Linear multistate consecutively-connected systems subject to a constrained number of gaps

Linear multistate consecutively-connected systems (LMCCS) are systems that consist of a set of linearly ordered nodes with some of them containing statistically independent multistate connection elements (MCEs). Each MCE can provide a connection between its host node and a random number of next node...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 133; pp. 246 - 252
Main Authors Levitin, Gregory, Xing, Liudong, Dai, Yuanshun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2015
Elsevier
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2014.09.004

Cover

Loading…
Abstract Linear multistate consecutively-connected systems (LMCCS) are systems that consist of a set of linearly ordered nodes with some of them containing statistically independent multistate connection elements (MCEs). Each MCE can provide a connection between its host node and a random number of next nodes along the sequence based on a known probability mass function. In traditional LMCCS models, the disconnection of any node causes the failure of the entire system. These models are too strict and thus not appropriate for some real-world applications such as those in sensor detection systems and flow transfer systems, which can tolerate a certain number of disconnected nodes referred to as gaps. In this work, we generalize the traditional LMCCS models by introducing a limited number of allowable gaps. The system fails if the number of gaps exceeds a specified limit. To analyze the reliability of the generalized LMCCS subject to a constrained total number of gaps, a universal generating function based method is first suggested. An optimal element sequencing problem is then solved considering that the system reliability can strongly depend on the sequence of different MCEs along the line. Examples are provided to demonstrate the proposed methodology. •New application motivated model of consecutive system is suggested.•An algorithm for system reliability evaluation is suggested.•Element importance analysis methodology is considered.•Optimal element sequencing problem is formulated and solved.
AbstractList Linear multistate consecutively-connected systems (LMCCS) are systems that consist of a set of linearly ordered nodes with some of them containing statistically independent multistate connection elements (MCEs). Each MCE can provide a connection between its host node and a random number of next nodes along the sequence based on a known probability mass function. In traditional LMCCS models, the disconnection of any node causes the failure of the entire system. These models are too strict and thus not appropriate for some real-world applications such as those in sensor detection systems and flow transfer systems, which can tolerate a certain number of disconnected nodes referred to as gaps. In this work, we generalize the traditional LMCCS models by introducing a limited number of allowable gaps. The system fails if the number of gaps exceeds a specified limit To analyze the reliability of the generalized LMCCS subject to a constrained total number of gaps, a universal generating function based method is first suggested. An optimal element sequencing problem is then solved considering that the system reliability can strongly depend on the sequence of different MCEs along the line. Examples are provided to demonstrate the proposed methodology.
Linear multistate consecutively-connected systems (LMCCS) are systems that consist of a set of linearly ordered nodes with some of them containing statistically independent multistate connection elements (MCEs). Each MCE can provide a connection between its host node and a random number of next nodes along the sequence based on a known probability mass function. In traditional LMCCS models, the disconnection of any node causes the failure of the entire system. These models are too strict and thus not appropriate for some real-world applications such as those in sensor detection systems and flow transfer systems, which can tolerate a certain number of disconnected nodes referred to as gaps. In this work, we generalize the traditional LMCCS models by introducing a limited number of allowable gaps. The system fails if the number of gaps exceeds a specified limit. To analyze the reliability of the generalized LMCCS subject to a constrained total number of gaps, a universal generating function based method is first suggested. An optimal element sequencing problem is then solved considering that the system reliability can strongly depend on the sequence of different MCEs along the line. Examples are provided to demonstrate the proposed methodology. •New application motivated model of consecutive system is suggested.•An algorithm for system reliability evaluation is suggested.•Element importance analysis methodology is considered.•Optimal element sequencing problem is formulated and solved.
Author Dai, Yuanshun
Levitin, Gregory
Xing, Liudong
Author_xml – sequence: 1
  givenname: Gregory
  surname: Levitin
  fullname: Levitin, Gregory
  email: levitin@iec.co.il
  organization: Collaborative Autonomic Computing Laboratory, School of Computer Science, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Liudong
  surname: Xing
  fullname: Xing, Liudong
  email: lxing@umassd.edu
  organization: University of Massachusetts, Dartmouth, MA 02747, USA
– sequence: 3
  givenname: Yuanshun
  surname: Dai
  fullname: Dai, Yuanshun
  organization: Collaborative Autonomic Computing Laboratory, School of Computer Science, University of Electronic Science and Technology of China, Chengdu, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28887270$$DView record in Pascal Francis
BookMark eNqNkUFr3DAQhUVJoJtN_kBPuhR6sSPJXtmCXkpomsBCLu0hJyHL46LFlrYaeWH_feXu9pLDkpOk4XtvxHs35MoHD4R84qzkjMv7XRkBsRSM1yVTJWP1B7LibaMK1lbyiqyY2vCirQT7SG4QdywTatOsyOvWeTCRTvOYHCaTgNrgEeyc3AHGY5FfHmyCnuIRE0xIce52eUJToOYfnKLJJj3189RBpGGgv80eb8n1YEaEu_O5Jr8ev_98eCq2Lz-eH75tC1spmZY_1bJRAizvJGc162THh64zQsk2Xys-cGXMMhuapgOpNsqauumrykJl-mpNvpx89zH8mQGTnhxaGEfjIcyoudzkBYIJ9h6U1zlDuaCfz6hBa8YhGm8d6n10k4lHLdq2bUSzcO2JszEgRhi0dTlFF_ySyqg500tBeqeXgvRSkGZK5_izVLyR_ne_KPp6EkGO9OAgarQOvIXexVyK7oO7JP8Lo-mtNA
CitedBy_id crossref_primary_10_1002_qre_2227
crossref_primary_10_1016_j_ress_2016_11_025
crossref_primary_10_3390_math9172042
crossref_primary_10_1016_j_ejor_2017_06_047
crossref_primary_10_1177_1748006X18775901
crossref_primary_10_1109_TSMC_2019_2906550
crossref_primary_10_1016_j_ress_2017_05_007
crossref_primary_10_1002_asmb_2484
crossref_primary_10_1139_cjce_2021_0632
crossref_primary_10_1007_s11750_019_00536_y
crossref_primary_10_1007_s11750_019_00508_2
crossref_primary_10_1016_j_ress_2018_04_012
crossref_primary_10_1109_ACCESS_2018_2802319
crossref_primary_10_1016_j_ress_2021_108255
crossref_primary_10_1080_15732479_2021_1981400
crossref_primary_10_17531_ein_2022_2_12
crossref_primary_10_1016_j_ins_2016_01_027
crossref_primary_10_1155_2019_6535726
crossref_primary_10_1109_TR_2016_2570545
crossref_primary_10_2174_1872212114999200517123155
crossref_primary_10_1016_j_ress_2023_109680
crossref_primary_10_1016_j_ress_2016_01_010
Cites_doi 10.1016/S0360-8352(99)00043-1
10.1016/S0951-8320(02)00014-5
10.1109/24.46467
10.1016/j.ress.2005.11.007
10.1109/TR.1981.5220981
10.1109/24.406595
10.1109/TR.1982.5221423
10.1109/24.387368
10.1109/TR.2013.2270413
10.1016/0951-8320(94)90009-4
10.1109/TR.2011.2182393
10.1109/24.510811
10.1109/TR.1987.5222467
10.1109/TR.1980.5220921
10.1109/TR.2003.809655
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
7T2
C1K
DOI 10.1016/j.ress.2014.09.004
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
Health & Safety Science Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0836
EndPage 252
ExternalDocumentID 28887270
10_1016_j_ress_2014_09_004
S0951832014002142
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7TB
8FD
FR3
7T2
C1K
ID FETCH-LOGICAL-c396t-83246792ec1b61040b6b1fbba29686b131f19aab1fbf77be6959ca47d33ce3ad3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Fri Jul 11 01:40:35 EDT 2025
Fri Jul 11 08:05:33 EDT 2025
Wed Apr 02 07:18:34 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Fri Feb 23 02:28:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Connection element
Universal generating function
Reliability
Linear multistate consecutively-connected system
Gap
Element reliability importance
Statistical analysis
Probabilistic approach
Generating function
Dependability
Ordered set
Rupture
Interconnected power system
State space
System reliability
Failures
Modeling
Random number
Mass function
Sequencing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-83246792ec1b61040b6b1fbba29686b131f19aab1fbf77be6959ca47d33ce3ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651420160
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1654672020
proquest_miscellaneous_1651420160
pascalfrancis_primary_28887270
crossref_citationtrail_10_1016_j_ress_2014_09_004
crossref_primary_10_1016_j_ress_2014_09_004
elsevier_sciencedirect_doi_10_1016_j_ress_2014_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Reliability engineering & system safety
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gen, Cheng (bib18) 1997
Zuo, Liang (bib7) 1994; 44
Goldberg (bib22) 1989
Chiang, Niu (bib3) 1981; R-30
Ushakov (bib12) 1986; 24
Levitin (bib8) 2003; 52
Painton, Campbell (bib15) 1995; 44
Bock (bib21) 1996
Shanthikumar (bib5) 1987; R-36
Levitin, Xing, Dai (bib10) 2013; 62
Birnbaum (bib14) 1969
Kontoleon (bib2) 1980; R-29
Shanthikumar (bib4) 1982; R-31
Levitin (bib19) 2006; 91
Hwang, Yao (bib1) 1989; 38
Levitin (bib23) 2002; 76
Coit, Smith (bib16) 1996; 45
Chang, Hwang (bib9) 2003
Levitin (bib13) 2005
Gen, Kim (bib17) 1999; 37
(bib20) 2007
Kossow, Preuss (bib6) 1995; 44
Xiang, Levitin, Dai (bib11) 2012; 61
Hwang (10.1016/j.ress.2014.09.004_bib1) 1989; 38
Gen (10.1016/j.ress.2014.09.004_bib17) 1999; 37
Goldberg (10.1016/j.ress.2014.09.004_bib22) 1989
Chiang (10.1016/j.ress.2014.09.004_bib3) 1981; R-30
Xiang (10.1016/j.ress.2014.09.004_bib11) 2012; 61
Levitin (10.1016/j.ress.2014.09.004_bib10) 2013; 62
Ushakov (10.1016/j.ress.2014.09.004_bib12) 1986; 24
(10.1016/j.ress.2014.09.004_bib20) 2007
Levitin (10.1016/j.ress.2014.09.004_bib23) 2002; 76
Zuo (10.1016/j.ress.2014.09.004_bib7) 1994; 44
Kontoleon (10.1016/j.ress.2014.09.004_bib2) 1980; R-29
Shanthikumar (10.1016/j.ress.2014.09.004_bib4) 1982; R-31
Levitin (10.1016/j.ress.2014.09.004_bib13) 2005
Levitin (10.1016/j.ress.2014.09.004_bib8) 2003; 52
Painton (10.1016/j.ress.2014.09.004_bib15) 1995; 44
Kossow (10.1016/j.ress.2014.09.004_bib6) 1995; 44
Chang (10.1016/j.ress.2014.09.004_bib9) 2003
Birnbaum (10.1016/j.ress.2014.09.004_bib14) 1969
Bock (10.1016/j.ress.2014.09.004_bib21) 1996
Gen (10.1016/j.ress.2014.09.004_bib18) 1997
Coit (10.1016/j.ress.2014.09.004_bib16) 1996; 45
Shanthikumar (10.1016/j.ress.2014.09.004_bib5) 1987; R-36
Levitin (10.1016/j.ress.2014.09.004_bib19) 2006; 91
References_xml – start-page: 37
  year: 2003
  end-page: 59
  ident: bib9
  article-title: Reliabilities of consecutive-k systems,
  publication-title: Handbook of reliability engineering
– volume: 61
  start-page: 208
  year: 2012
  end-page: 214
  ident: bib11
  article-title: Linear multistate consecutively-connected systems with gap constraints
  publication-title: IEEE Trans Reliab
– year: 1989
  ident: bib22
  article-title: Genetic algorithms in search, optimization and machine learning
– volume: R-29
  start-page: 437
  year: 1980
  ident: bib2
  article-title: Reliability determination of r-successive-out-of-n:F system
  publication-title: IEEE Trans Reliab
– volume: R-36
  start-page: 546
  year: 1987
  end-page: 550
  ident: bib5
  article-title: Reliability of systems with consecutive minimal cutsets
  publication-title: IEEE Trans Reliab
– year: 2007
  ident: bib20
  publication-title: Computational intelligence in reliability engineering. Evolutionary techniques in reliability analysis and optimization
– volume: 38
  start-page: 472
  year: 1989
  end-page: 474
  ident: bib1
  article-title: Multistate consecutively-connected systems
  publication-title: IEEE Trans Reliab
– volume: 52
  start-page: 192
  year: 2003
  end-page: 199
  ident: bib8
  article-title: Optimal allocation of multi-state elements in linear consecutively-connected systems
  publication-title: IEEE Trans Reliab
– volume: 62
  start-page: 618
  year: 2013
  end-page: 627
  ident: bib10
  article-title: Optimal allocation of connecting element in phase mission linear consecutively-connected systems,
  publication-title: IEEE Trans Reliab
– volume: 37
  start-page: 151
  year: 1999
  end-page: 155
  ident: bib17
  article-title: GA-based reliability design: state-of-the-art survey
  publication-title: Comput Ind Eng
– volume: R-30
  start-page: 87
  year: 1981
  end-page: 89
  ident: bib3
  article-title: Reliability of a consecutive-k-out-of-n:F system
  publication-title: IEEE Trans Reliab
– volume: 24
  start-page: 118
  year: 1986
  end-page: 129
  ident: bib12
  article-title: Universal generating function
  publication-title: Sov J Comput Syst Sci
– volume: 76
  start-page: 247
  year: 2002
  end-page: 255
  ident: bib23
  article-title: Optimal allocation of elements in linear multi-state sliding window system
  publication-title: Reliab Eng Syst Saf
– year: 1997
  ident: bib18
  article-title: Genetic algorithms and engineering design
– year: 2005
  ident: bib13
  article-title: Universal generating function in reliability analysis and optimization
– volume: 91
  start-page: 975
  year: 2006
  end-page: 976
  ident: bib19
  article-title: Genetic algorithms in reliability engineering. Guest editorial
  publication-title: Reliab Eng Syst Saf
– year: 1996
  ident: bib21
  article-title: Evolutionary algorithms in theory and practice. Evolution strategies. Evolutionary programming. Genetic algorithms
– volume: 44
  start-page: 173
  year: 1994
  end-page: 176
  ident: bib7
  article-title: Reliability of multistate consecutively-connected systems
  publication-title: Reliab Eng Syst Saf
– volume: 44
  start-page: 172
  year: 1995
  end-page: 178
  ident: bib15
  article-title: Genetic algorithm in optimization of system reliability
  publication-title: IEEE Trans Reliab
– start-page: 581
  year: 1969
  end-page: 592
  ident: bib14
  article-title: On the importance of different components in a multicomponent system
  publication-title: Multivariate analysis—II
– volume: 45
  start-page: 254
  year: 1996
  end-page: 266
  ident: bib16
  article-title: Reliability optimization of series-parallel systems using genetic algorithm,
  publication-title: IEEE Trans Reliab
– volume: R-31
  start-page: 442
  year: 1982
  end-page: 443
  ident: bib4
  article-title: A recursive algorithm to evaluate the reliability of a consecutive-k-out-of-n:F system
  publication-title: IEEE Trans Reliab
– volume: 44
  start-page: 518
  year: 1995
  end-page: 522
  ident: bib6
  article-title: Reliability of linear consecutively-connected systems with multistate components
  publication-title: IEEE Trans Reliab
– volume: 37
  start-page: 151
  year: 1999
  ident: 10.1016/j.ress.2014.09.004_bib17
  article-title: GA-based reliability design: state-of-the-art survey
  publication-title: Comput Ind Eng
  doi: 10.1016/S0360-8352(99)00043-1
– volume: 76
  start-page: 247
  year: 2002
  ident: 10.1016/j.ress.2014.09.004_bib23
  article-title: Optimal allocation of elements in linear multi-state sliding window system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(02)00014-5
– volume: 38
  start-page: 472
  year: 1989
  ident: 10.1016/j.ress.2014.09.004_bib1
  article-title: Multistate consecutively-connected systems
  publication-title: IEEE Trans Reliab
  doi: 10.1109/24.46467
– year: 2007
  ident: 10.1016/j.ress.2014.09.004_bib20
– volume: 91
  start-page: 975
  issue: 9
  year: 2006
  ident: 10.1016/j.ress.2014.09.004_bib19
  article-title: Genetic algorithms in reliability engineering. Guest editorial
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.007
– volume: R-30
  start-page: 87
  year: 1981
  ident: 10.1016/j.ress.2014.09.004_bib3
  article-title: Reliability of a consecutive-k-out-of-n:F system
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1981.5220981
– volume: 44
  start-page: 518
  year: 1995
  ident: 10.1016/j.ress.2014.09.004_bib6
  article-title: Reliability of linear consecutively-connected systems with multistate components
  publication-title: IEEE Trans Reliab
  doi: 10.1109/24.406595
– volume: R-31
  start-page: 442
  year: 1982
  ident: 10.1016/j.ress.2014.09.004_bib4
  article-title: A recursive algorithm to evaluate the reliability of a consecutive-k-out-of-n:F system
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1982.5221423
– volume: 44
  start-page: 172
  year: 1995
  ident: 10.1016/j.ress.2014.09.004_bib15
  article-title: Genetic algorithm in optimization of system reliability
  publication-title: IEEE Trans Reliab
  doi: 10.1109/24.387368
– start-page: 37
  year: 2003
  ident: 10.1016/j.ress.2014.09.004_bib9
  article-title: Reliabilities of consecutive-k systems,
– year: 1997
  ident: 10.1016/j.ress.2014.09.004_bib18
– volume: 62
  start-page: 618
  issue: 3
  year: 2013
  ident: 10.1016/j.ress.2014.09.004_bib10
  article-title: Optimal allocation of connecting element in phase mission linear consecutively-connected systems,
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2270413
– volume: 44
  start-page: 173
  year: 1994
  ident: 10.1016/j.ress.2014.09.004_bib7
  article-title: Reliability of multistate consecutively-connected systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/0951-8320(94)90009-4
– volume: 24
  start-page: 118
  issue: 5
  year: 1986
  ident: 10.1016/j.ress.2014.09.004_bib12
  article-title: Universal generating function
  publication-title: Sov J Comput Syst Sci
– volume: 61
  start-page: 208
  issue: 1
  year: 2012
  ident: 10.1016/j.ress.2014.09.004_bib11
  article-title: Linear multistate consecutively-connected systems with gap constraints
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2011.2182393
– volume: 45
  start-page: 254
  year: 1996
  ident: 10.1016/j.ress.2014.09.004_bib16
  article-title: Reliability optimization of series-parallel systems using genetic algorithm,
  publication-title: IEEE Trans Reliab
  doi: 10.1109/24.510811
– year: 1989
  ident: 10.1016/j.ress.2014.09.004_bib22
– volume: R-36
  start-page: 546
  year: 1987
  ident: 10.1016/j.ress.2014.09.004_bib5
  article-title: Reliability of systems with consecutive minimal cutsets
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1987.5222467
– year: 1996
  ident: 10.1016/j.ress.2014.09.004_bib21
– volume: R-29
  start-page: 437
  year: 1980
  ident: 10.1016/j.ress.2014.09.004_bib2
  article-title: Reliability determination of r-successive-out-of-n:F system
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1980.5220921
– year: 2005
  ident: 10.1016/j.ress.2014.09.004_bib13
– volume: 52
  start-page: 192
  issue: 2
  year: 2003
  ident: 10.1016/j.ress.2014.09.004_bib8
  article-title: Optimal allocation of multi-state elements in linear consecutively-connected systems
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2003.809655
– start-page: 581
  year: 1969
  ident: 10.1016/j.ress.2014.09.004_bib14
  article-title: On the importance of different components in a multicomponent system
SSID ssj0004957
Score 2.2548535
Snippet Linear multistate consecutively-connected systems (LMCCS) are systems that consist of a set of linearly ordered nodes with some of them containing...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 246
SubjectTerms Applied sciences
Connection element
Constraints
Disengaging
Element reliability importance
Exact sciences and technology
Gap
Joints
Linear multistate consecutively-connected system
Mathematical models
Operational research and scientific management
Operational research. Management science
Optimization
Random numbers
Reliability
Reliability theory. Replacement problems
Sequences
Sequencing
Universal generating function
Title Linear multistate consecutively-connected systems subject to a constrained number of gaps
URI https://dx.doi.org/10.1016/j.ress.2014.09.004
https://www.proquest.com/docview/1651420160
https://www.proquest.com/docview/1654672020
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWEAI8RTlURmJDYU2Lzseq4qqgOgCSGWybMdGoKqtSDuw8Nu5ixMeAnVgS6Jz4pwv5--cz3eEnDHnAMWaONDC5QFAahuojlIB-kGVmTRTGtchb4ds8JBcj9JRg_TqvTBIq6x8v_fppbeurrQrbbZnz8_tOwQHYI8YIpSJw3AHe8LRyi_ev2geEADwupw8SlcbZzzHCyNapHf5XKdVsbY_JqeNmSpAZc7Xuvjltsu5qL9FNisQSbu-n9ukYSc7ZP1basFd8ghBJhgxLQmD5a4hapA4bRbo38ZvgUGGiwG8SX0y54IWC42LMnQ-paoULstHgICvGkKnjj6pWbFHHvqX971BUJVRCEws2BzfGryhiKwJNYClpKOZDp3WKhIsg8M4dKFQCq85zrVlIhVGJTyPY2Njlcf7ZGUyndgDQgUAtkRnLAkVT6wFdCHynMPtM-MiFvMmCWv9SVPlGMe-jmVNJnuRqHOJOpcdIUHnTXL-2WbmM2wslU7rYZE_7ETCFLC0XevHGH4-KsrAzUa80ySn9aBK-MLwt4ma2OmikCEDUBlhJr6lMqDjCLD34T87eETW4Cz1qzvHZGX-urAngHfmulUadIusdq9uBsMPBAMA9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5bCLEAJ2EeVpJG6rqM3LiY8IgcqrF0BiT5bt2AiE2oq0B_49M7HDQ4t64BYl48QZT8afnZlvAA65c4hiTRpp4aoIIbWNVF-piPygKk1eKk37kFdDPrjNzu_yuwU4bnNhKKwy-H7v0xtvHc70gjZ7k4eH3jWBA7RHWiI0xGE_YJHYqfIOLB6dXQyG7-mRwhN-UkV5ahByZ3yYFy1qKcLL052Gem1fzE_LE1Wj1pwvd_Gf526mo9NVWAk4kh35rq7Bgh2tw9IHdsHf8A_XmWjHrIkZbBKHmKHYaTMjF_f0EhkKcjEIOZnnc65ZPdO0L8OmY6Ya4aaCBAr4wiFs7Ni9mtR_4Pb05OZ4EIVKCpFJBZ_SW6NDFIk1sUa8lPU117HTWiWCl3iYxi4WStE5VxTacpELo7KiSlNjU1WlG9AZjUd2E5hAzJbpkmexKjJrEWCIqirw9qVxCU-LLsSt_qQJNOPU1yfZxpM9StK5JJ3LvpCo8y78fWsz8SQbc6XzdljkJ1OROAvMbbf3aQzfHpWU6GmTot-Fg3ZQJX5k9OdEjex4VsuYI65MiIxvrgzqOEH4vfXNDu7Dz8HN1aW8PBtebMMvvJL7zZ4d6EyfZ3YX4c9U7wXzfgXKGgOl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+multistate+consecutively-connected+systems+subject+to+a+constrained+number+of+gaps&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=LEVITIN%2C+Gregory&rft.au=LIUDONG+XING&rft.au=YUANSHUN+DAI&rft.date=2015&rft.pub=Elsevier&rft.issn=0951-8320&rft.volume=133&rft.spage=246&rft.epage=252&rft_id=info:doi/10.1016%2Fj.ress.2014.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=28887270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon