Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease
Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 417; pp. 1 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Elsevier B.V
05.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol.
In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classifiers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-off between sensitivity and specificity and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages. |
---|---|
AbstractList | Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18FFluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol.
In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classi ers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-o between sensitivity and speci city and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages. Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide information related to the brain metabolism, similar to that contained in 18F-Fluorodeoxyglucose (FDG) PET neuroimages. If corroborated, it would allow us to acquire information about brain injury and potential brain amyloid deposits in a single examination, using a dual-point protocol. In this work we assess the equivalence between early 18F-Florbetaben (FBB) PET and 18F-FDG PET data using multivariate approaches based on machine learning. In addition, we propose several systems based on data fusion that take advantage of the additional information provided by dual-point amyloid PET examinations. The proposed systems perform an initial dimensionality reduction of the data using a partial-least-square-based algorithm and then combine early and standard PET acquisitions using two approaches: multiple kernel learning (intermediate fusion) or an ensemble of two Support Vector Machine classifiers (late fusion). The proposed approaches were evaluated and compared with other fusion techniques using data from 43 subjects with cognitive impairments. They achieved a good trade-off between sensitivity and specificity and higher accuracy rates than systems based on single-modality approaches such as standard 18F-FBB PET data or 18F-FDG PET neuroimages. |
Author | Górriz, J.M. Segovia, F. Phillips, C. Castillo-Barnes, D. Ramírez, J. Gómez-Río, M. Salas-Gonzalez, D. Sopena-Novales, P. Zhang, Y. |
Author_xml | – sequence: 1 givenname: F. surname: Segovia fullname: Segovia, F. email: fegovia@ugr.es organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain – sequence: 2 givenname: J. surname: Ramírez fullname: Ramírez, J. organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain – sequence: 3 givenname: D. surname: Castillo-Barnes fullname: Castillo-Barnes, D. organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain – sequence: 4 givenname: D. surname: Salas-Gonzalez fullname: Salas-Gonzalez, D. organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain – sequence: 5 givenname: M. surname: Gómez-Río fullname: Gómez-Río, M. organization: Department of Nuclear Medicine, “Virgen de las Nieves” University Hospital, Granada, Spain – sequence: 6 givenname: P. surname: Sopena-Novales fullname: Sopena-Novales, P. organization: Department of Nuclear Medicine, “9 de Octubre” Hospital, Valencia, Spain – sequence: 7 givenname: C. surname: Phillips fullname: Phillips, C. organization: Cyclotron Research Centre, University of Liége, Liége, Belgium – sequence: 8 givenname: Y. surname: Zhang fullname: Zhang, Y. organization: Department of Informatics, University of Leicester, Leicester, United Kingdom – sequence: 9 givenname: J.M. surname: Górriz fullname: Górriz, J.M. organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain |
BookMark | eNqFkE1OHDEQRq2ISBlIbpCFL9CNf7rd7SyQEIKARAQLsraMuzzUyGMj2zPSZMU1cr2cJI2aFYtkVVX66n2Ld0yOYopAyFfOWs64Ot20EXYubVvBBGuZatnIP5AVHwfRjGJUR2TFtOgbIbn4RI5L2TDGBy70iuCPXai4txltBWqjDYeChSZPp50NzXPCWKndHkLCid5fPtD5hjjBRGuitsy_ldYnoBPadUxv6Hn49QS4hfzn5XeZowK2wGfy0dtQ4MvbPCE_ry4fLq6b27vvNxfnt42TWtVG88E7PaipE530Vvdc953n2jvpmbBSgtTcud6BHJQANvTA3CBY53vVjczJEyKX3oCwBpPyI5q9MMnisu_C2lhnHsEIoUYjOs35MFPdQrmcSsngzXPGrc0Hw5l5lWw2ZpFsXiUbpswseca-vcMcVlsxxZothv_BZwsMs449QjbFIUQHE2Zw1UwJ_13wF31OnqY |
CitedBy_id | crossref_primary_10_1007_s00521_022_07204_6 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_32604_csse_2022_018520 crossref_primary_10_1002_mco2_778 crossref_primary_10_1016_j_media_2024_103448 crossref_primary_10_1007_s12553_024_00823_0 crossref_primary_10_1016_j_inffus_2022_12_010 crossref_primary_10_1038_s41598_024_53733_6 crossref_primary_10_25259_JNRP_431_2024 crossref_primary_10_1007_s00521_024_10399_5 |
Cites_doi | 10.1007/s00259-009-1264-0 10.1016/j.neuroimage.2017.03.057 10.1038/s41598-018-22871-z 10.3389/fninf.2017.00065 10.1016/j.media.2018.02.002 10.1007/s00259-016-3353-1 10.1016/j.eswa.2012.07.071 10.1016/S0031-3203(96)00142-2 10.1016/j.zemedi.2018.11.002 10.1016/j.nicl.2016.10.005 10.1136/bmj.b158 10.3233/JAD-180232 10.1016/j.neucom.2014.09.072 10.1006/nimg.2001.0978 10.1007/s00330-014-3311-x 10.2967/jnumed.115.168732 10.1016/j.compbiomed.2015.01.003 10.1007/978-3-319-67389-9_16 10.1109/JBHI.2019.2914970 10.1016/j.neuroimage.2005.02.018 10.1093/jigpal/jzy026 10.3389/fpsyt.2016.00050 10.3389/fninf.2017.00066 10.1016/j.inffus.2020.01.001 10.1118/1.4730289 |
ContentType | Journal Article Web Resource |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION Q33 |
DOI | 10.1016/j.neucom.2020.06.081 |
DatabaseName | CrossRef Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 9 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_249117 10_1016_j_neucom_2020_06_081 S0925231220310699 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP EFKBS Q33 |
ID | FETCH-LOGICAL-c396t-917fc976d4243fa951954f19fc3f02a33e391cc5ce3762e075e0c7204f56480c3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 1872-8286 |
IngestDate | Fri Aug 01 18:59:31 EDT 2025 Tue Jul 01 01:46:51 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Fri Feb 23 02:45:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Late fusion Multiple kernel learning Alzheimer’s disease Amyloid PET imaging Multimodal systems Computer aided diagnosis Support vector machine Partial least squares |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-917fc976d4243fa951954f19fc3f02a33e391cc5ce3762e075e0c7204f56480c3 |
Notes | scopus-id:2-s2.0-85089342703 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/249117 |
PageCount | 9 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_249117 crossref_primary_10_1016_j_neucom_2020_06_081 crossref_citationtrail_10_1016_j_neucom_2020_06_081 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-05 |
PublicationDateYYYYMMDD | 2020-12-05 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | J.M. Górriz, J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. Segovia, J. Suckling, M. Leming, Y.-D. Zhang, J.R. Álvarez-Sánchez, G. Bologna, P. Bonomini, F.E. Casado, D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R.J. Duro, A. Fernández-Caballero, E. Fernández-Jover, P. Gómez-Vilda, M. Graña, F. Herrera, R. Iglesias, A. Lekova, J. Lope, E. López-Rubio, R.M. Tomás, M.A. Molina-Cabello, A.S. Montemayor, P. Novais, D. Palacios-Alonso, J.J. Pantrigo, B.R. Payne, F. la Paz López, M.A. Pinninghoff, M. Rincón, J. Santos, K. Thurnhofer-Hemsi, A. Tsanas, R. Varela, J.M. Ferrández, Artificial intelligence within the interplay between natural and artificial Computation: Advances in data science, trends and applications, Neurocomputing 410 (2020) 237–270. Segovia, Górriz, Ramírez, Álvarez, Jiménez-Hoyuela, Ortega (b0130) 2012; 39 Zhou, Thung, Zhu, Shen (b0140) 2017; 10541 Lu, Popuri, Ding, Balachandar, Beg (b0160) 2018; 46 D. Castillo-Barnes, L. Su, J. Ramírez, D. Salas-Gonzalez, F.J. Martinez-Murcia, I.A. Illan, F. Segovia, A. Ortiz, C. Cruchaga, M.R. Farlow, C. Xiong, N.R. Graff-Radford, P.R. Schofield, C.L. Masters, S. Salloway, M. Jucker, H. Mori, J. Levin, J.M. Gorriz, D.I.A.N. (dian), Autosomal dominantly inherited alzheimer disease: Analysis of genetic subgroups by machine learning, Information Fusion 58 (2020) 153–167. doi:10.1016/j.inffus.2020.01.001. Gönen, Alpaydin (b0110) 2011; 12 Lu, Popuri, Ding, Balachandar, Beg (b0135) 2018; 8 A. Selvikvåg Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik doi:10.1016/j.zemedi.2018.11.002. F. Segovia Román, J.M. Gorriz, J. Ramírez Pérez de Inestrosa, F.J. Martinez-Murcia, M. García-Pérez, Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders, Logic J. IGPL 26 (6) (2018) 618–628. doi:10.1093/jigpal/jzy026. Noble (b0105) 2004 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (b0120) 2002; 15 Burns, Iliffe (b0005) 2009; 338 Daerr, Brendel, Zach, Mille, Schilling, Zacherl, Bürger, Danek, Pogarell, Schildan, Patt, Barthel, Sabri, Bartenstein, Rominger (b0045) 2016; 14 Varrone, Asenbaum, Borght, Booij, Nobili, Någren, Darcourt, Kapucu, Tatsch, Bartenstein, Laere (b0060) 2009; 36 Frisoni, Fox, Jack, Scheltens, Thompson (b0015) 2010; 6 Segovia, Gómez-Río, Sánchez-Vañó, Górriz, Ramírez, Triviño-Ibáñez, Carnero Pardo, Lozano Martínez, Sopena-Novales (b0050) 2018; 65 Vapnik (b0070) 2000 Martinez-Murcia, Ortiz, Gorriz, Ramirez, Castillo-Barnes (b0155) 2020; 24 Cabral, Morgado, Campos Costa, Silveira (b0025) 2015; 58 Khedher, Ramírez, Górriz, Brahim, Segovia (b0100) 2015; 151 H.G. Schnack, R.S. Kahn, Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters, Front. Psychiatry 7. doi:10.3389/fpsyt.2016.00050. D. Castillo-Barnes, I. Peis, F.J. Martínez-Murcia, F. Segovia, I.A. Illán, J.M. Gorriz, J. Ramírez, D. Salas-Gonzalez, A heavy tailed Expectation Maximization Hidden Markov Random field model with applications to segmentation of MRI, Front. Neuroinformatics 11. doi:10.3389/fninf.2017.00066. J. Stoeckel, N. Ayache, G. Malandain, P.M. Koulibaly, K.P. Ebmeier, J. Darcourt, Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects, in: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, no. 3217 in Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 2004, pp. 654–662. Ashburner, Friston (b0065) 2005; 26 Segovia, Górriz, Ramírez, Salas-González, Álvarez (b0115) 2013; 40 F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, I.A. Illán, F. Segovia, D. Castillo-Barnes, D. Salas-Gonzalez, Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases, Frontiers in Neuroinformatics 11. doi:10.3389/fninf.2017.00065. Theodoridis, Koutroumbas (b0085) 2008 Varmuza, Filzmoser (b0095) 2009 S. Rathore, M. Habes, M.A. Iftikhar, A. Shacklett, C. Davatzikos, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages, NeuroImage 155 (Supplement C) (2017) 530–548. doi:10.1016/j.neuroimage.2017.03.057. Tiepolt, Hesse, Patt, Luthardt, Schroeter, Hoffmann, Weise, Gertz, Sabri, Barthel (b0040) 2016; 43 Bradley (b0125) 1997; 30 Rodriguez-Vieitez, Carter, Chiotis, Saint-Aubert, Leuzy, Schöll, Almkvist, Wall, Långström, Nordberg (b0090) 2016; 57 Fu, Liu, Zhang, Xu, Fan, Tian (b0150) 2014; 24 Theodoridis (10.1016/j.neucom.2020.06.081_b0085) 2008 10.1016/j.neucom.2020.06.081_b0010 10.1016/j.neucom.2020.06.081_b0055 10.1016/j.neucom.2020.06.081_b0030 10.1016/j.neucom.2020.06.081_b0075 Lu (10.1016/j.neucom.2020.06.081_b0135) 2018; 8 Gönen (10.1016/j.neucom.2020.06.081_b0110) 2011; 12 10.1016/j.neucom.2020.06.081_b0035 Segovia (10.1016/j.neucom.2020.06.081_b0130) 2012; 39 Frisoni (10.1016/j.neucom.2020.06.081_b0015) 2010; 6 Burns (10.1016/j.neucom.2020.06.081_b0005) 2009; 338 Varmuza (10.1016/j.neucom.2020.06.081_b0095) 2009 Ashburner (10.1016/j.neucom.2020.06.081_b0065) 2005; 26 Daerr (10.1016/j.neucom.2020.06.081_b0045) 2016; 14 Segovia (10.1016/j.neucom.2020.06.081_b0115) 2013; 40 Tiepolt (10.1016/j.neucom.2020.06.081_b0040) 2016; 43 Lu (10.1016/j.neucom.2020.06.081_b0160) 2018; 46 10.1016/j.neucom.2020.06.081_b0080 Fu (10.1016/j.neucom.2020.06.081_b0150) 2014; 24 Zhou (10.1016/j.neucom.2020.06.081_b0140) 2017; 10541 Segovia (10.1016/j.neucom.2020.06.081_b0050) 2018; 65 Vapnik (10.1016/j.neucom.2020.06.081_b0070) 2000 10.1016/j.neucom.2020.06.081_b0165 10.1016/j.neucom.2020.06.081_b0020 Cabral (10.1016/j.neucom.2020.06.081_b0025) 2015; 58 Khedher (10.1016/j.neucom.2020.06.081_b0100) 2015; 151 Tzourio-Mazoyer (10.1016/j.neucom.2020.06.081_b0120) 2002; 15 10.1016/j.neucom.2020.06.081_b0145 Bradley (10.1016/j.neucom.2020.06.081_b0125) 1997; 30 Noble (10.1016/j.neucom.2020.06.081_b0105) 2004 Martinez-Murcia (10.1016/j.neucom.2020.06.081_b0155) 2020; 24 Varrone (10.1016/j.neucom.2020.06.081_b0060) 2009; 36 Rodriguez-Vieitez (10.1016/j.neucom.2020.06.081_b0090) 2016; 57 |
References_xml | – volume: 10541 start-page: 132 year: 2017 end-page: 140 ident: b0140 article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis publication-title: Mach. Learn. Med. imaging. MLMI (Workshop) – start-page: 71 year: 2004 end-page: 102 ident: b0105 article-title: Support vector machine applications in computational biology publication-title: Kernel Methods in Computational Biology – volume: 36 start-page: 2103 year: 2009 ident: b0060 article-title: EANM procedure guidelines for PET brain imaging using 18F-FDG, version 2 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 24 start-page: 17 year: 2020 end-page: 26 ident: b0155 article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders publication-title: IEEE J. Biomed. Health Inform. – volume: 43 start-page: 1700 year: 2016 end-page: 1709 ident: b0040 article-title: Early 18F-florbetaben and 11C-PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – reference: J. Stoeckel, N. Ayache, G. Malandain, P.M. Koulibaly, K.P. Ebmeier, J. Darcourt, Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects, in: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, no. 3217 in Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 2004, pp. 654–662. – volume: 12 start-page: 2211 year: 2011 end-page: 2268 ident: b0110 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – reference: D. Castillo-Barnes, L. Su, J. Ramírez, D. Salas-Gonzalez, F.J. Martinez-Murcia, I.A. Illan, F. Segovia, A. Ortiz, C. Cruchaga, M.R. Farlow, C. Xiong, N.R. Graff-Radford, P.R. Schofield, C.L. Masters, S. Salloway, M. Jucker, H. Mori, J. Levin, J.M. Gorriz, D.I.A.N. (dian), Autosomal dominantly inherited alzheimer disease: Analysis of genetic subgroups by machine learning, Information Fusion 58 (2020) 153–167. doi:10.1016/j.inffus.2020.01.001. – volume: 46 start-page: 26 year: 2018 end-page: 34 ident: b0160 article-title: Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. – reference: D. Castillo-Barnes, I. Peis, F.J. Martínez-Murcia, F. Segovia, I.A. Illán, J.M. Gorriz, J. Ramírez, D. Salas-Gonzalez, A heavy tailed Expectation Maximization Hidden Markov Random field model with applications to segmentation of MRI, Front. Neuroinformatics 11. doi:10.3389/fninf.2017.00066. – volume: 338 year: 2009 ident: b0005 article-title: Alzheimer’s disease publication-title: BMJ – reference: J.M. Górriz, J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. Segovia, J. Suckling, M. Leming, Y.-D. Zhang, J.R. Álvarez-Sánchez, G. Bologna, P. Bonomini, F.E. Casado, D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R.J. Duro, A. Fernández-Caballero, E. Fernández-Jover, P. Gómez-Vilda, M. Graña, F. Herrera, R. Iglesias, A. Lekova, J. Lope, E. López-Rubio, R.M. Tomás, M.A. Molina-Cabello, A.S. Montemayor, P. Novais, D. Palacios-Alonso, J.J. Pantrigo, B.R. Payne, F. la Paz López, M.A. Pinninghoff, M. Rincón, J. Santos, K. Thurnhofer-Hemsi, A. Tsanas, R. Varela, J.M. Ferrández, Artificial intelligence within the interplay between natural and artificial Computation: Advances in data science, trends and applications, Neurocomputing 410 (2020) 237–270. – year: 2009 ident: b0095 article-title: Introduction to Multivariate Statistical Analysis in Chemometrics – volume: 65 start-page: 765 year: 2018 end-page: 779 ident: b0050 article-title: Usefulness of dual-point amyloid pet scans in appropriate use criteria: a multicenter study publication-title: J. Alzheimer’s Disease – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: b0125 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn. – volume: 58 start-page: 101 year: 2015 end-page: 109 ident: b0025 article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages publication-title: Comput. Biol. Med. – reference: F. Segovia Román, J.M. Gorriz, J. Ramírez Pérez de Inestrosa, F.J. Martinez-Murcia, M. García-Pérez, Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders, Logic J. IGPL 26 (6) (2018) 618–628. doi:10.1093/jigpal/jzy026. – reference: S. Rathore, M. Habes, M.A. Iftikhar, A. Shacklett, C. Davatzikos, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages, NeuroImage 155 (Supplement C) (2017) 530–548. doi:10.1016/j.neuroimage.2017.03.057. – volume: 24 start-page: 2800 year: 2014 end-page: 2809 ident: b0150 article-title: Comparison of dual-biomarker PIB-PET and dual-tracer PET in AD diagnosis publication-title: Eur. Radiol. – volume: 39 start-page: 4395 year: 2012 end-page: 4403 ident: b0130 article-title: Improved Parkinsonism diagnosis using a partial least squares based approach publication-title: Med. Phys. – year: 2000 ident: b0070 article-title: The Nature of Statistical Learning Theory – year: 2008 ident: b0085 article-title: Pattern Recognition – volume: 8 start-page: 5697 year: 2018 ident: b0135 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images publication-title: Scientific Reports – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: b0015 article-title: The clinical use of structural MRI in Alzheimer disease, Nature reviews publication-title: Neurology – volume: 151 start-page: 139 year: 2015 end-page: 150 ident: b0100 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing – volume: 40 start-page: 677 year: 2013 end-page: 683 ident: b0115 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares and support vector machine publication-title: Expert Syst. Appl. – reference: A. Selvikvåg Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik doi:10.1016/j.zemedi.2018.11.002. – reference: H.G. Schnack, R.S. Kahn, Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters, Front. Psychiatry 7. doi:10.3389/fpsyt.2016.00050. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: b0120 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – reference: F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, I.A. Illán, F. Segovia, D. Castillo-Barnes, D. Salas-Gonzalez, Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases, Frontiers in Neuroinformatics 11. doi:10.3389/fninf.2017.00065. – volume: 14 start-page: 77 year: 2016 end-page: 86 ident: b0045 article-title: Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases publication-title: NeuroImage: Clinical – volume: 57 start-page: 1071 year: 2016 end-page: 1077 ident: b0090 article-title: Comparison of early-phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh compound B PET for Assessing brain perfusion in Alzheimer disease publication-title: J. Nucl. Med. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: b0065 article-title: Unified segmentation publication-title: NeuroImage – volume: 36 start-page: 2103 issue: 12 year: 2009 ident: 10.1016/j.neucom.2020.06.081_b0060 article-title: EANM procedure guidelines for PET brain imaging using 18F-FDG, version 2 publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-009-1264-0 – ident: 10.1016/j.neucom.2020.06.081_b0030 doi: 10.1016/j.neuroimage.2017.03.057 – volume: 8 start-page: 5697 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.06.081_b0135 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images publication-title: Scientific Reports doi: 10.1038/s41598-018-22871-z – ident: 10.1016/j.neucom.2020.06.081_b0055 – ident: 10.1016/j.neucom.2020.06.081_b0035 doi: 10.3389/fninf.2017.00065 – start-page: 71 year: 2004 ident: 10.1016/j.neucom.2020.06.081_b0105 article-title: Support vector machine applications in computational biology – volume: 46 start-page: 26 year: 2018 ident: 10.1016/j.neucom.2020.06.081_b0160 article-title: Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.02.002 – volume: 43 start-page: 1700 issue: 9 year: 2016 ident: 10.1016/j.neucom.2020.06.081_b0040 article-title: Early 18F-florbetaben and 11C-PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-016-3353-1 – volume: 40 start-page: 677 issue: 2 year: 2013 ident: 10.1016/j.neucom.2020.06.081_b0115 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares and support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.071 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 10.1016/j.neucom.2020.06.081_b0125 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(96)00142-2 – ident: 10.1016/j.neucom.2020.06.081_b0145 doi: 10.1016/j.zemedi.2018.11.002 – volume: 14 start-page: 77 year: 2016 ident: 10.1016/j.neucom.2020.06.081_b0045 article-title: Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.10.005 – volume: 338 year: 2009 ident: 10.1016/j.neucom.2020.06.081_b0005 article-title: Alzheimer’s disease publication-title: BMJ doi: 10.1136/bmj.b158 – volume: 65 start-page: 765 issue: 3 year: 2018 ident: 10.1016/j.neucom.2020.06.081_b0050 article-title: Usefulness of dual-point amyloid pet scans in appropriate use criteria: a multicenter study publication-title: J. Alzheimer’s Disease doi: 10.3233/JAD-180232 – volume: 151 start-page: 139 issue: Part 1 year: 2015 ident: 10.1016/j.neucom.2020.06.081_b0100 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.072 – year: 2008 ident: 10.1016/j.neucom.2020.06.081_b0085 – volume: 12 start-page: 2211 year: 2011 ident: 10.1016/j.neucom.2020.06.081_b0110 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neucom.2020.06.081_b0120 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 24 start-page: 2800 issue: 11 year: 2014 ident: 10.1016/j.neucom.2020.06.081_b0150 article-title: Comparison of dual-biomarker PIB-PET and dual-tracer PET in AD diagnosis publication-title: Eur. Radiol. doi: 10.1007/s00330-014-3311-x – volume: 57 start-page: 1071 issue: 7 year: 2016 ident: 10.1016/j.neucom.2020.06.081_b0090 article-title: Comparison of early-phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh compound B PET for Assessing brain perfusion in Alzheimer disease publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.168732 – volume: 58 start-page: 101 year: 2015 ident: 10.1016/j.neucom.2020.06.081_b0025 article-title: Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.01.003 – ident: 10.1016/j.neucom.2020.06.081_b0075 – volume: 10541 start-page: 132 year: 2017 ident: 10.1016/j.neucom.2020.06.081_b0140 article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis publication-title: Mach. Learn. Med. imaging. MLMI (Workshop) doi: 10.1007/978-3-319-67389-9_16 – volume: 24 start-page: 17 issue: 1 year: 2020 ident: 10.1016/j.neucom.2020.06.081_b0155 article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2914970 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: 10.1016/j.neucom.2020.06.081_b0015 article-title: The clinical use of structural MRI in Alzheimer disease, Nature reviews publication-title: Neurology – volume: 26 start-page: 839 issue: 3 year: 2005 ident: 10.1016/j.neucom.2020.06.081_b0065 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – ident: 10.1016/j.neucom.2020.06.081_b0165 doi: 10.1093/jigpal/jzy026 – ident: 10.1016/j.neucom.2020.06.081_b0080 doi: 10.3389/fpsyt.2016.00050 – ident: 10.1016/j.neucom.2020.06.081_b0020 doi: 10.3389/fninf.2017.00066 – year: 2000 ident: 10.1016/j.neucom.2020.06.081_b0070 – ident: 10.1016/j.neucom.2020.06.081_b0010 doi: 10.1016/j.inffus.2020.01.001 – year: 2009 ident: 10.1016/j.neucom.2020.06.081_b0095 – volume: 39 start-page: 4395 issue: 7 year: 2012 ident: 10.1016/j.neucom.2020.06.081_b0130 article-title: Improved Parkinsonism diagnosis using a partial least squares based approach publication-title: Med. Phys. doi: 10.1118/1.4730289 |
RestrictionsOnAccess | open access |
SSID | ssj0017129 |
Score | 2.359819 |
Snippet | Several studies have recently suggested that amyloid Positron Emission Tomography (PET) data acquired immediately after the radiotracer injection provide... |
SourceID | liege crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alzheimer's disease Amyloid PET imaging Computer aided diagnosis Engineering, computing & technology Ingénierie, informatique & technologie Late fusion Multimodal systems Multiple kernel learning multivariate analysis Partial least squares PET imaging Support vector machine |
Title | Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease |
URI | https://dx.doi.org/10.1016/j.neucom.2020.06.081 http://orbi.ulg.ac.be/handle/2268/249117 |
Volume | 417 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T-QwELUQNDRwx4eA45ALSsLGjvPhcoVAeyAQEiDRWY5jQ9BuslqyFBSIv3F_737JzSQOggIhkSJKoliJxs74TfzmDSH7xoQ6MYwF2sk8ECYsgszBzsIG0YNOihSzkc8vktGNOL2NbxfIUZ8Lg7RK7_s7n956a39l4K05mJbl4CqUHKIoxjmqWyYSk_iESHGUH7680TxYynint8fjAO_u0-dajldl58gZ4YCZWhXPjH02PS2NcQ373dRz8oOseMxIh91r_SQLtlojq309Buo_z3VSttm0TxD9AoCk2suN0NpRTLgKpnVZNVRPIEQvC3p5fE1RKwL_gNOmpgCioccp4EFadPS7rulw_Hxvy4md_Xv9-0j9es4GuTk5vj4aBb6UQmAimTTg0lJnAHkUgovIaYmaMsIx6UzkQq6jyEaSGRMbCw6HW8ARNjRYv8bFichCE22Sxaqu7BahWe5ibqXkLklFKFLNQqNNrnNZJDbL2DaJegsq43XGsdzFWPWEsgfV2V2h3RXy6rBV8NZq2ulsfHF_2neO-jBeFEwFX7Q8aPtS1bO8VE9cocB2ezwf3yltVG4VYNJMQWDKWLrz7Qf9Ist41nJf4l2y2Mzm9jcgmCbfa4foHlka_jkbXfwHc5_zDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagPcCF5Slgd8GHPRI1dp4-VghUXhXSFomb5Tg2BJWkKikHTvs39u_tL9mZxEFwQEjkEEVJRolmnPE38cw3hPzS2lexZsxTVmReqP3cSy3sDGwQPag4T7Aa-Wocj27C89vodokcd7UwmFbpfH_r0xtv7c4MnDYHs6IY_PYFhyiKcY7slrEQy6SP7FRRj_SHZxej8etiQsJ4S7nHIw8Fugq6Js2rNAtMG-EAmxoiz5R9NEP1p7iM_Wb2OV0naw420mH7ZhtkyZSb5FvXkoG6L3SLFE1B7TMEwIAhqXKMI7SyFGuuvFlVlDVVjxClFzm9PplQpIvAn-C0rijgaDA6BUhI8zYDrxUdTl_uTfFo5v_-_H2ibklnm9ycnkyOR57rpuDpQMQ1eLXEagAfecjDwCqBtDKhZcLqwPpcBYEJBNM60gZ8DjcAJYyvsYWNjeIw9XWwQ3plVZpdQtPMRtwIwW2chH6YKOZrpTOViTw2acr2SNBpUGpHNY4dL6ayyyl7kK3eJepdYmodSnmvUrOWauOT-5POOPLdkJEwG3wiedTYUlbzrJDPXCLHdnO8mN5JpWVmJMDSVEJsyliy_-UHHZKV0eTqUl6ejS--k1W80qTCRD9Ir54vzE8ANHV24Absf8U79b0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+dual-point+amyloid+PET+intended+to+assist+the+diagnosis+of+Alzheimer%E2%80%99s+disease&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Segovia%2C+F.&rft.au=Ram%C3%ADrez%2C+J.&rft.au=Castillo-Barnes%2C+D.&rft.au=Salas-Gonzalez%2C+D.&rft.date=2020-12-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=417&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.081&rft.externalDocID=S0925231220310699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |