Vieitez (10.1016/j.neucom.2020.06.081_b0090) 2016; 57
References_xml – volume: 10541
  start-page: 132
  year: 2017
  end-page: 140
  ident: b0140
  article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis
  publication-title: Mach. Learn. Med. imaging. MLMI (Workshop)
– start-page: 71
  year: 2004
  end-page: 102
  ident: b0105
  article-title: Support vector machine applications in computational biology
  publication-title: Kernel Methods in Computational Biology
– volume: 36
  start-page: 2103
  year: 2009
  ident: b0060
  article-title: EANM procedure guidelines for PET brain imaging using 18F-FDG, version 2
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 24
  start-page: 17
  year: 2020
  end-page: 26
  ident: b0155
  article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 43
  start-page: 1700
  year: 2016
  end-page: 1709
  ident: b0040
  article-title: Early 18F-florbetaben and 11C-PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– reference: J. Stoeckel, N. Ayache, G. Malandain, P.M. Koulibaly, K.P. Ebmeier, J. Darcourt, Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects, in: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, no. 3217 in Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 2004, pp. 654–662.
– volume: 12
  start-page: 2211
  year: 2011
  end-page: 2268
  ident: b0110
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– reference: D. Castillo-Barnes, L. Su, J. Ramírez, D. Salas-Gonzalez, F.J. Martinez-Murcia, I.A. Illan, F. Segovia, A. Ortiz, C. Cruchaga, M.R. Farlow, C. Xiong, N.R. Graff-Radford, P.R. Schofield, C.L. Masters, S. Salloway, M. Jucker, H. Mori, J. Levin, J.M. Gorriz, D.I.A.N. (dian), Autosomal dominantly inherited alzheimer disease: Analysis of genetic subgroups by machine learning, Information Fusion 58 (2020) 153–167. doi:10.1016/j.inffus.2020.01.001.
– volume: 46
  start-page: 26
  year: 2018
  end-page: 34
  ident: b0160
  article-title: Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
– reference: D. Castillo-Barnes, I. Peis, F.J. Martínez-Murcia, F. Segovia, I.A. Illán, J.M. Gorriz, J. Ramírez, D. Salas-Gonzalez, A heavy tailed Expectation Maximization Hidden Markov Random field model with applications to segmentation of MRI, Front. Neuroinformatics 11. doi:10.3389/fninf.2017.00066.
– volume: 338
  year: 2009
  ident: b0005
  article-title: Alzheimer’s disease
  publication-title: BMJ
– reference: J.M. Górriz, J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. Segovia, J. Suckling, M. Leming, Y.-D. Zhang, J.R. Álvarez-Sánchez, G. Bologna, P. Bonomini, F.E. Casado, D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R.J. Duro, A. Fernández-Caballero, E. Fernández-Jover, P. Gómez-Vilda, M. Graña, F. Herrera, R. Iglesias, A. Lekova, J. Lope, E. López-Rubio, R.M. Tomás, M.A. Molina-Cabello, A.S. Montemayor, P. Novais, D. Palacios-Alonso, J.J. Pantrigo, B.R. Payne, F. la Paz López, M.A. Pinninghoff, M. Rincón, J. Santos, K. Thurnhofer-Hemsi, A. Tsanas, R. Varela, J.M. Ferrández, Artificial intelligence within the interplay between natural and artificial Computation: Advances in data science, trends and applications, Neurocomputing 410 (2020) 237–270.
– year: 2009
  ident: b0095
  article-title: Introduction to Multivariate Statistical Analysis in Chemometrics
– volume: 65
  start-page: 765
  year: 2018
  end-page: 779
  ident: b0050
  article-title: Usefulness of dual-point amyloid pet scans in appropriate use criteria: a multicenter study
  publication-title: J. Alzheimer’s Disease
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: b0125
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
– volume: 58
  start-page: 101
  year: 2015
  end-page: 109
  ident: b0025
  article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
  publication-title: Comput. Biol. Med.
– reference: F. Segovia Román, J.M. Gorriz, J. Ramírez Pérez de Inestrosa, F.J. Martinez-Murcia, M. García-Pérez, Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders, Logic J. IGPL 26 (6) (2018) 618–628. doi:10.1093/jigpal/jzy026.
– reference: S. Rathore, M. Habes, M.A. Iftikhar, A. Shacklett, C. Davatzikos, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages, NeuroImage 155 (Supplement C) (2017) 530–548. doi:10.1016/j.neuroimage.2017.03.057.
– volume: 24
  start-page: 2800
  year: 2014
  end-page: 2809
  ident: b0150
  article-title: Comparison of dual-biomarker PIB-PET and dual-tracer PET in AD diagnosis
  publication-title: Eur. Radiol.
– volume: 39
  start-page: 4395
  year: 2012
  end-page: 4403
  ident: b0130
  article-title: Improved Parkinsonism diagnosis using a partial least squares based approach
  publication-title: Med. Phys.
– year: 2000
  ident: b0070
  article-title: The Nature of Statistical Learning Theory
– year: 2008
  ident: b0085
  article-title: Pattern Recognition
– volume: 8
  start-page: 5697
  year: 2018
  ident: b0135
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images
  publication-title: Scientific Reports
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: b0015
  article-title: The clinical use of structural MRI in Alzheimer disease, Nature reviews
  publication-title: Neurology
– volume: 151
  start-page: 139
  year: 2015
  end-page: 150
  ident: b0100
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
– volume: 40
  start-page: 677
  year: 2013
  end-page: 683
  ident: b0115
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares and support vector machine
  publication-title: Expert Syst. Appl.
– reference: A. Selvikvåg Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik doi:10.1016/j.zemedi.2018.11.002.
– reference: H.G. Schnack, R.S. Kahn, Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters, Front. Psychiatry 7. doi:10.3389/fpsyt.2016.00050.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: b0120
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– reference: F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, I.A. Illán, F. Segovia, D. Castillo-Barnes, D. Salas-Gonzalez, Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases, Frontiers in Neuroinformatics 11. doi:10.3389/fninf.2017.00065.
– volume: 14
  start-page: 77
  year: 2016
  end-page: 86
  ident: b0045
  article-title: Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases
  publication-title: NeuroImage: Clinical
– volume: 57
  start-page: 1071
  year: 2016
  end-page: 1077
  ident: b0090
  article-title: Comparison of early-phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh compound B PET for Assessing brain perfusion in Alzheimer disease
  publication-title: J. Nucl. Med.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: b0065
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 36
  start-page: 2103
  issue: 12
  year: 2009
  ident: 10.1016/j.neucom.2020.06.081_b0060
  article-title: EANM procedure guidelines for PET brain imaging using 18F-FDG, version 2
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-009-1264-0
– ident: 10.1016/j.neucom.2020.06.081_b0030
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 8
  start-page: 5697
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.06.081_b0135
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-22871-z
– ident: 10.1016/j.neucom.2020.06.081_b0055
– ident: 10.1016/j.neucom.2020.06.081_b0035
  doi: 10.3389/fninf.2017.00065
– start-page: 71
  year: 2004
  ident: 10.1016/j.neucom.2020.06.081_b0105
  article-title: Support vector machine applications in computational biology
– volume: 46
  start-page: 26
  year: 2018
  ident: 10.1016/j.neucom.2020.06.081_b0160
  article-title: Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.02.002
– volume: 43
  start-page: 1700
  issue: 9
  year: 2016
  ident: 10.1016/j.neucom.2020.06.081_b0040
  article-title: Early 18F-florbetaben and 11C-PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-016-3353-1
– volume: 40
  start-page: 677
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2020.06.081_b0115
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares and support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.071
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.neucom.2020.06.081_b0125
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– ident: 10.1016/j.neucom.2020.06.081_b0145
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 14
  start-page: 77
  year: 2016
  ident: 10.1016/j.neucom.2020.06.081_b0045
  article-title: Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.10.005
– volume: 338
  year: 2009
  ident: 10.1016/j.neucom.2020.06.081_b0005
  article-title: Alzheimer’s disease
  publication-title: BMJ
  doi: 10.1136/bmj.b158
– volume: 65
  start-page: 765
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2020.06.081_b0050
  article-title: Usefulness of dual-point amyloid pet scans in appropriate use criteria: a multicenter study
  publication-title: J. Alzheimer’s Disease
  doi: 10.3233/JAD-180232
– volume: 151
  start-page: 139
  issue: Part 1
  year: 2015
  ident: 10.1016/j.neucom.2020.06.081_b0100
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.072
– year: 2008
  ident: 10.1016/j.neucom.2020.06.081_b0085
– volume: 12
  start-page: 2211
  year: 2011
  ident: 10.1016/j.neucom.2020.06.081_b0110
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neucom.2020.06.081_b0120
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 24
  start-page: 2800
  issue: 11
  year: 2014
  ident: 10.1016/j.neucom.2020.06.081_b0150
  article-title: Comparison of dual-biomarker PIB-PET and dual-tracer PET in AD diagnosis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-014-3311-x
– volume: 57
  start-page: 1071
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2020.06.081_b0090
  article-title: Comparison of early-phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh compound B PET for Assessing brain perfusion in Alzheimer disease
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.115.168732
– volume: 58
  start-page: 101
  year: 2015
  ident: 10.1016/j.neucom.2020.06.081_b0025
  article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.01.003
– ident: 10.1016/j.neucom.2020.06.081_b0075
– volume: 10541
  start-page: 132
  year: 2017
  ident: 10.1016/j.neucom.2020.06.081_b0140
  article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis
  publication-title: Mach. Learn. Med. imaging. MLMI (Workshop)
  doi: 10.1007/978-3-319-67389-9_16
– volume: 24
  start-page: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.06.081_b0155
  article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2914970
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2020.06.081_b0015
  article-title: The clinical use of structural MRI in Alzheimer disease, Nature reviews
  publication-title: Neurology
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2020.06.081_b0065
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: 10.1016/j.neucom.2020.06.081_b0165
  doi: 10.1093/jigpal/jzy026
– ident: 10.1016/j.neucom.2020.06.081_b0080
  doi: 10.3389/fpsyt.2016.00050
– ident: 10.1016/j.neucom.2020.06.081_b0020
  doi: 10.3389/fninf.2017.00066
– year: 2000
  ident: 10.1016/j.neucom.2020.06.081_b0070
– ident: 10.1016/j.neucom.2020.06.081_b0010
  doi: 10.1016/j.inffus.2020.01.001
– year: 2009
  ident: 10.1016/j.neucom.2020.06.081_b0095
– volume: 39
  start-page: 4395
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2020.06.081_b0130
  article-title: Improved Parkinsonism diagnosis using a partial least squares based approach
  publication-title: Med. Phys.
  doi: 10.1118/1.4730289
RestrictionsOnAccess open access
SSID ssj0017129
Score 2.359819
Snippet Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide...
SourceID liege
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Amyloid PET imaging
Computer aided diagnosis
Engineering, computing & technology
Ingénierie, informatique & technologie
Late fusion
Multimodal systems
Multiple kernel learning
multivariate analysis
Partial least squares
PET imaging
Support vector machine
Title Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease
URI https://dx.doi.org/10.1016/j.neucom.2020.06.081
http://orbi.ulg.ac.be/handle/2268/249117
Volume 417
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T-QwELUQNDRwx4eA45ALSsLGjvPhcoVAeyAQEiDRWY5jQ9BuslqyFBSIv3F_737JzSQOggIhkSJKoliJxs74TfzmDSH7xoQ6MYwF2sk8ECYsgszBzsIG0YNOihSzkc8vktGNOL2NbxfIUZ8Lg7RK7_s7n956a39l4K05mJbl4CqUHKIoxjmqWyYSk_iESHGUH7680TxYynint8fjAO_u0-dajldl58gZ4YCZWhXPjH02PS2NcQ373dRz8oOseMxIh91r_SQLtlojq309Buo_z3VSttm0TxD9AoCk2suN0NpRTLgKpnVZNVRPIEQvC3p5fE1RKwL_gNOmpgCioccp4EFadPS7rulw_Hxvy4md_Xv9-0j9es4GuTk5vj4aBb6UQmAimTTg0lJnAHkUgovIaYmaMsIx6UzkQq6jyEaSGRMbCw6HW8ARNjRYv8bFichCE22Sxaqu7BahWe5ibqXkLklFKFLNQqNNrnNZJDbL2DaJegsq43XGsdzFWPWEsgfV2V2h3RXy6rBV8NZq2ulsfHF_2neO-jBeFEwFX7Q8aPtS1bO8VE9cocB2ezwf3yltVG4VYNJMQWDKWLrz7Qf9Ist41nJf4l2y2Mzm9jcgmCbfa4foHlka_jkbXfwHc5_zDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagPcCF5Slgd8GHPRI1dp4-VghUXhXSFomb5Tg2BJWkKikHTvs39u_tL9mZxEFwQEjkEEVJRolmnPE38cw3hPzS2lexZsxTVmReqP3cSy3sDGwQPag4T7Aa-Wocj27C89vodokcd7UwmFbpfH_r0xtv7c4MnDYHs6IY_PYFhyiKcY7slrEQy6SP7FRRj_SHZxej8etiQsJ4S7nHIw8Fugq6Js2rNAtMG-EAmxoiz5R9NEP1p7iM_Wb2OV0naw420mH7ZhtkyZSb5FvXkoG6L3SLFE1B7TMEwIAhqXKMI7SyFGuuvFlVlDVVjxClFzm9PplQpIvAn-C0rijgaDA6BUhI8zYDrxUdTl_uTfFo5v_-_H2ibklnm9ycnkyOR57rpuDpQMQ1eLXEagAfecjDwCqBtDKhZcLqwPpcBYEJBNM60gZ8DjcAJYyvsYWNjeIw9XWwQ3plVZpdQtPMRtwIwW2chH6YKOZrpTOViTw2acr2SNBpUGpHNY4dL6ayyyl7kK3eJepdYmodSnmvUrOWauOT-5POOPLdkJEwG3wiedTYUlbzrJDPXCLHdnO8mN5JpWVmJMDSVEJsyliy_-UHHZKV0eTqUl6ejS--k1W80qTCRD9Ir54vzE8ANHV24Absf8U79b0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+dual-point+amyloid+PET+intended+to+assist+the+diagnosis+of+Alzheimer%E2%80%99s+disease&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Segovia%2C+F.&rft.au=Ram%C3%ADrez%2C+J.&rft.au=Castillo-Barnes%2C+D.&rft.au=Salas-Gonzalez%2C+D.&rft.date=2020-12-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=417&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.081&rft.externalDocID=S0925231220310699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon