Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior
The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized i...
Saved in:
Published in | Precision agriculture Vol. 22; no. 6; pp. 1816 - 1844 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1385-2256 1573-1618 |
DOI | 10.1007/s11119-021-09814-x |
Cover
Loading…
Abstract | The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis (
1989
) and the theory of planned behavior (TPB) of Ajzen (
1991
) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed. |
---|---|
AbstractList | The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis (1989) and the theory of planned behavior (TPB) of Ajzen (1991) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed. The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis ( 1989 ) and the theory of planned behavior (TPB) of Ajzen ( 1991 ) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed. |
Author | Mohr, Svenja Kühl, Rainer |
Author_xml | – sequence: 1 givenname: Svenja orcidid: 0000-0002-8929-1670 surname: Mohr fullname: Mohr, Svenja email: Svenja.Mohr@ernaehrung.uni-giessen.de organization: Institute of Farm and Agribusiness Management, University of Giessen – sequence: 2 givenname: Rainer surname: Kühl fullname: Kühl, Rainer organization: Institute of Farm and Agribusiness Management, University of Giessen |
BookMark | eNp9kc9uFSEUxompiW31BVyRuHEzyp-BYdw1jVaTJm50Tbhw5l4aLozAmN7H6BvLdEyadFE2HML3-86B7wKdxRQBofeUfKKEDJ8LbWvsCKMdGRXtu_tX6JyKgXdUUnXWaq5Ex5iQb9BFKXeENKxn5-jhylqYq4kWcJqwydVP3noTsI8VQvB7WK98xDeQjyZis8_eLqEuGb7g9TzPwVtTfYqrQT0ArmAPMYW0P2Hz5H5MDkIj3KY5QMqnlZiDiREc3sHB_PUpv0WvJxMKvPu_X6Lf377-uv7e3f68-XF9ddtZPsraqZ0ZwI2jmmRvBqEkdSPrzegUdW43tQIYI9wJxq0bmHCOC2MscWwkvdj1_BJ93HznnP4sUKo--mLbk02EtBTNJJeSCqVok354Jr1LS45tOs2EGnolpByaim0qm1MpGSY9Z380-aQp0WtKektJt5T0Y0r6vkHqGWR9ffzNmo0PL6N8Q0vrE_eQn6Z6gfoHsmusKw |
CitedBy_id | crossref_primary_10_1080_10447318_2022_2151730 crossref_primary_10_2478_jaiscr_2023_0018 crossref_primary_10_1016_j_joitmc_2024_100413 crossref_primary_10_1016_j_indic_2024_100444 crossref_primary_10_1007_s10639_023_12333_z crossref_primary_10_1016_j_heliyon_2023_e15249 crossref_primary_10_3390_info15080466 crossref_primary_10_3389_fpsyg_2024_1450717 crossref_primary_10_1057_s41599_024_03371_0 crossref_primary_10_1016_j_biocon_2025_111042 crossref_primary_10_1108_MD_06_2023_0980 crossref_primary_10_3390_su162411002 crossref_primary_10_1016_j_cliser_2023_100438 crossref_primary_10_1002_jtr_2718 crossref_primary_10_1007_s10460_023_10483_x crossref_primary_10_3390_agronomy14061180 crossref_primary_10_3390_systems12050176 crossref_primary_10_1016_j_apenergy_2024_122934 crossref_primary_10_1016_j_fufo_2025_100553 crossref_primary_10_1016_j_outlook_2024_102145 crossref_primary_10_19126_suje_1468866 crossref_primary_10_1016_j_jwpe_2024_106317 crossref_primary_10_3390_su16135688 crossref_primary_10_1080_23311975_2024_2440628 crossref_primary_10_1016_j_techfore_2024_123967 crossref_primary_10_2224_sbp_11247 crossref_primary_10_1016_j_techfore_2023_122557 crossref_primary_10_1016_j_techfore_2024_123842 crossref_primary_10_1016_j_techsoc_2023_102400 crossref_primary_10_1080_10447318_2024_2314358 crossref_primary_10_1108_CAER_03_2023_0050 crossref_primary_10_3390_ijerph192315682 crossref_primary_10_3390_agriculture15020177 crossref_primary_10_1016_j_heliyon_2022_e10178 crossref_primary_10_1016_j_jafr_2024_101048 crossref_primary_10_3390_su16219179 crossref_primary_10_1016_j_aiia_2022_09_007 crossref_primary_10_1108_BFJ_02_2023_0132 crossref_primary_10_1016_j_jenvman_2024_120218 crossref_primary_10_3390_foods13233926 crossref_primary_10_29407_intensif_v7i2_19330 crossref_primary_10_1016_j_nexus_2022_100124 crossref_primary_10_3390_iot6010008 crossref_primary_10_1016_j_landusepol_2023_106979 crossref_primary_10_1080_23311932_2024_2422529 crossref_primary_10_31289_perspektif_v13i1_10654 crossref_primary_10_3390_app14166902 crossref_primary_10_1016_j_heliyon_2023_e18391 crossref_primary_10_1016_j_techfore_2022_121721 crossref_primary_10_1007_s00146_024_01987_z crossref_primary_10_1080_14735903_2023_2270149 crossref_primary_10_3390_agriculture14040518 crossref_primary_10_3390_su152316507 crossref_primary_10_1016_j_ijdrr_2024_104818 crossref_primary_10_1016_j_resconrec_2022_106287 crossref_primary_10_1057_s41599_024_02926_5 crossref_primary_10_1016_j_cie_2024_110524 crossref_primary_10_3390_cli12110192 crossref_primary_10_5604_01_3001_0053_9616 crossref_primary_10_3390_agriculture15030258 crossref_primary_10_1108_PR_04_2023_0303 crossref_primary_10_3389_fsufs_2024_1360887 crossref_primary_10_1016_j_tele_2022_101925 crossref_primary_10_3390_su16072828 crossref_primary_10_1016_j_agsy_2023_103803 crossref_primary_10_1016_j_envdev_2024_101120 crossref_primary_10_22430_24223182_2007 crossref_primary_10_1016_j_atech_2022_100039 crossref_primary_10_3390_su16156668 crossref_primary_10_1007_s11119_023_10093_x crossref_primary_10_1080_0144929X_2023_2185747 crossref_primary_10_1016_j_techfore_2022_122238 crossref_primary_10_4236_jwarp_2022_144015 crossref_primary_10_1007_s13201_024_02300_5 crossref_primary_10_3390_su15097546 crossref_primary_10_3390_jtaer18020046 crossref_primary_10_29244_jcs_10_1_27_58 crossref_primary_10_1007_s12144_023_04547_8 crossref_primary_10_1016_j_heliyon_2023_e21818 crossref_primary_10_1007_s12144_024_06649_3 crossref_primary_10_22495_cgobrv8i1p13 crossref_primary_10_3390_app13010014 crossref_primary_10_3390_foods13183002 crossref_primary_10_1016_j_crm_2023_100484 crossref_primary_10_1016_j_atech_2024_100401 crossref_primary_10_1186_s13731_024_00412_5 crossref_primary_10_1016_j_atech_2024_100404 crossref_primary_10_3390_electronics13234580 crossref_primary_10_3389_frai_2024_1496518 crossref_primary_10_1016_j_aei_2024_102387 crossref_primary_10_1016_j_aac_2022_10_001 crossref_primary_10_1016_j_fcr_2022_108624 crossref_primary_10_2139_ssrn_4648398 crossref_primary_10_3168_jds_2023_23861 crossref_primary_10_1016_j_chbah_2023_100014 crossref_primary_10_35633_inmateh_72_67 crossref_primary_10_3390_agriculture12081180 |
Cites_doi | 10.1086/376806 10.1007/s11119-019-09667-5 10.22004/ag.econ.134179 10.1016/j.compag.2018.12.048 10.1016/j.artint.2006.10.009 10.2307/30036540 10.1016/j.aiia.2020.04.002 10.1016/0749-5978(91)90020-T 10.1007/s10660-012-9092-x 10.1016/j.agsy.2017.01.023 10.1093/aepp/ppx056 10.1007/s11119-019-09653-x 10.1080/0268396032000150807 10.1007/s11119-009-9150-0 10.1016/j.jclepro.2015.06.044 10.22004/ag.econ.274993 10.1016/j.aiia.2019.05.004 10.1073/pnas.1707462114 10.1007/s11023-007-9079-x 10.1093/ajae/aay103 10.1006/imms.1993.1022 10.1007/s11119-020-09723-5 10.3390/ijerph17030869 10.1016/j.compag.2018.05.012 10.1146/annurev-resource-100518-093929 10.1007/s11119-020-09715-5 10.1080/17437199.2013.869710 10.1016/j.jafr.2020.100033 10.1287/isre.11.4.342.11872 10.1016/j.dss.2012.07.002 10.1016/j.landusepol.2018.10.004 10.1007/s10961-016-9520-5 10.2307/2065853 10.2307/249008 10.3390/agriengineering1020013 10.1007/s11119-016-9482-5 10.1007/s11119-009-9112-6 10.1016/j.jrurstud.2020.01.005 10.1111/1477-9552.12408 10.5897/AJAR09.506 10.1002/aepp.13004 10.1175/WCAS-D-16-0020.1 10.1111/j.1477-9552.2012.00344.x 10.1093/erae/jbaa031 10.1007/s11119-008-9101-1 10.1007/s11119-019-09675-5 10.1007/s10460-020-10145-2 10.1093/erae/jbz019 10.1016/j.protcy.2013.11.010 10.1287/mnsc.46.2.186.11926 10.1007/s12354-008-0049-x |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7ST 7WY 7WZ 7X2 7XB 87Z 88I 8FE 8FH 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- M0C M0K M2P PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11119-021-09814-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Sciences Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Agriculture Science Database Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Physics Computer Science |
EISSN | 1573-1618 |
EndPage | 1844 |
ExternalDocumentID | 10_1007_s11119_021_09814_x |
GrantInformation_xml | – fundername: Justus-Liebig-Universität Gießen (3114) |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 7WY 7X2 7XC 88I 8FE 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAK LLZTM M0C M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7R Z7U Z7V Z7W Z7Y Z83 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7XB 8FK ABRTQ C1K L.- PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-8ba7ed998f64a75861d924a9d81ddbfa9de2203d523cd725dd35aac0d29045b43 |
IEDL.DBID | BENPR |
ISSN | 1385-2256 |
IngestDate | Thu Jul 10 22:30:25 EDT 2025 Fri Jul 25 10:02:31 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Fri Feb 21 02:47:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Survey Technology acceptance model Artificial intelligence Theory of planned behavior Structural equation model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-8ba7ed998f64a75861d924a9d81ddbfa9de2203d523cd725dd35aac0d29045b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8929-1670 |
OpenAccessLink | https://link.springer.com/10.1007/s11119-021-09814-x |
PQID | 2587485667 |
PQPubID | 54630 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_2636615881 proquest_journals_2587485667 crossref_primary_10_1007_s11119_021_09814_x crossref_citationtrail_10_1007_s11119_021_09814_x springer_journals_10_1007_s11119_021_09814_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal on Advances in Precision Agriculture |
PublicationTitle | Precision agriculture |
PublicationTitleAbbrev | Precision Agric |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Rezaei-Moghaddam, Salehi (CR62) 2010; 5 CR37 Long, Blok, Coninx (CR45) 2016; 112 Antle (CR3) 2019; 101 Hansson, Ferguson, Olofsson (CR36) 2012; 63 CR34 Michels, von Hobe, Musshoff (CR50) 2020; 75 CR77 CR32 CR76 CR31 CR30 Venkatesh (CR73) 2000; 11 Zarmpou, Saprikis, Markos, Vlachopoulou (CR83) 2012; 12 Mulla, Khosla, Lal, Stewart (CR52) 2016 Das, Sharma, Kaushik (CR15) 2019; 1 CR2 Sniehotta, Presseau, Araújo-Soares (CR67) 2014; 8 Kakani, Nguyen, Kumar, Kim, Pasupuleti (CR40) 2020; 2 CR8 Russell, Norvig (CR65) 2016 CR7 Kamrath, Rajendran, Nenguwo, Afari-Sefa, Broring (CR41) 2018; 21 CR47 Venkatesh, Davis (CR74) 2000; 46 Barnes, Soto, Eory, Beck, Balafoutis, Sánchez (CR6) 2019; 80 Pathak, Brown, Best (CR55) 2019; 20 Wolfert, Ge, Verdouw, Bogaardt (CR81) 2017; 153 CR43 Lowenberg-DeBoer, Huang, Grigoriadis, Blackmore (CR46) 2020; 21 Reichardt, Jürgens (CR59) 2009; 10 Legg, Hutter (CR44) 2007; 17 CR84 Chlingaryan, Sukkarieh, Whelan (CR12) 2018; 151 CR82 Michels, Bonke, Musshoff (CR48) 2020; 21 Jarvis, MacKenzie, Podsakoff (CR38) 2003; 30 Talaviya, Shah, Patel, Yagnik, Shah (CR70) 2020; 4 Coble, Mishra, Ferrell, Griffin (CR13) 2018; 40 Groher, Heitkämper, Walter, Liebisch, Umstätter (CR33) 2020; 21 Ajzen (CR1) 1991; 50 Venkatesh, Morris, Davis, Davis (CR75) 2003; 27 Davis (CR16) 1989; 13 Pierpaoli, Carli, Pignatti, Canavari (CR58) 2013; 8 Aubert, Schroeder, Grimaudo (CR4) 2012; 54 CR19 Chin, Marcoulides (CR11) 1998 Oh, Ahn, Kim (CR53) 2003; 18 CR10 Bagozzi, Lee (CR5) 1999; 26 Blasch, van der Kroon, van Beukering, Munster, Fabiani, Nino (CR9) 2020; 00 CR51 Fishbein, Ajzen (CR27) 1975 Finger, Swinton, El Benni, Walter (CR25) 2019; 11 Weersink, Fulton (CR80) 2020; 42 Walter, Finger, Huber, Buchmann (CR79) 2017; 114 Pfeiffer, Gabriel, Gandorfer (CR57) 2021; 38 Rogers (CR64) 2003 Toma, Barnes, Sutherland, Thomson, Burnett, Mathews (CR71) 2018; 43 Michels, Fecke, Feil, Mußhoff, Pigisch, Krone (CR49) 2020; 21 CR29 Kutter, Tiemann, Siebert, Fountas (CR42) 2011; 12 Spector (CR69) 2006; 170 Dessart, Barreiro-Hurlé, van Bavel (CR18) 2019; 46 CR28 Davis (CR17) 1993; 38 CR26 Dalhaus, Finger (CR14) 2016; 8 CR24 Paustian, Theuvsen (CR56) 2017; 18 CR23 CR22 CR66 CR21 Partel, Kakarla, Ampatzidis (CR54) 2019; 157 CR20 CR63 CR61 Jha, Doshi, Patel, Shah (CR39) 2019; 2 Reichardt, Jürgens, Klöble, Hüter, Moser (CR60) 2009; 10 Voss, Spiller, Enneking (CR78) 2009; 58 Vecchio, Agnusdei, Miglietta, Capitanio (CR72) 2020; 17 Sok, Borges, Schmidt, Ajzen (CR68) 2020 Hair, Hult, Ringle, Sarstedt (CR35) 2016 T Dalhaus (9814_CR14) 2016; 8 HS Pathak (9814_CR55) 2019; 20 R Finger (9814_CR25) 2019; 11 TB Long (9814_CR45) 2016; 112 9814_CR77 V Das (9814_CR15) 2019; 1 9814_CR34 9814_CR31 S Wolfert (9814_CR81) 2017; 153 9814_CR32 9814_CR76 KH Coble (9814_CR13) 2018; 40 SJ Russell (9814_CR65) 2016 9814_CR30 JF Hair Jr (9814_CR35) 2016 FJ Dessart (9814_CR18) 2019; 46 L Spector (9814_CR69) 2006; 170 FD Davis (9814_CR16) 1989; 13 V Kakani (9814_CR40) 2020; 2 9814_CR37 I Ajzen (9814_CR1) 1991; 50 V Venkatesh (9814_CR74) 2000; 46 C Jarvis (9814_CR38) 2003; 30 9814_CR61 T Zarmpou (9814_CR83) 2012; 12 C Kamrath (9814_CR41) 2018; 21 T Kutter (9814_CR42) 2011; 12 WW Chin (9814_CR11) 1998 M Michels (9814_CR50) 2020; 75 9814_CR24 9814_CR22 9814_CR66 9814_CR23 9814_CR20 L Toma (9814_CR71) 2018; 43 A Walter (9814_CR79) 2017; 114 9814_CR21 S Legg (9814_CR44) 2007; 17 M Reichardt (9814_CR59) 2009; 10 9814_CR63 FD Davis (9814_CR17) 1993; 38 S Oh (9814_CR53) 2003; 18 V Venkatesh (9814_CR75) 2003; 27 9814_CR28 9814_CR29 9814_CR26 E Pierpaoli (9814_CR58) 2013; 8 J Voss (9814_CR78) 2009; 58 Y Vecchio (9814_CR72) 2020; 17 9814_CR2 K Rezaei-Moghaddam (9814_CR62) 2010; 5 M Reichardt (9814_CR60) 2009; 10 M Paustian (9814_CR56) 2017; 18 V Venkatesh (9814_CR73) 2000; 11 M Michels (9814_CR48) 2020; 21 9814_CR8 9814_CR7 9814_CR10 A Chlingaryan (9814_CR12) 2018; 151 9814_CR51 BA Aubert (9814_CR4) 2012; 54 K Jha (9814_CR39) 2019; 2 AP Barnes (9814_CR6) 2019; 80 9814_CR19 J Lowenberg-DeBoer (9814_CR46) 2020; 21 J Pfeiffer (9814_CR57) 2021; 38 RP Bagozzi (9814_CR5) 1999; 26 D Mulla (9814_CR52) 2016 9814_CR82 T Groher (9814_CR33) 2020; 21 FF Sniehotta (9814_CR67) 2014; 8 9814_CR47 9814_CR43 9814_CR84 JM Antle (9814_CR3) 2019; 101 T Talaviya (9814_CR70) 2020; 4 H Hansson (9814_CR36) 2012; 63 J Sok (9814_CR68) 2020 J Blasch (9814_CR9) 2020; 00 M Michels (9814_CR49) 2020; 21 EM Rogers (9814_CR64) 2003 A Weersink (9814_CR80) 2020; 42 M Fishbein (9814_CR27) 1975 V Partel (9814_CR54) 2019; 157 |
References_xml | – ident: CR22 – volume: 30 start-page: 199 issue: 2 year: 2003 end-page: 218 ident: CR38 article-title: A critical review of construct indicators and measurement model misspecification in marketing and consumer research publication-title: Journal of Consumer Research doi: 10.1086/376806 – volume: 21 start-page: 278 issue: 2 year: 2020 end-page: 299 ident: CR46 article-title: Economics of robots and automation in field crop production publication-title: Precision Agriculture doi: 10.1007/s11119-019-09667-5 – volume: 58 start-page: 155 issue: 3 year: 2009 end-page: 167 ident: CR78 article-title: Zur Akzeptanz von gentechnisch verändertem Saatgut in der deutschen Landwirtschaft. [On the acceptance of genetically modified seed in German agriculture] publication-title: German Journal of Agricultural Economics doi: 10.22004/ag.econ.134179 – ident: CR51 – volume: 157 start-page: 339 year: 2019 end-page: 350 ident: CR54 article-title: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.048 – volume: 170 start-page: 1251 issue: 18 year: 2006 end-page: 1253 ident: CR69 article-title: Evolution of artificial intelligence publication-title: Artificial Intelligence doi: 10.1016/j.artint.2006.10.009 – volume: 27 start-page: 425 issue: 3 year: 2003 end-page: 478 ident: CR75 article-title: User acceptance of information technology: Toward a unified view publication-title: MIS Quarterly doi: 10.2307/30036540 – year: 2003 ident: CR64 publication-title: Diffusion of innovations – volume: 4 start-page: 58 year: 2020 end-page: 73 ident: CR70 article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2020.04.002 – volume: 50 start-page: 179 issue: 2 year: 1991 end-page: 211 ident: CR1 article-title: The theory of planned behavior publication-title: Organizational Behavior and Human Decision Processes doi: 10.1016/0749-5978(91)90020-T – ident: CR29 – ident: CR61 – ident: CR77 – volume: 12 start-page: 225 issue: 2 year: 2012 end-page: 248 ident: CR83 article-title: Modeling users’ acceptance of mobile services publication-title: Electronic Commerce Research doi: 10.1007/s10660-012-9092-x – ident: CR8 – volume: 153 start-page: 69 year: 2017 end-page: 80 ident: CR81 article-title: Big data in smart farming—A review publication-title: Agricultural Systems doi: 10.1016/j.agsy.2017.01.023 – ident: CR84 – ident: CR21 – volume: 40 start-page: 79 issue: 1 year: 2018 end-page: 96 ident: CR13 article-title: Big data in agriculture: A challenge for the future publication-title: Applied Economic Perspectives and Policy doi: 10.1093/aepp/ppx056 – ident: CR19 – volume: 20 start-page: 1292 issue: 6 year: 2019 end-page: 1316 ident: CR55 article-title: A systematic literature review of the factors affecting the precision agriculture adoption process publication-title: Precision Agriculture doi: 10.1007/s11119-019-09653-x – volume: 18 start-page: 267 issue: 4 year: 2003 end-page: 280 ident: CR53 article-title: Adoption of broadband Internet in Korea: The role of experience in building attitudes publication-title: Journal of Information Technology doi: 10.1080/0268396032000150807 – volume: 12 start-page: 2 issue: 1 year: 2011 end-page: 17 ident: CR42 article-title: The role of communication and co-operation in the adoption of precision farming publication-title: Precision Agriculture doi: 10.1007/s11119-009-9150-0 – volume: 112 start-page: 9 year: 2016 end-page: 21 ident: CR45 article-title: Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2015.06.044 – ident: CR32 – volume: 21 start-page: 771 issue: 6 year: 2018 end-page: 790 ident: CR41 article-title: Adoption behavior of market traders: An analysis based on Technology Acceptance Model and theory of Planned Behavior publication-title: International Food and Agribusiness Management Review doi: 10.22004/ag.econ.274993 – start-page: 1 year: 2016 end-page: 35 ident: CR52 article-title: Historical evolution and recent advances in precision farming publication-title: Soil-specific farming precision agriculture – ident: CR26 – volume: 2 start-page: 1 year: 2019 end-page: 12 ident: CR39 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.05.004 – volume: 114 start-page: 6148 issue: 24 year: 2017 end-page: 6150 ident: CR79 article-title: Opinion: Smart farming is key to developing sustainable agriculture publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1707462114 – volume: 26 start-page: 218 issue: 1 year: 1999 end-page: 225 ident: CR5 article-title: Consumer resistance to and acceptance of iinnovations publication-title: Advances in Consumer Research – volume: 17 start-page: 391 issue: 4 year: 2007 end-page: 444 ident: CR44 article-title: Universal intelligence: A definition of machine intelligence publication-title: Minds and Machines doi: 10.1007/s11023-007-9079-x – ident: CR43 – volume: 101 start-page: 365 issue: 2 year: 2019 end-page: 382 ident: CR3 article-title: Data, economics and computational agricultural science publication-title: American Journal of Agricultural Economics doi: 10.1093/ajae/aay103 – volume: 38 start-page: 475 issue: 3 year: 1993 end-page: 487 ident: CR17 article-title: User acceptance of information technology: System characteristics, user perceptions and behavioral impacts publication-title: International Journal of Man-Machine Studies doi: 10.1006/imms.1993.1022 – ident: CR66 – ident: CR47 – volume: 21 start-page: 1327 year: 2020 end-page: 1350 ident: CR33 article-title: Status quo of adoption of precision agriculture enabling technologies in Swiss plant production publication-title: Precision Agriculture doi: 10.1007/s11119-020-09723-5 – volume: 17 start-page: 869 issue: 3 year: 2020 ident: CR72 article-title: Adoption of precision farming tools: The case of italian farmers publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph17030869 – volume: 151 start-page: 61 year: 2018 end-page: 69 ident: CR12 article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.05.012 – volume: 11 start-page: 313 year: 2019 end-page: 335 ident: CR25 article-title: Precision farming at the nexus of agricultural production and the environment publication-title: Annual Review of Resource Economics doi: 10.1146/annurev-resource-100518-093929 – ident: CR2 – ident: CR37 – volume: 21 start-page: 1209 year: 2020 end-page: 1226 ident: CR48 article-title: Understanding the adoption of smartphone apps in crop protection publication-title: Precision Agriculture doi: 10.1007/s11119-020-09715-5 – ident: CR30 – volume: 8 start-page: 1 issue: 1 year: 2014 end-page: 7 ident: CR67 article-title: Time to retire the theory of planned behaviour publication-title: Health Psychology Review doi: 10.1080/17437199.2013.869710 – ident: CR10 – volume: 2 start-page: 100033 year: 2020 ident: CR40 article-title: A critical review on computer vision and artificial intelligence in food industry publication-title: Journal of Agriculture and Food Research doi: 10.1016/j.jafr.2020.100033 – ident: CR82 – start-page: 295 year: 1998 end-page: 336 ident: CR11 article-title: The partial least squares approach to structural equation modeling publication-title: Modern methods for business research – volume: 11 start-page: 342 issue: 4 year: 2000 end-page: 365 ident: CR73 article-title: Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model publication-title: Information Systems Research doi: 10.1287/isre.11.4.342.11872 – volume: 54 start-page: 510 issue: 1 year: 2012 end-page: 520 ident: CR4 article-title: IT as enabler of sustainable farming: An empirical analysis of farmers' adoption decision of precision agriculture technology publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.07.002 – volume: 80 start-page: 163 year: 2019 end-page: 174 ident: CR6 article-title: Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.10.004 – volume: 43 start-page: 864 issue: 4 year: 2018 end-page: 881 ident: CR71 article-title: Impact of information transfer on farmers’ uptake of innovative crop technologies: A structural equation model applied to survey data publication-title: The Journal of Technology Transfer doi: 10.1007/s10961-016-9520-5 – year: 1975 ident: CR27 publication-title: Belief, attitude, intention, and behavior: An introduction to theory and research doi: 10.2307/2065853 – volume: 13 start-page: 319 issue: 3 year: 1989 end-page: 340 ident: CR16 article-title: Perceived usefulness, perceived ease of use, and user acceptance of information technology publication-title: MIS Quarterly doi: 10.2307/249008 – ident: CR63 – ident: CR23 – volume: 1 start-page: 164 issue: 2 year: 2019 end-page: 187 ident: CR15 article-title: Views of Irish farmers on smart farming technologies: An observational study publication-title: AgriEngineering doi: 10.3390/agriengineering1020013 – year: 2016 ident: CR35 publication-title: A primer on partial least squares structural equation modeling (PLS-SEM) – volume: 18 start-page: 701 issue: 5 year: 2017 end-page: 716 ident: CR56 article-title: Adoption of precision agriculture technologies by German crop farmers publication-title: Precision Agriculture doi: 10.1007/s11119-016-9482-5 – volume: 10 start-page: 525 issue: 6 year: 2009 end-page: 545 ident: CR60 article-title: Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities publication-title: Precision Agriculture doi: 10.1007/s11119-009-9112-6 – ident: CR31 – volume: 75 start-page: 80 year: 2020 end-page: 88 ident: CR50 article-title: A trans-theoretical model for the adoption of drones by large-scale German farmers publication-title: Journal of Rural Studies doi: 10.1016/j.jrurstud.2020.01.005 – year: 2020 ident: CR68 article-title: Farmer behaviour as reasoned action: A critical review of research with the theory of planned behaviour publication-title: Journal of Agricultural Economics doi: 10.1111/1477-9552.12408 – ident: CR34 – volume: 5 start-page: 1191 issue: 11 year: 2010 end-page: 1199 ident: CR62 article-title: Agricultural specialists intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model publication-title: African Journal of Agricultural Research doi: 10.5897/AJAR09.506 – volume: 42 start-page: 67 issue: 1 year: 2020 end-page: 79 ident: CR80 article-title: Limits to profit maximization as a guide to behavior change publication-title: Applied Economic Perspectives and Policy doi: 10.1002/aepp.13004 – ident: CR7 – volume: 8 start-page: 409 issue: 4 year: 2016 end-page: 419 ident: CR14 article-title: Can gridded precipitation data and phenological observations reduce basis risk of weather index–based insurance? publication-title: Weather, Climate, and Society doi: 10.1175/WCAS-D-16-0020.1 – volume: 63 start-page: 465 issue: 2 year: 2012 end-page: 482 ident: CR36 article-title: Psychological constructs underlying farmers’ decisions to diversify or specialise their businesses—An application of theory of planned behaviour publication-title: Journal of Agricultural Economics doi: 10.1111/j.1477-9552.2012.00344.x – ident: CR76 – volume: 00 start-page: 1 issue: 00 year: 2020 end-page: 49 ident: CR9 article-title: Farmer preferences for adopting precision farming technologies: A case study from Italy publication-title: European Review of Agricultural Economics doi: 10.1093/erae/jbaa031 – volume: 10 start-page: 73 issue: 1 year: 2009 end-page: 94 ident: CR59 article-title: Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups publication-title: Precision Agriculture doi: 10.1007/s11119-008-9101-1 – ident: CR28 – volume: 21 start-page: 403 issue: 2 year: 2020 end-page: 425 ident: CR49 article-title: Smartphone adoption and use in agriculture: Empirical evidence from Germany publication-title: Precision Agriculture doi: 10.1007/s11119-019-09675-5 – volume: 38 start-page: 107 year: 2021 end-page: 128 ident: CR57 article-title: Understanding the public attitudinal acceptance of digital farming technologies: A nationwide survey in Germany publication-title: Agriculture and Human Values doi: 10.1007/s10460-020-10145-2 – ident: CR24 – volume: 46 start-page: 417 issue: 3 year: 2019 end-page: 471 ident: CR18 article-title: Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review publication-title: European Review of Agricultural Economics doi: 10.1093/erae/jbz019 – ident: CR20 – volume: 8 start-page: 61 year: 2013 end-page: 69 ident: CR58 article-title: Drivers of precision agriculture technologies adoption: A literature review publication-title: Procedia Technology doi: 10.1016/j.protcy.2013.11.010 – volume: 46 start-page: 186 issue: 2 year: 2000 end-page: 204 ident: CR74 article-title: A theoretical extension of the technology acceptance model: Four longitudinal field studies publication-title: Management Science doi: 10.1287/mnsc.46.2.186.11926 – year: 2016 ident: CR65 publication-title: Artificial intelligence: a modern approach – ident: 9814_CR24 – ident: 9814_CR47 – volume: 8 start-page: 409 issue: 4 year: 2016 ident: 9814_CR14 publication-title: Weather, Climate, and Society doi: 10.1175/WCAS-D-16-0020.1 – volume: 80 start-page: 163 year: 2019 ident: 9814_CR6 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.10.004 – ident: 9814_CR76 – ident: 9814_CR43 – volume: 42 start-page: 67 issue: 1 year: 2020 ident: 9814_CR80 publication-title: Applied Economic Perspectives and Policy doi: 10.1002/aepp.13004 – volume: 8 start-page: 61 year: 2013 ident: 9814_CR58 publication-title: Procedia Technology doi: 10.1016/j.protcy.2013.11.010 – volume: 40 start-page: 79 issue: 1 year: 2018 ident: 9814_CR13 publication-title: Applied Economic Perspectives and Policy doi: 10.1093/aepp/ppx056 – ident: 9814_CR28 – volume: 46 start-page: 186 issue: 2 year: 2000 ident: 9814_CR74 publication-title: Management Science doi: 10.1287/mnsc.46.2.186.11926 – volume: 38 start-page: 107 year: 2021 ident: 9814_CR57 publication-title: Agriculture and Human Values doi: 10.1007/s10460-020-10145-2 – volume: 151 start-page: 61 year: 2018 ident: 9814_CR12 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.05.012 – volume: 8 start-page: 1 issue: 1 year: 2014 ident: 9814_CR67 publication-title: Health Psychology Review doi: 10.1080/17437199.2013.869710 – ident: 9814_CR20 – ident: 9814_CR63 – volume: 50 start-page: 179 issue: 2 year: 1991 ident: 9814_CR1 publication-title: Organizational Behavior and Human Decision Processes doi: 10.1016/0749-5978(91)90020-T – volume: 112 start-page: 9 year: 2016 ident: 9814_CR45 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2015.06.044 – ident: 9814_CR82 – volume: 101 start-page: 365 issue: 2 year: 2019 ident: 9814_CR3 publication-title: American Journal of Agricultural Economics doi: 10.1093/ajae/aay103 – ident: 9814_CR19 – ident: 9814_CR34 – start-page: 1 volume-title: Soil-specific farming precision agriculture year: 2016 ident: 9814_CR52 – volume: 12 start-page: 225 issue: 2 year: 2012 ident: 9814_CR83 publication-title: Electronic Commerce Research doi: 10.1007/s10660-012-9092-x – ident: 9814_CR7 – start-page: 295 volume-title: Modern methods for business research year: 1998 ident: 9814_CR11 – volume: 2 start-page: 1 year: 2019 ident: 9814_CR39 publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.05.004 – ident: 9814_CR30 – volume: 11 start-page: 342 issue: 4 year: 2000 ident: 9814_CR73 publication-title: Information Systems Research doi: 10.1287/isre.11.4.342.11872 – ident: 9814_CR2 doi: 10.1007/s12354-008-0049-x – volume: 157 start-page: 339 year: 2019 ident: 9814_CR54 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.048 – volume: 10 start-page: 73 issue: 1 year: 2009 ident: 9814_CR59 publication-title: Precision Agriculture doi: 10.1007/s11119-008-9101-1 – ident: 9814_CR77 – volume-title: Diffusion of innovations year: 2003 ident: 9814_CR64 – ident: 9814_CR29 – year: 2020 ident: 9814_CR68 publication-title: Journal of Agricultural Economics doi: 10.1111/1477-9552.12408 – ident: 9814_CR21 – volume: 1 start-page: 164 issue: 2 year: 2019 ident: 9814_CR15 publication-title: AgriEngineering doi: 10.3390/agriengineering1020013 – volume: 114 start-page: 6148 issue: 24 year: 2017 ident: 9814_CR79 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1707462114 – volume: 43 start-page: 864 issue: 4 year: 2018 ident: 9814_CR71 publication-title: The Journal of Technology Transfer doi: 10.1007/s10961-016-9520-5 – ident: 9814_CR66 – ident: 9814_CR31 – volume: 13 start-page: 319 issue: 3 year: 1989 ident: 9814_CR16 publication-title: MIS Quarterly doi: 10.2307/249008 – volume: 11 start-page: 313 year: 2019 ident: 9814_CR25 publication-title: Annual Review of Resource Economics doi: 10.1146/annurev-resource-100518-093929 – volume: 21 start-page: 278 issue: 2 year: 2020 ident: 9814_CR46 publication-title: Precision Agriculture doi: 10.1007/s11119-019-09667-5 – volume: 18 start-page: 701 issue: 5 year: 2017 ident: 9814_CR56 publication-title: Precision Agriculture doi: 10.1007/s11119-016-9482-5 – ident: 9814_CR10 – ident: 9814_CR8 – volume: 27 start-page: 425 issue: 3 year: 2003 ident: 9814_CR75 publication-title: MIS Quarterly doi: 10.2307/30036540 – volume-title: Belief, attitude, intention, and behavior: An introduction to theory and research year: 1975 ident: 9814_CR27 doi: 10.2307/2065853 – ident: 9814_CR26 – ident: 9814_CR51 – volume: 4 start-page: 58 year: 2020 ident: 9814_CR70 publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2020.04.002 – volume: 21 start-page: 403 issue: 2 year: 2020 ident: 9814_CR49 publication-title: Precision Agriculture doi: 10.1007/s11119-019-09675-5 – volume: 21 start-page: 1209 year: 2020 ident: 9814_CR48 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09715-5 – volume: 170 start-page: 1251 issue: 18 year: 2006 ident: 9814_CR69 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2006.10.009 – volume: 38 start-page: 475 issue: 3 year: 1993 ident: 9814_CR17 publication-title: International Journal of Man-Machine Studies doi: 10.1006/imms.1993.1022 – volume: 20 start-page: 1292 issue: 6 year: 2019 ident: 9814_CR55 publication-title: Precision Agriculture doi: 10.1007/s11119-019-09653-x – ident: 9814_CR22 – volume: 54 start-page: 510 issue: 1 year: 2012 ident: 9814_CR4 publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.07.002 – volume: 17 start-page: 869 issue: 3 year: 2020 ident: 9814_CR72 publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph17030869 – volume: 21 start-page: 771 issue: 6 year: 2018 ident: 9814_CR41 publication-title: International Food and Agribusiness Management Review doi: 10.22004/ag.econ.274993 – ident: 9814_CR61 – volume: 75 start-page: 80 year: 2020 ident: 9814_CR50 publication-title: Journal of Rural Studies doi: 10.1016/j.jrurstud.2020.01.005 – ident: 9814_CR84 – volume: 153 start-page: 69 year: 2017 ident: 9814_CR81 publication-title: Agricultural Systems doi: 10.1016/j.agsy.2017.01.023 – ident: 9814_CR32 – volume: 58 start-page: 155 issue: 3 year: 2009 ident: 9814_CR78 publication-title: German Journal of Agricultural Economics doi: 10.22004/ag.econ.134179 – volume: 2 start-page: 100033 year: 2020 ident: 9814_CR40 publication-title: Journal of Agriculture and Food Research doi: 10.1016/j.jafr.2020.100033 – volume: 17 start-page: 391 issue: 4 year: 2007 ident: 9814_CR44 publication-title: Minds and Machines doi: 10.1007/s11023-007-9079-x – volume-title: Artificial intelligence: a modern approach year: 2016 ident: 9814_CR65 – volume: 26 start-page: 218 issue: 1 year: 1999 ident: 9814_CR5 publication-title: Advances in Consumer Research – volume: 63 start-page: 465 issue: 2 year: 2012 ident: 9814_CR36 publication-title: Journal of Agricultural Economics doi: 10.1111/j.1477-9552.2012.00344.x – volume: 12 start-page: 2 issue: 1 year: 2011 ident: 9814_CR42 publication-title: Precision Agriculture doi: 10.1007/s11119-009-9150-0 – volume: 5 start-page: 1191 issue: 11 year: 2010 ident: 9814_CR62 publication-title: African Journal of Agricultural Research doi: 10.5897/AJAR09.506 – ident: 9814_CR23 – ident: 9814_CR37 – volume: 10 start-page: 525 issue: 6 year: 2009 ident: 9814_CR60 publication-title: Precision Agriculture doi: 10.1007/s11119-009-9112-6 – volume: 18 start-page: 267 issue: 4 year: 2003 ident: 9814_CR53 publication-title: Journal of Information Technology doi: 10.1080/0268396032000150807 – volume: 30 start-page: 199 issue: 2 year: 2003 ident: 9814_CR38 publication-title: Journal of Consumer Research doi: 10.1086/376806 – volume-title: A primer on partial least squares structural equation modeling (PLS-SEM) year: 2016 ident: 9814_CR35 – volume: 00 start-page: 1 issue: 00 year: 2020 ident: 9814_CR9 publication-title: European Review of Agricultural Economics doi: 10.1093/erae/jbaa031 – volume: 46 start-page: 417 issue: 3 year: 2019 ident: 9814_CR18 publication-title: European Review of Agricultural Economics doi: 10.1093/erae/jbz019 – volume: 21 start-page: 1327 year: 2020 ident: 9814_CR33 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09723-5 |
SSID | ssj0010042 |
Score | 2.585408 |
Snippet | The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1816 |
SubjectTerms | Agricultural economics Agriculture Artificial intelligence Atmospheric Sciences Biomedical and Life Sciences Chemistry and Earth Sciences Computer Science equations Farmers labor Life Sciences Physics precision agriculture Property rights questionnaires Remote Sensing/Photogrammetry Soil compaction Soil Science & Conservation Statistics for Engineering Structural equation modeling Technology Acceptance Model Technology utilization Theory of planned behavior variance Working hours |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EEfTgY1VcX0TwpoG2adLU2yI-EPTkgreSNKkI0hV3Bf-G_9iZbLtVUcGeWjqZFmaSfJN5ARxlOsYVz0qe6ZyObrThuYgcVyq1ifdlJC2dd9zcqqthen0v75uksHEb7d66JMNK3SW74ZVzCimIch2nHJHjgkTbnfR6mAxmvgPSw2BmaclRW1WTKvMzj6_bUYcxv7lFw25zsQYrDUxkg6lc12HO1z1YHjy8NKUyfA9W24YMrJmfPVgM8ZzleAPeByXFq5BI2ahipB_TUhHs8VMNTnxgl7Q018x0rE8ZPXeObWKAMJFNZqfwzHTcQysdHOGmNCHVn0Y8Uzck71hbB2AThhfnd2dXvOm-wEuRqwnX1mTeoTVWqdSgVaFih7aayR0iXGcrvPFJEgmHlmzpskQ6J6QxZeSSHGGiTcUWzNej2m8DS33us1SrCsETLsyZdcLqUvhUVDITlelD3AqhKJvS5NQh46noiiqT4AoUXBEEV7z14Xg25nlamONP6r1WtkUzScdFIjX-FeLZrA-Hs9c4vchnYmo_ekUaJRDBSK3jPpy0OtGx-P2LO_8j34WlhNQyBMrswfzk5dXvI9yZ2IOg3R8Wxvgb priority: 102 providerName: Springer Nature |
Title | Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior |
URI | https://link.springer.com/article/10.1007/s11119-021-09814-x https://www.proquest.com/docview/2587485667 https://www.proquest.com/docview/2636615881 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwED9t6ws8INhAFEZlJN6GRRLHjsMLSqt20yaqaaLSeIrs2EFIKC1bJ-1r8I25S5wGkFgekljxHyl3Pv_uzr4DeJfpGCWelTzTOZlutOG5iBxXKrWJ91UkLdk7Pi_V2So9v5bXweB2G7ZV9jKxFdRuXZGN_EMidZZqBB_Zp81PTlmjyLsaUmjswwhFsEYOH03ny8urnR-BeLJVubTkyLkqHJvpDs_hlXPaohDlOk75_d9L04A3_3GRtivP4ik8CZCRFR2Nn8Gebw7hcfHtJoTN8Efwq6hoewpRkK1rRuzQRYZg3_8IuYkFdkqSuGFmaP2RUXnwY1MHiArZdmd0Z2bovc2cgy1cV6c92U8tNpT8yDvWH_t_DqvF_MvsjIdkC7wSudpybU3mHSpftUoNKhEqdqiamdwhoHW2xhefJJFwqLhWLkukc0IaU0UuyREV2lS8gINm3fiXwFKfe6SVqhEroRzOrBNWV8KnopaZqM0Y4v4_l1WIRE4JMX6UQwxlok2JtClb2pT3YzjZtdl0cTgerH3ck68Mc_K2HDhoDG93n3E2kYvENH59h3WUQMAitY7H8L4n-9DF_0d89fCIr-FRQpzW7oM5hoPtzZ1_g2hmaycwKhbT6ZKep18v5pPAwhPYn6kZ3ldJ8RvEJffB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYCR4AQWiV9xkBBaoGVL2xVCrdRbascOQkLZpd2K8jP4I_xGZvLYABK9NadY8dhS5uFvPPYMwJPMpmjxvOaZzWnrxjqeyyRwY5QXMZaJ9rTfsTcz0wP14VAfrsGv_i4MHavsbWJjqMO8pD3yF0LbTFkEH9nrxTdOVaMoutqX0GjFYif--I4u28mr7XfI36dCbG3uv53yrqoAL2Vultx6l8WAXkZllEO0bNKAPojLAyK34Ct8iUIkMqCHVoZM6BCkdq5MgsgR_nglcdxLsK4kQoURrL_ZnH38tIpbkA40Lp7VHDXFdNd02st6-OScjkQkuU0VP_t7KRzw7T8h2Wal27oO1zqIyiatTN2AtVjfhKuTz8ddmo54C35OSjoOQxLD5hUj8WszUbAvf6T4xAZ7T5a_Zm6gfsmoPcTNaQBEoWy52uRnbhi9qdSDFKHt02QSIIoFFVuKgfVpBm7DwYWw4Q6M6nkd7wJTMY8oG6ZCbIZ2P_NBelvKqGSlM1m5MaT9fy7KLvM5FeD4Wgw5m4k3BfKmaHhTnI3h2Ypm0eb9OLf3Rs--orMBJ8UgsWN4vPqM2kshGVfH-Sn2MRIBkrY2HcPznu3DEP-f8d75Mz6Cy9P9vd1id3u2cx-uCJK65gzOBoyWx6fxASKppX_YiS-Do4vWmN-d8jB1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAXGKhQJGgiewmtjxESSEFtqlpbCqEJX6ltqxg5BQdmm3ovwM_g6_jpkcG0Cib81TrPiQMjP2N4dnAJ4Ym-KO5xU3NifTjXU8l0ngWmdexFgmypO948NM7xxk7w7V4Rr86u_CUFhlvyc2G3WYl2Qj3xTKmswi-DCbVRcWsb81fbX4xqmCFHla-3IaLYvsxR_fUX07ebm7hbR-KsR0-9ObHd5VGOClzPWSW-9MDKhxVDpziJx1GlAfcXlAFBd8hS9RiEQG1NbKYIQKQSrnyiSIHKGQzyTOewnWDV0fHcH66-3Z_seVD4PkoVH3rOIoNbq7stNe3MMn5xQekeQ2zfjZ38figHX_cc82p970Olzr4CqbtPx1A9ZifROuTj4fdyk74i34OSkpNIa4h80rRqzYZqVgX_5I94kN9pZOgZq5YfQLRu3Bh04TICJly5XBn7lh9qZqD44IbZ8mqwCNWFDhpRhYn3LgNhxcCBnuwKie1_EusCzmEflEV4jT8AwwPkhvSxkzWSkjKzeGtP_PRdllQadiHF-LIX8z0aZA2hQNbYqzMTxbjVm0OUDO7b3Rk6_o9oOTYuDeMTxefUZJJveMq-P8FPtoiWBJWZuO4XlP9mGK_6947_wVH8FllJTi_e5s7z5cEcR0TTjOBoyWx6fxAYKqpX_YcS-Do4sWmN_J0DSz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceptance+of+artificial+intelligence+in+German+agriculture%3A+an+application+of+the+technology+acceptance+model+and+the+theory+of+planned+behavior&rft.jtitle=Precision+agriculture&rft.au=Mohr%2C+Svenja&rft.au=K%C3%BChl%2C+Rainer&rft.date=2021-12-01&rft.issn=1385-2256&rft.volume=22&rft.issue=6+p.1816-1844&rft.spage=1816&rft.epage=1844&rft_id=info:doi/10.1007%2Fs11119-021-09814-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon |