Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior

The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized i...

Full description

Saved in:
Bibliographic Details
Published inPrecision agriculture Vol. 22; no. 6; pp. 1816 - 1844
Main Authors Mohr, Svenja, Kühl, Rainer
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1385-2256
1573-1618
DOI10.1007/s11119-021-09814-x

Cover

Loading…
Abstract The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis ( 1989 ) and the theory of planned behavior (TPB) of Ajzen ( 1991 ) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed.
AbstractList The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis (1989) and the theory of planned behavior (TPB) of Ajzen (1991) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed.
The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours as well as a reduction in soil compaction. However, the economic and ecological benefits of AI systems for agriculture can only be realized if farmers are willing to use them. This study applies the technology acceptance model (TAM) of Davis ( 1989 ) and the theory of planned behavior (TPB) of Ajzen ( 1991 ) to investigate which behavioral factors are influencing the acceptance of AI in agriculture. The composite model is extended by two additional factors, expectation of property rights over business data and personal innovativeness. A structural equation analysis is used to determine the importance of factors influencing the acceptance of AI systems in agriculture. For this purpose, 84 farmers were surveyed with a letter or an online questionnaire. Results show that the perceived behavioral control has the greatest influence on acceptance, followed by farmers’ personal attitude towards AI systems in agriculture. The modelled relationships explain 59% of the total variance in acceptance. Several options and implications on how to increase the acceptance of AI systems in agriculture are discussed.
Author Mohr, Svenja
Kühl, Rainer
Author_xml – sequence: 1
  givenname: Svenja
  orcidid: 0000-0002-8929-1670
  surname: Mohr
  fullname: Mohr, Svenja
  email: Svenja.Mohr@ernaehrung.uni-giessen.de
  organization: Institute of Farm and Agribusiness Management, University of Giessen
– sequence: 2
  givenname: Rainer
  surname: Kühl
  fullname: Kühl, Rainer
  organization: Institute of Farm and Agribusiness Management, University of Giessen
BookMark eNp9kc9uFSEUxompiW31BVyRuHEzyp-BYdw1jVaTJm50Tbhw5l4aLozAmN7H6BvLdEyadFE2HML3-86B7wKdxRQBofeUfKKEDJ8LbWvsCKMdGRXtu_tX6JyKgXdUUnXWaq5Ex5iQb9BFKXeENKxn5-jhylqYq4kWcJqwydVP3noTsI8VQvB7WK98xDeQjyZis8_eLqEuGb7g9TzPwVtTfYqrQT0ArmAPMYW0P2Hz5H5MDkIj3KY5QMqnlZiDiREc3sHB_PUpv0WvJxMKvPu_X6Lf377-uv7e3f68-XF9ddtZPsraqZ0ZwI2jmmRvBqEkdSPrzegUdW43tQIYI9wJxq0bmHCOC2MscWwkvdj1_BJ93HznnP4sUKo--mLbk02EtBTNJJeSCqVok354Jr1LS45tOs2EGnolpByaim0qm1MpGSY9Z380-aQp0WtKektJt5T0Y0r6vkHqGWR9ffzNmo0PL6N8Q0vrE_eQn6Z6gfoHsmusKw
CitedBy_id crossref_primary_10_1080_10447318_2022_2151730
crossref_primary_10_2478_jaiscr_2023_0018
crossref_primary_10_1016_j_joitmc_2024_100413
crossref_primary_10_1016_j_indic_2024_100444
crossref_primary_10_1007_s10639_023_12333_z
crossref_primary_10_1016_j_heliyon_2023_e15249
crossref_primary_10_3390_info15080466
crossref_primary_10_3389_fpsyg_2024_1450717
crossref_primary_10_1057_s41599_024_03371_0
crossref_primary_10_1016_j_biocon_2025_111042
crossref_primary_10_1108_MD_06_2023_0980
crossref_primary_10_3390_su162411002
crossref_primary_10_1016_j_cliser_2023_100438
crossref_primary_10_1002_jtr_2718
crossref_primary_10_1007_s10460_023_10483_x
crossref_primary_10_3390_agronomy14061180
crossref_primary_10_3390_systems12050176
crossref_primary_10_1016_j_apenergy_2024_122934
crossref_primary_10_1016_j_fufo_2025_100553
crossref_primary_10_1016_j_outlook_2024_102145
crossref_primary_10_19126_suje_1468866
crossref_primary_10_1016_j_jwpe_2024_106317
crossref_primary_10_3390_su16135688
crossref_primary_10_1080_23311975_2024_2440628
crossref_primary_10_1016_j_techfore_2024_123967
crossref_primary_10_2224_sbp_11247
crossref_primary_10_1016_j_techfore_2023_122557
crossref_primary_10_1016_j_techfore_2024_123842
crossref_primary_10_1016_j_techsoc_2023_102400
crossref_primary_10_1080_10447318_2024_2314358
crossref_primary_10_1108_CAER_03_2023_0050
crossref_primary_10_3390_ijerph192315682
crossref_primary_10_3390_agriculture15020177
crossref_primary_10_1016_j_heliyon_2022_e10178
crossref_primary_10_1016_j_jafr_2024_101048
crossref_primary_10_3390_su16219179
crossref_primary_10_1016_j_aiia_2022_09_007
crossref_primary_10_1108_BFJ_02_2023_0132
crossref_primary_10_1016_j_jenvman_2024_120218
crossref_primary_10_3390_foods13233926
crossref_primary_10_29407_intensif_v7i2_19330
crossref_primary_10_1016_j_nexus_2022_100124
crossref_primary_10_3390_iot6010008
crossref_primary_10_1016_j_landusepol_2023_106979
crossref_primary_10_1080_23311932_2024_2422529
crossref_primary_10_31289_perspektif_v13i1_10654
crossref_primary_10_3390_app14166902
crossref_primary_10_1016_j_heliyon_2023_e18391
crossref_primary_10_1016_j_techfore_2022_121721
crossref_primary_10_1007_s00146_024_01987_z
crossref_primary_10_1080_14735903_2023_2270149
crossref_primary_10_3390_agriculture14040518
crossref_primary_10_3390_su152316507
crossref_primary_10_1016_j_ijdrr_2024_104818
crossref_primary_10_1016_j_resconrec_2022_106287
crossref_primary_10_1057_s41599_024_02926_5
crossref_primary_10_1016_j_cie_2024_110524
crossref_primary_10_3390_cli12110192
crossref_primary_10_5604_01_3001_0053_9616
crossref_primary_10_3390_agriculture15030258
crossref_primary_10_1108_PR_04_2023_0303
crossref_primary_10_3389_fsufs_2024_1360887
crossref_primary_10_1016_j_tele_2022_101925
crossref_primary_10_3390_su16072828
crossref_primary_10_1016_j_agsy_2023_103803
crossref_primary_10_1016_j_envdev_2024_101120
crossref_primary_10_22430_24223182_2007
crossref_primary_10_1016_j_atech_2022_100039
crossref_primary_10_3390_su16156668
crossref_primary_10_1007_s11119_023_10093_x
crossref_primary_10_1080_0144929X_2023_2185747
crossref_primary_10_1016_j_techfore_2022_122238
crossref_primary_10_4236_jwarp_2022_144015
crossref_primary_10_1007_s13201_024_02300_5
crossref_primary_10_3390_su15097546
crossref_primary_10_3390_jtaer18020046
crossref_primary_10_29244_jcs_10_1_27_58
crossref_primary_10_1007_s12144_023_04547_8
crossref_primary_10_1016_j_heliyon_2023_e21818
crossref_primary_10_1007_s12144_024_06649_3
crossref_primary_10_22495_cgobrv8i1p13
crossref_primary_10_3390_app13010014
crossref_primary_10_3390_foods13183002
crossref_primary_10_1016_j_crm_2023_100484
crossref_primary_10_1016_j_atech_2024_100401
crossref_primary_10_1186_s13731_024_00412_5
crossref_primary_10_1016_j_atech_2024_100404
crossref_primary_10_3390_electronics13234580
crossref_primary_10_3389_frai_2024_1496518
crossref_primary_10_1016_j_aei_2024_102387
crossref_primary_10_1016_j_aac_2022_10_001
crossref_primary_10_1016_j_fcr_2022_108624
crossref_primary_10_2139_ssrn_4648398
crossref_primary_10_3168_jds_2023_23861
crossref_primary_10_1016_j_chbah_2023_100014
crossref_primary_10_35633_inmateh_72_67
crossref_primary_10_3390_agriculture12081180
Cites_doi 10.1086/376806
10.1007/s11119-019-09667-5
10.22004/ag.econ.134179
10.1016/j.compag.2018.12.048
10.1016/j.artint.2006.10.009
10.2307/30036540
10.1016/j.aiia.2020.04.002
10.1016/0749-5978(91)90020-T
10.1007/s10660-012-9092-x
10.1016/j.agsy.2017.01.023
10.1093/aepp/ppx056
10.1007/s11119-019-09653-x
10.1080/0268396032000150807
10.1007/s11119-009-9150-0
10.1016/j.jclepro.2015.06.044
10.22004/ag.econ.274993
10.1016/j.aiia.2019.05.004
10.1073/pnas.1707462114
10.1007/s11023-007-9079-x
10.1093/ajae/aay103
10.1006/imms.1993.1022
10.1007/s11119-020-09723-5
10.3390/ijerph17030869
10.1016/j.compag.2018.05.012
10.1146/annurev-resource-100518-093929
10.1007/s11119-020-09715-5
10.1080/17437199.2013.869710
10.1016/j.jafr.2020.100033
10.1287/isre.11.4.342.11872
10.1016/j.dss.2012.07.002
10.1016/j.landusepol.2018.10.004
10.1007/s10961-016-9520-5
10.2307/2065853
10.2307/249008
10.3390/agriengineering1020013
10.1007/s11119-016-9482-5
10.1007/s11119-009-9112-6
10.1016/j.jrurstud.2020.01.005
10.1111/1477-9552.12408
10.5897/AJAR09.506
10.1002/aepp.13004
10.1175/WCAS-D-16-0020.1
10.1111/j.1477-9552.2012.00344.x
10.1093/erae/jbaa031
10.1007/s11119-008-9101-1
10.1007/s11119-019-09675-5
10.1007/s10460-020-10145-2
10.1093/erae/jbz019
10.1016/j.protcy.2013.11.010
10.1287/mnsc.46.2.186.11926
10.1007/s12354-008-0049-x
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7ST
7WY
7WZ
7X2
7XB
87Z
88I
8FE
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
M0C
M0K
M2P
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11119-021-09814-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Sciences Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Agriculture Science Database
Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Physics
Computer Science
EISSN 1573-1618
EndPage 1844
ExternalDocumentID 10_1007_s11119_021_09814_x
GrantInformation_xml – fundername: Justus-Liebig-Universität Gießen (3114)
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
7WY
7X2
7XC
88I
8FE
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z83
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7XB
8FK
ABRTQ
C1K
L.-
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c396t-8ba7ed998f64a75861d924a9d81ddbfa9de2203d523cd725dd35aac0d29045b43
IEDL.DBID BENPR
ISSN 1385-2256
IngestDate Thu Jul 10 22:30:25 EDT 2025
Fri Jul 25 10:02:31 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Fri Feb 21 02:47:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Survey
Technology acceptance model
Artificial intelligence
Theory of planned behavior
Structural equation model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-8ba7ed998f64a75861d924a9d81ddbfa9de2203d523cd725dd35aac0d29045b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8929-1670
OpenAccessLink https://link.springer.com/10.1007/s11119-021-09814-x
PQID 2587485667
PQPubID 54630
PageCount 29
ParticipantIDs proquest_miscellaneous_2636615881
proquest_journals_2587485667
crossref_primary_10_1007_s11119_021_09814_x
crossref_citationtrail_10_1007_s11119_021_09814_x
springer_journals_10_1007_s11119_021_09814_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances in Precision Agriculture
PublicationTitle Precision agriculture
PublicationTitleAbbrev Precision Agric
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rezaei-Moghaddam, Salehi (CR62) 2010; 5
CR37
Long, Blok, Coninx (CR45) 2016; 112
Antle (CR3) 2019; 101
Hansson, Ferguson, Olofsson (CR36) 2012; 63
CR34
Michels, von Hobe, Musshoff (CR50) 2020; 75
CR77
CR32
CR76
CR31
CR30
Venkatesh (CR73) 2000; 11
Zarmpou, Saprikis, Markos, Vlachopoulou (CR83) 2012; 12
Mulla, Khosla, Lal, Stewart (CR52) 2016
Das, Sharma, Kaushik (CR15) 2019; 1
CR2
Sniehotta, Presseau, Araújo-Soares (CR67) 2014; 8
Kakani, Nguyen, Kumar, Kim, Pasupuleti (CR40) 2020; 2
CR8
Russell, Norvig (CR65) 2016
CR7
Kamrath, Rajendran, Nenguwo, Afari-Sefa, Broring (CR41) 2018; 21
CR47
Venkatesh, Davis (CR74) 2000; 46
Barnes, Soto, Eory, Beck, Balafoutis, Sánchez (CR6) 2019; 80
Pathak, Brown, Best (CR55) 2019; 20
Wolfert, Ge, Verdouw, Bogaardt (CR81) 2017; 153
CR43
Lowenberg-DeBoer, Huang, Grigoriadis, Blackmore (CR46) 2020; 21
Reichardt, Jürgens (CR59) 2009; 10
Legg, Hutter (CR44) 2007; 17
CR84
Chlingaryan, Sukkarieh, Whelan (CR12) 2018; 151
CR82
Michels, Bonke, Musshoff (CR48) 2020; 21
Jarvis, MacKenzie, Podsakoff (CR38) 2003; 30
Talaviya, Shah, Patel, Yagnik, Shah (CR70) 2020; 4
Coble, Mishra, Ferrell, Griffin (CR13) 2018; 40
Groher, Heitkämper, Walter, Liebisch, Umstätter (CR33) 2020; 21
Ajzen (CR1) 1991; 50
Venkatesh, Morris, Davis, Davis (CR75) 2003; 27
Davis (CR16) 1989; 13
Pierpaoli, Carli, Pignatti, Canavari (CR58) 2013; 8
Aubert, Schroeder, Grimaudo (CR4) 2012; 54
CR19
Chin, Marcoulides (CR11) 1998
Oh, Ahn, Kim (CR53) 2003; 18
CR10
Bagozzi, Lee (CR5) 1999; 26
Blasch, van der Kroon, van Beukering, Munster, Fabiani, Nino (CR9) 2020; 00
CR51
Fishbein, Ajzen (CR27) 1975
Finger, Swinton, El Benni, Walter (CR25) 2019; 11
Weersink, Fulton (CR80) 2020; 42
Walter, Finger, Huber, Buchmann (CR79) 2017; 114
Pfeiffer, Gabriel, Gandorfer (CR57) 2021; 38
Rogers (CR64) 2003
Toma, Barnes, Sutherland, Thomson, Burnett, Mathews (CR71) 2018; 43
Michels, Fecke, Feil, Mußhoff, Pigisch, Krone (CR49) 2020; 21
CR29
Kutter, Tiemann, Siebert, Fountas (CR42) 2011; 12
Spector (CR69) 2006; 170
Dessart, Barreiro-Hurlé, van Bavel (CR18) 2019; 46
CR28
Davis (CR17) 1993; 38
CR26
Dalhaus, Finger (CR14) 2016; 8
CR24
Paustian, Theuvsen (CR56) 2017; 18
CR23
CR22
CR66
CR21
Partel, Kakarla, Ampatzidis (CR54) 2019; 157
CR20
CR63
CR61
Jha, Doshi, Patel, Shah (CR39) 2019; 2
Reichardt, Jürgens, Klöble, Hüter, Moser (CR60) 2009; 10
Voss, Spiller, Enneking (CR78) 2009; 58
Vecchio, Agnusdei, Miglietta, Capitanio (CR72) 2020; 17
Sok, Borges, Schmidt, Ajzen (CR68) 2020
Hair, Hult, Ringle, Sarstedt (CR35) 2016
T Dalhaus (9814_CR14) 2016; 8
HS Pathak (9814_CR55) 2019; 20
R Finger (9814_CR25) 2019; 11
TB Long (9814_CR45) 2016; 112
9814_CR77
V Das (9814_CR15) 2019; 1
9814_CR34
9814_CR31
S Wolfert (9814_CR81) 2017; 153
9814_CR32
9814_CR76
KH Coble (9814_CR13) 2018; 40
SJ Russell (9814_CR65) 2016
9814_CR30
JF Hair Jr (9814_CR35) 2016
FJ Dessart (9814_CR18) 2019; 46
L Spector (9814_CR69) 2006; 170
FD Davis (9814_CR16) 1989; 13
V Kakani (9814_CR40) 2020; 2
9814_CR37
I Ajzen (9814_CR1) 1991; 50
V Venkatesh (9814_CR74) 2000; 46
C Jarvis (9814_CR38) 2003; 30
9814_CR61
T Zarmpou (9814_CR83) 2012; 12
C Kamrath (9814_CR41) 2018; 21
T Kutter (9814_CR42) 2011; 12
WW Chin (9814_CR11) 1998
M Michels (9814_CR50) 2020; 75
9814_CR24
9814_CR22
9814_CR66
9814_CR23
9814_CR20
L Toma (9814_CR71) 2018; 43
A Walter (9814_CR79) 2017; 114
9814_CR21
S Legg (9814_CR44) 2007; 17
M Reichardt (9814_CR59) 2009; 10
9814_CR63
FD Davis (9814_CR17) 1993; 38
S Oh (9814_CR53) 2003; 18
V Venkatesh (9814_CR75) 2003; 27
9814_CR28
9814_CR29
9814_CR26
E Pierpaoli (9814_CR58) 2013; 8
J Voss (9814_CR78) 2009; 58
Y Vecchio (9814_CR72) 2020; 17
9814_CR2
K Rezaei-Moghaddam (9814_CR62) 2010; 5
M Reichardt (9814_CR60) 2009; 10
M Paustian (9814_CR56) 2017; 18
V Venkatesh (9814_CR73) 2000; 11
M Michels (9814_CR48) 2020; 21
9814_CR8
9814_CR7
9814_CR10
A Chlingaryan (9814_CR12) 2018; 151
9814_CR51
BA Aubert (9814_CR4) 2012; 54
K Jha (9814_CR39) 2019; 2
AP Barnes (9814_CR6) 2019; 80
9814_CR19
J Lowenberg-DeBoer (9814_CR46) 2020; 21
J Pfeiffer (9814_CR57) 2021; 38
RP Bagozzi (9814_CR5) 1999; 26
D Mulla (9814_CR52) 2016
9814_CR82
T Groher (9814_CR33) 2020; 21
FF Sniehotta (9814_CR67) 2014; 8
9814_CR47
9814_CR43
9814_CR84
JM Antle (9814_CR3) 2019; 101
T Talaviya (9814_CR70) 2020; 4
H Hansson (9814_CR36) 2012; 63
J Sok (9814_CR68) 2020
J Blasch (9814_CR9) 2020; 00
M Michels (9814_CR49) 2020; 21
EM Rogers (9814_CR64) 2003
A Weersink (9814_CR80) 2020; 42
M Fishbein (9814_CR27) 1975
V Partel (9814_CR54) 2019; 157
References_xml – ident: CR22
– volume: 30
  start-page: 199
  issue: 2
  year: 2003
  end-page: 218
  ident: CR38
  article-title: A critical review of construct indicators and measurement model misspecification in marketing and consumer research
  publication-title: Journal of Consumer Research
  doi: 10.1086/376806
– volume: 21
  start-page: 278
  issue: 2
  year: 2020
  end-page: 299
  ident: CR46
  article-title: Economics of robots and automation in field crop production
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09667-5
– volume: 58
  start-page: 155
  issue: 3
  year: 2009
  end-page: 167
  ident: CR78
  article-title: Zur Akzeptanz von gentechnisch verändertem Saatgut in der deutschen Landwirtschaft. [On the acceptance of genetically modified seed in German agriculture]
  publication-title: German Journal of Agricultural Economics
  doi: 10.22004/ag.econ.134179
– ident: CR51
– volume: 157
  start-page: 339
  year: 2019
  end-page: 350
  ident: CR54
  article-title: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.048
– volume: 170
  start-page: 1251
  issue: 18
  year: 2006
  end-page: 1253
  ident: CR69
  article-title: Evolution of artificial intelligence
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2006.10.009
– volume: 27
  start-page: 425
  issue: 3
  year: 2003
  end-page: 478
  ident: CR75
  article-title: User acceptance of information technology: Toward a unified view
  publication-title: MIS Quarterly
  doi: 10.2307/30036540
– year: 2003
  ident: CR64
  publication-title: Diffusion of innovations
– volume: 4
  start-page: 58
  year: 2020
  end-page: 73
  ident: CR70
  article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2020.04.002
– volume: 50
  start-page: 179
  issue: 2
  year: 1991
  end-page: 211
  ident: CR1
  article-title: The theory of planned behavior
  publication-title: Organizational Behavior and Human Decision Processes
  doi: 10.1016/0749-5978(91)90020-T
– ident: CR29
– ident: CR61
– ident: CR77
– volume: 12
  start-page: 225
  issue: 2
  year: 2012
  end-page: 248
  ident: CR83
  article-title: Modeling users’ acceptance of mobile services
  publication-title: Electronic Commerce Research
  doi: 10.1007/s10660-012-9092-x
– ident: CR8
– volume: 153
  start-page: 69
  year: 2017
  end-page: 80
  ident: CR81
  article-title: Big data in smart farming—A review
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2017.01.023
– ident: CR84
– ident: CR21
– volume: 40
  start-page: 79
  issue: 1
  year: 2018
  end-page: 96
  ident: CR13
  article-title: Big data in agriculture: A challenge for the future
  publication-title: Applied Economic Perspectives and Policy
  doi: 10.1093/aepp/ppx056
– ident: CR19
– volume: 20
  start-page: 1292
  issue: 6
  year: 2019
  end-page: 1316
  ident: CR55
  article-title: A systematic literature review of the factors affecting the precision agriculture adoption process
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09653-x
– volume: 18
  start-page: 267
  issue: 4
  year: 2003
  end-page: 280
  ident: CR53
  article-title: Adoption of broadband Internet in Korea: The role of experience in building attitudes
  publication-title: Journal of Information Technology
  doi: 10.1080/0268396032000150807
– volume: 12
  start-page: 2
  issue: 1
  year: 2011
  end-page: 17
  ident: CR42
  article-title: The role of communication and co-operation in the adoption of precision farming
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-009-9150-0
– volume: 112
  start-page: 9
  year: 2016
  end-page: 21
  ident: CR45
  article-title: Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2015.06.044
– ident: CR32
– volume: 21
  start-page: 771
  issue: 6
  year: 2018
  end-page: 790
  ident: CR41
  article-title: Adoption behavior of market traders: An analysis based on Technology Acceptance Model and theory of Planned Behavior
  publication-title: International Food and Agribusiness Management Review
  doi: 10.22004/ag.econ.274993
– start-page: 1
  year: 2016
  end-page: 35
  ident: CR52
  article-title: Historical evolution and recent advances in precision farming
  publication-title: Soil-specific farming precision agriculture
– ident: CR26
– volume: 2
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR39
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.05.004
– volume: 114
  start-page: 6148
  issue: 24
  year: 2017
  end-page: 6150
  ident: CR79
  article-title: Opinion: Smart farming is key to developing sustainable agriculture
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1707462114
– volume: 26
  start-page: 218
  issue: 1
  year: 1999
  end-page: 225
  ident: CR5
  article-title: Consumer resistance to and acceptance of iinnovations
  publication-title: Advances in Consumer Research
– volume: 17
  start-page: 391
  issue: 4
  year: 2007
  end-page: 444
  ident: CR44
  article-title: Universal intelligence: A definition of machine intelligence
  publication-title: Minds and Machines
  doi: 10.1007/s11023-007-9079-x
– ident: CR43
– volume: 101
  start-page: 365
  issue: 2
  year: 2019
  end-page: 382
  ident: CR3
  article-title: Data, economics and computational agricultural science
  publication-title: American Journal of Agricultural Economics
  doi: 10.1093/ajae/aay103
– volume: 38
  start-page: 475
  issue: 3
  year: 1993
  end-page: 487
  ident: CR17
  article-title: User acceptance of information technology: System characteristics, user perceptions and behavioral impacts
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1006/imms.1993.1022
– ident: CR66
– ident: CR47
– volume: 21
  start-page: 1327
  year: 2020
  end-page: 1350
  ident: CR33
  article-title: Status quo of adoption of precision agriculture enabling technologies in Swiss plant production
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09723-5
– volume: 17
  start-page: 869
  issue: 3
  year: 2020
  ident: CR72
  article-title: Adoption of precision farming tools: The case of italian farmers
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph17030869
– volume: 151
  start-page: 61
  year: 2018
  end-page: 69
  ident: CR12
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.05.012
– volume: 11
  start-page: 313
  year: 2019
  end-page: 335
  ident: CR25
  article-title: Precision farming at the nexus of agricultural production and the environment
  publication-title: Annual Review of Resource Economics
  doi: 10.1146/annurev-resource-100518-093929
– ident: CR2
– ident: CR37
– volume: 21
  start-page: 1209
  year: 2020
  end-page: 1226
  ident: CR48
  article-title: Understanding the adoption of smartphone apps in crop protection
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09715-5
– ident: CR30
– volume: 8
  start-page: 1
  issue: 1
  year: 2014
  end-page: 7
  ident: CR67
  article-title: Time to retire the theory of planned behaviour
  publication-title: Health Psychology Review
  doi: 10.1080/17437199.2013.869710
– ident: CR10
– volume: 2
  start-page: 100033
  year: 2020
  ident: CR40
  article-title: A critical review on computer vision and artificial intelligence in food industry
  publication-title: Journal of Agriculture and Food Research
  doi: 10.1016/j.jafr.2020.100033
– ident: CR82
– start-page: 295
  year: 1998
  end-page: 336
  ident: CR11
  article-title: The partial least squares approach to structural equation modeling
  publication-title: Modern methods for business research
– volume: 11
  start-page: 342
  issue: 4
  year: 2000
  end-page: 365
  ident: CR73
  article-title: Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model
  publication-title: Information Systems Research
  doi: 10.1287/isre.11.4.342.11872
– volume: 54
  start-page: 510
  issue: 1
  year: 2012
  end-page: 520
  ident: CR4
  article-title: IT as enabler of sustainable farming: An empirical analysis of farmers' adoption decision of precision agriculture technology
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.07.002
– volume: 80
  start-page: 163
  year: 2019
  end-page: 174
  ident: CR6
  article-title: Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.10.004
– volume: 43
  start-page: 864
  issue: 4
  year: 2018
  end-page: 881
  ident: CR71
  article-title: Impact of information transfer on farmers’ uptake of innovative crop technologies: A structural equation model applied to survey data
  publication-title: The Journal of Technology Transfer
  doi: 10.1007/s10961-016-9520-5
– year: 1975
  ident: CR27
  publication-title: Belief, attitude, intention, and behavior: An introduction to theory and research
  doi: 10.2307/2065853
– volume: 13
  start-page: 319
  issue: 3
  year: 1989
  end-page: 340
  ident: CR16
  article-title: Perceived usefulness, perceived ease of use, and user acceptance of information technology
  publication-title: MIS Quarterly
  doi: 10.2307/249008
– ident: CR63
– ident: CR23
– volume: 1
  start-page: 164
  issue: 2
  year: 2019
  end-page: 187
  ident: CR15
  article-title: Views of Irish farmers on smart farming technologies: An observational study
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering1020013
– year: 2016
  ident: CR35
  publication-title: A primer on partial least squares structural equation modeling (PLS-SEM)
– volume: 18
  start-page: 701
  issue: 5
  year: 2017
  end-page: 716
  ident: CR56
  article-title: Adoption of precision agriculture technologies by German crop farmers
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-016-9482-5
– volume: 10
  start-page: 525
  issue: 6
  year: 2009
  end-page: 545
  ident: CR60
  article-title: Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-009-9112-6
– ident: CR31
– volume: 75
  start-page: 80
  year: 2020
  end-page: 88
  ident: CR50
  article-title: A trans-theoretical model for the adoption of drones by large-scale German farmers
  publication-title: Journal of Rural Studies
  doi: 10.1016/j.jrurstud.2020.01.005
– year: 2020
  ident: CR68
  article-title: Farmer behaviour as reasoned action: A critical review of research with the theory of planned behaviour
  publication-title: Journal of Agricultural Economics
  doi: 10.1111/1477-9552.12408
– ident: CR34
– volume: 5
  start-page: 1191
  issue: 11
  year: 2010
  end-page: 1199
  ident: CR62
  article-title: Agricultural specialists intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model
  publication-title: African Journal of Agricultural Research
  doi: 10.5897/AJAR09.506
– volume: 42
  start-page: 67
  issue: 1
  year: 2020
  end-page: 79
  ident: CR80
  article-title: Limits to profit maximization as a guide to behavior change
  publication-title: Applied Economic Perspectives and Policy
  doi: 10.1002/aepp.13004
– ident: CR7
– volume: 8
  start-page: 409
  issue: 4
  year: 2016
  end-page: 419
  ident: CR14
  article-title: Can gridded precipitation data and phenological observations reduce basis risk of weather index–based insurance?
  publication-title: Weather, Climate, and Society
  doi: 10.1175/WCAS-D-16-0020.1
– volume: 63
  start-page: 465
  issue: 2
  year: 2012
  end-page: 482
  ident: CR36
  article-title: Psychological constructs underlying farmers’ decisions to diversify or specialise their businesses—An application of theory of planned behaviour
  publication-title: Journal of Agricultural Economics
  doi: 10.1111/j.1477-9552.2012.00344.x
– ident: CR76
– volume: 00
  start-page: 1
  issue: 00
  year: 2020
  end-page: 49
  ident: CR9
  article-title: Farmer preferences for adopting precision farming technologies: A case study from Italy
  publication-title: European Review of Agricultural Economics
  doi: 10.1093/erae/jbaa031
– volume: 10
  start-page: 73
  issue: 1
  year: 2009
  end-page: 94
  ident: CR59
  article-title: Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-008-9101-1
– ident: CR28
– volume: 21
  start-page: 403
  issue: 2
  year: 2020
  end-page: 425
  ident: CR49
  article-title: Smartphone adoption and use in agriculture: Empirical evidence from Germany
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09675-5
– volume: 38
  start-page: 107
  year: 2021
  end-page: 128
  ident: CR57
  article-title: Understanding the public attitudinal acceptance of digital farming technologies: A nationwide survey in Germany
  publication-title: Agriculture and Human Values
  doi: 10.1007/s10460-020-10145-2
– ident: CR24
– volume: 46
  start-page: 417
  issue: 3
  year: 2019
  end-page: 471
  ident: CR18
  article-title: Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review
  publication-title: European Review of Agricultural Economics
  doi: 10.1093/erae/jbz019
– ident: CR20
– volume: 8
  start-page: 61
  year: 2013
  end-page: 69
  ident: CR58
  article-title: Drivers of precision agriculture technologies adoption: A literature review
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2013.11.010
– volume: 46
  start-page: 186
  issue: 2
  year: 2000
  end-page: 204
  ident: CR74
  article-title: A theoretical extension of the technology acceptance model: Four longitudinal field studies
  publication-title: Management Science
  doi: 10.1287/mnsc.46.2.186.11926
– year: 2016
  ident: CR65
  publication-title: Artificial intelligence: a modern approach
– ident: 9814_CR24
– ident: 9814_CR47
– volume: 8
  start-page: 409
  issue: 4
  year: 2016
  ident: 9814_CR14
  publication-title: Weather, Climate, and Society
  doi: 10.1175/WCAS-D-16-0020.1
– volume: 80
  start-page: 163
  year: 2019
  ident: 9814_CR6
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.10.004
– ident: 9814_CR76
– ident: 9814_CR43
– volume: 42
  start-page: 67
  issue: 1
  year: 2020
  ident: 9814_CR80
  publication-title: Applied Economic Perspectives and Policy
  doi: 10.1002/aepp.13004
– volume: 8
  start-page: 61
  year: 2013
  ident: 9814_CR58
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2013.11.010
– volume: 40
  start-page: 79
  issue: 1
  year: 2018
  ident: 9814_CR13
  publication-title: Applied Economic Perspectives and Policy
  doi: 10.1093/aepp/ppx056
– ident: 9814_CR28
– volume: 46
  start-page: 186
  issue: 2
  year: 2000
  ident: 9814_CR74
  publication-title: Management Science
  doi: 10.1287/mnsc.46.2.186.11926
– volume: 38
  start-page: 107
  year: 2021
  ident: 9814_CR57
  publication-title: Agriculture and Human Values
  doi: 10.1007/s10460-020-10145-2
– volume: 151
  start-page: 61
  year: 2018
  ident: 9814_CR12
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.05.012
– volume: 8
  start-page: 1
  issue: 1
  year: 2014
  ident: 9814_CR67
  publication-title: Health Psychology Review
  doi: 10.1080/17437199.2013.869710
– ident: 9814_CR20
– ident: 9814_CR63
– volume: 50
  start-page: 179
  issue: 2
  year: 1991
  ident: 9814_CR1
  publication-title: Organizational Behavior and Human Decision Processes
  doi: 10.1016/0749-5978(91)90020-T
– volume: 112
  start-page: 9
  year: 2016
  ident: 9814_CR45
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2015.06.044
– ident: 9814_CR82
– volume: 101
  start-page: 365
  issue: 2
  year: 2019
  ident: 9814_CR3
  publication-title: American Journal of Agricultural Economics
  doi: 10.1093/ajae/aay103
– ident: 9814_CR19
– ident: 9814_CR34
– start-page: 1
  volume-title: Soil-specific farming precision agriculture
  year: 2016
  ident: 9814_CR52
– volume: 12
  start-page: 225
  issue: 2
  year: 2012
  ident: 9814_CR83
  publication-title: Electronic Commerce Research
  doi: 10.1007/s10660-012-9092-x
– ident: 9814_CR7
– start-page: 295
  volume-title: Modern methods for business research
  year: 1998
  ident: 9814_CR11
– volume: 2
  start-page: 1
  year: 2019
  ident: 9814_CR39
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.05.004
– ident: 9814_CR30
– volume: 11
  start-page: 342
  issue: 4
  year: 2000
  ident: 9814_CR73
  publication-title: Information Systems Research
  doi: 10.1287/isre.11.4.342.11872
– ident: 9814_CR2
  doi: 10.1007/s12354-008-0049-x
– volume: 157
  start-page: 339
  year: 2019
  ident: 9814_CR54
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.048
– volume: 10
  start-page: 73
  issue: 1
  year: 2009
  ident: 9814_CR59
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-008-9101-1
– ident: 9814_CR77
– volume-title: Diffusion of innovations
  year: 2003
  ident: 9814_CR64
– ident: 9814_CR29
– year: 2020
  ident: 9814_CR68
  publication-title: Journal of Agricultural Economics
  doi: 10.1111/1477-9552.12408
– ident: 9814_CR21
– volume: 1
  start-page: 164
  issue: 2
  year: 2019
  ident: 9814_CR15
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering1020013
– volume: 114
  start-page: 6148
  issue: 24
  year: 2017
  ident: 9814_CR79
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1707462114
– volume: 43
  start-page: 864
  issue: 4
  year: 2018
  ident: 9814_CR71
  publication-title: The Journal of Technology Transfer
  doi: 10.1007/s10961-016-9520-5
– ident: 9814_CR66
– ident: 9814_CR31
– volume: 13
  start-page: 319
  issue: 3
  year: 1989
  ident: 9814_CR16
  publication-title: MIS Quarterly
  doi: 10.2307/249008
– volume: 11
  start-page: 313
  year: 2019
  ident: 9814_CR25
  publication-title: Annual Review of Resource Economics
  doi: 10.1146/annurev-resource-100518-093929
– volume: 21
  start-page: 278
  issue: 2
  year: 2020
  ident: 9814_CR46
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09667-5
– volume: 18
  start-page: 701
  issue: 5
  year: 2017
  ident: 9814_CR56
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-016-9482-5
– ident: 9814_CR10
– ident: 9814_CR8
– volume: 27
  start-page: 425
  issue: 3
  year: 2003
  ident: 9814_CR75
  publication-title: MIS Quarterly
  doi: 10.2307/30036540
– volume-title: Belief, attitude, intention, and behavior: An introduction to theory and research
  year: 1975
  ident: 9814_CR27
  doi: 10.2307/2065853
– ident: 9814_CR26
– ident: 9814_CR51
– volume: 4
  start-page: 58
  year: 2020
  ident: 9814_CR70
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2020.04.002
– volume: 21
  start-page: 403
  issue: 2
  year: 2020
  ident: 9814_CR49
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09675-5
– volume: 21
  start-page: 1209
  year: 2020
  ident: 9814_CR48
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09715-5
– volume: 170
  start-page: 1251
  issue: 18
  year: 2006
  ident: 9814_CR69
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2006.10.009
– volume: 38
  start-page: 475
  issue: 3
  year: 1993
  ident: 9814_CR17
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1006/imms.1993.1022
– volume: 20
  start-page: 1292
  issue: 6
  year: 2019
  ident: 9814_CR55
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09653-x
– ident: 9814_CR22
– volume: 54
  start-page: 510
  issue: 1
  year: 2012
  ident: 9814_CR4
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.07.002
– volume: 17
  start-page: 869
  issue: 3
  year: 2020
  ident: 9814_CR72
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph17030869
– volume: 21
  start-page: 771
  issue: 6
  year: 2018
  ident: 9814_CR41
  publication-title: International Food and Agribusiness Management Review
  doi: 10.22004/ag.econ.274993
– ident: 9814_CR61
– volume: 75
  start-page: 80
  year: 2020
  ident: 9814_CR50
  publication-title: Journal of Rural Studies
  doi: 10.1016/j.jrurstud.2020.01.005
– ident: 9814_CR84
– volume: 153
  start-page: 69
  year: 2017
  ident: 9814_CR81
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2017.01.023
– ident: 9814_CR32
– volume: 58
  start-page: 155
  issue: 3
  year: 2009
  ident: 9814_CR78
  publication-title: German Journal of Agricultural Economics
  doi: 10.22004/ag.econ.134179
– volume: 2
  start-page: 100033
  year: 2020
  ident: 9814_CR40
  publication-title: Journal of Agriculture and Food Research
  doi: 10.1016/j.jafr.2020.100033
– volume: 17
  start-page: 391
  issue: 4
  year: 2007
  ident: 9814_CR44
  publication-title: Minds and Machines
  doi: 10.1007/s11023-007-9079-x
– volume-title: Artificial intelligence: a modern approach
  year: 2016
  ident: 9814_CR65
– volume: 26
  start-page: 218
  issue: 1
  year: 1999
  ident: 9814_CR5
  publication-title: Advances in Consumer Research
– volume: 63
  start-page: 465
  issue: 2
  year: 2012
  ident: 9814_CR36
  publication-title: Journal of Agricultural Economics
  doi: 10.1111/j.1477-9552.2012.00344.x
– volume: 12
  start-page: 2
  issue: 1
  year: 2011
  ident: 9814_CR42
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-009-9150-0
– volume: 5
  start-page: 1191
  issue: 11
  year: 2010
  ident: 9814_CR62
  publication-title: African Journal of Agricultural Research
  doi: 10.5897/AJAR09.506
– ident: 9814_CR23
– ident: 9814_CR37
– volume: 10
  start-page: 525
  issue: 6
  year: 2009
  ident: 9814_CR60
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-009-9112-6
– volume: 18
  start-page: 267
  issue: 4
  year: 2003
  ident: 9814_CR53
  publication-title: Journal of Information Technology
  doi: 10.1080/0268396032000150807
– volume: 30
  start-page: 199
  issue: 2
  year: 2003
  ident: 9814_CR38
  publication-title: Journal of Consumer Research
  doi: 10.1086/376806
– volume-title: A primer on partial least squares structural equation modeling (PLS-SEM)
  year: 2016
  ident: 9814_CR35
– volume: 00
  start-page: 1
  issue: 00
  year: 2020
  ident: 9814_CR9
  publication-title: European Review of Agricultural Economics
  doi: 10.1093/erae/jbaa031
– volume: 46
  start-page: 417
  issue: 3
  year: 2019
  ident: 9814_CR18
  publication-title: European Review of Agricultural Economics
  doi: 10.1093/erae/jbz019
– volume: 21
  start-page: 1327
  year: 2020
  ident: 9814_CR33
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09723-5
SSID ssj0010042
Score 2.585408
Snippet The use of Artificial Intelligence (AI) in agriculture is expected to yield advantages such as savings in production resources, labor costs, and working hours...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1816
SubjectTerms Agricultural economics
Agriculture
Artificial intelligence
Atmospheric Sciences
Biomedical and Life Sciences
Chemistry and Earth Sciences
Computer Science
equations
Farmers
labor
Life Sciences
Physics
precision agriculture
Property rights
questionnaires
Remote Sensing/Photogrammetry
Soil compaction
Soil Science & Conservation
Statistics for Engineering
Structural equation modeling
Technology Acceptance Model
Technology utilization
Theory of planned behavior
variance
Working hours
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EEfTgY1VcX0TwpoG2adLU2yI-EPTkgreSNKkI0hV3Bf-G_9iZbLtVUcGeWjqZFmaSfJN5ARxlOsYVz0qe6ZyObrThuYgcVyq1ifdlJC2dd9zcqqthen0v75uksHEb7d66JMNK3SW74ZVzCimIch2nHJHjgkTbnfR6mAxmvgPSw2BmaclRW1WTKvMzj6_bUYcxv7lFw25zsQYrDUxkg6lc12HO1z1YHjy8NKUyfA9W24YMrJmfPVgM8ZzleAPeByXFq5BI2ahipB_TUhHs8VMNTnxgl7Q018x0rE8ZPXeObWKAMJFNZqfwzHTcQysdHOGmNCHVn0Y8Uzck71hbB2AThhfnd2dXvOm-wEuRqwnX1mTeoTVWqdSgVaFih7aayR0iXGcrvPFJEgmHlmzpskQ6J6QxZeSSHGGiTcUWzNej2m8DS33us1SrCsETLsyZdcLqUvhUVDITlelD3AqhKJvS5NQh46noiiqT4AoUXBEEV7z14Xg25nlamONP6r1WtkUzScdFIjX-FeLZrA-Hs9c4vchnYmo_ekUaJRDBSK3jPpy0OtGx-P2LO_8j34WlhNQyBMrswfzk5dXvI9yZ2IOg3R8Wxvgb
  priority: 102
  providerName: Springer Nature
Title Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior
URI https://link.springer.com/article/10.1007/s11119-021-09814-x
https://www.proquest.com/docview/2587485667
https://www.proquest.com/docview/2636615881
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwED9t6ws8INhAFEZlJN6GRRLHjsMLSqt20yaqaaLSeIrs2EFIKC1bJ-1r8I25S5wGkFgekljxHyl3Pv_uzr4DeJfpGCWelTzTOZlutOG5iBxXKrWJ91UkLdk7Pi_V2So9v5bXweB2G7ZV9jKxFdRuXZGN_EMidZZqBB_Zp81PTlmjyLsaUmjswwhFsEYOH03ny8urnR-BeLJVubTkyLkqHJvpDs_hlXPaohDlOk75_d9L04A3_3GRtivP4ik8CZCRFR2Nn8Gebw7hcfHtJoTN8Efwq6hoewpRkK1rRuzQRYZg3_8IuYkFdkqSuGFmaP2RUXnwY1MHiArZdmd0Z2bovc2cgy1cV6c92U8tNpT8yDvWH_t_DqvF_MvsjIdkC7wSudpybU3mHSpftUoNKhEqdqiamdwhoHW2xhefJJFwqLhWLkukc0IaU0UuyREV2lS8gINm3fiXwFKfe6SVqhEroRzOrBNWV8KnopaZqM0Y4v4_l1WIRE4JMX6UQwxlok2JtClb2pT3YzjZtdl0cTgerH3ck68Mc_K2HDhoDG93n3E2kYvENH59h3WUQMAitY7H8L4n-9DF_0d89fCIr-FRQpzW7oM5hoPtzZ1_g2hmaycwKhbT6ZKep18v5pPAwhPYn6kZ3ldJ8RvEJffB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYCR4AQWiV9xkBBaoGVL2xVCrdRbascOQkLZpd2K8jP4I_xGZvLYABK9NadY8dhS5uFvPPYMwJPMpmjxvOaZzWnrxjqeyyRwY5QXMZaJ9rTfsTcz0wP14VAfrsGv_i4MHavsbWJjqMO8pD3yF0LbTFkEH9nrxTdOVaMoutqX0GjFYif--I4u28mr7XfI36dCbG3uv53yrqoAL2Vultx6l8WAXkZllEO0bNKAPojLAyK34Ct8iUIkMqCHVoZM6BCkdq5MgsgR_nglcdxLsK4kQoURrL_ZnH38tIpbkA40Lp7VHDXFdNd02st6-OScjkQkuU0VP_t7KRzw7T8h2Wal27oO1zqIyiatTN2AtVjfhKuTz8ddmo54C35OSjoOQxLD5hUj8WszUbAvf6T4xAZ7T5a_Zm6gfsmoPcTNaQBEoWy52uRnbhi9qdSDFKHt02QSIIoFFVuKgfVpBm7DwYWw4Q6M6nkd7wJTMY8oG6ZCbIZ2P_NBelvKqGSlM1m5MaT9fy7KLvM5FeD4Wgw5m4k3BfKmaHhTnI3h2Ypm0eb9OLf3Rs--orMBJ8UgsWN4vPqM2kshGVfH-Sn2MRIBkrY2HcPznu3DEP-f8d75Mz6Cy9P9vd1id3u2cx-uCJK65gzOBoyWx6fxASKppX_YiS-Do4vWmN-d8jB1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAXGKhQJGgiewmtjxESSEFtqlpbCqEJX6ltqxg5BQdmm3ovwM_g6_jpkcG0Cib81TrPiQMjP2N4dnAJ4Ym-KO5xU3NifTjXU8l0ngWmdexFgmypO948NM7xxk7w7V4Rr86u_CUFhlvyc2G3WYl2Qj3xTKmswi-DCbVRcWsb81fbX4xqmCFHla-3IaLYvsxR_fUX07ebm7hbR-KsR0-9ObHd5VGOClzPWSW-9MDKhxVDpziJx1GlAfcXlAFBd8hS9RiEQG1NbKYIQKQSrnyiSIHKGQzyTOewnWDV0fHcH66-3Z_seVD4PkoVH3rOIoNbq7stNe3MMn5xQekeQ2zfjZ38figHX_cc82p970Olzr4CqbtPx1A9ZifROuTj4fdyk74i34OSkpNIa4h80rRqzYZqVgX_5I94kN9pZOgZq5YfQLRu3Bh04TICJly5XBn7lh9qZqD44IbZ8mqwCNWFDhpRhYn3LgNhxcCBnuwKie1_EusCzmEflEV4jT8AwwPkhvSxkzWSkjKzeGtP_PRdllQadiHF-LIX8z0aZA2hQNbYqzMTxbjVm0OUDO7b3Rk6_o9oOTYuDeMTxefUZJJveMq-P8FPtoiWBJWZuO4XlP9mGK_6947_wVH8FllJTi_e5s7z5cEcR0TTjOBoyWx6fxAYKqpX_YcS-Do4sWmN_J0DSz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceptance+of+artificial+intelligence+in+German+agriculture%3A+an+application+of+the+technology+acceptance+model+and+the+theory+of+planned+behavior&rft.jtitle=Precision+agriculture&rft.au=Mohr%2C+Svenja&rft.au=K%C3%BChl%2C+Rainer&rft.date=2021-12-01&rft.issn=1385-2256&rft.volume=22&rft.issue=6+p.1816-1844&rft.spage=1816&rft.epage=1844&rft_id=info:doi/10.1007%2Fs11119-021-09814-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon