Near-unity efficiency and photon indistinguishability for the “hourglass” single-photon source using suppression of the background emission
An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η of the single-photon source toward unity. Within quantum dot-based sources, the prospect of increasing the product ε η arbitrarily close to un...
Saved in:
Published in | Applied physics letters Vol. 121; no. 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
24.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η of the single-photon source toward unity. Within quantum dot-based sources, the prospect of increasing the product
ε
η arbitrarily close to unity was recently questioned. In this work, we discuss the influence of the trade-off between efficiency and indistinguishability in the presence of phonon-induced decoherence, and we show that the photonic “hourglass” design allows for improving
ε
η beyond the predicted maximum for the standard micropillar design subject to this trade-off. This circumvention of the trade-off is possible thanks to control of the spontaneous emission into background radiation modes, and our work highlights the importance of engineering of the background emission in future pursuits of near-unity performance of quantum dot single-photon sources. |
---|---|
AbstractList | An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η of the single-photon source toward unity. Within quantum dot-based sources, the prospect of increasing the product [Formula: see text] arbitrarily close to unity was recently questioned. In this work, we discuss the influence of the trade-off between efficiency and indistinguishability in the presence of phonon-induced decoherence, and we show that the photonic “hourglass” design allows for improving [Formula: see text] beyond the predicted maximum for the standard micropillar design subject to this trade-off. This circumvention of the trade-off is possible thanks to control of the spontaneous emission into background radiation modes, and our work highlights the importance of engineering of the background emission in future pursuits of near-unity performance of quantum dot single-photon sources. An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η of the single-photon source toward unity. Within quantum dot-based sources, the prospect of increasing the product ε η arbitrarily close to unity was recently questioned. In this work, we discuss the influence of the trade-off between efficiency and indistinguishability in the presence of phonon-induced decoherence, and we show that the photonic “hourglass” design allows for improving ε η beyond the predicted maximum for the standard micropillar design subject to this trade-off. This circumvention of the trade-off is possible thanks to control of the spontaneous emission into background radiation modes, and our work highlights the importance of engineering of the background emission in future pursuits of near-unity performance of quantum dot single-photon sources. An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η of the single-photon source toward unity. Within quantum dot-based sources, the prospect of increasing the product εη arbitrarily close to unity was recently questioned. In this work, we discuss the influence of the trade-off between efficiency and indistinguishability in the presence of phonon-induced decoherence, and we show that the photonic “hourglass” design allows for improving εη beyond the predicted maximum for the standard micropillar design subject to this trade-off. This circumvention of the trade-off is possible thanks to control of the spontaneous emission into background radiation modes, and our work highlights the importance of engineering of the background emission in future pursuits of near-unity performance of quantum dot single-photon sources. |
Author | Gaál, Benedek Gérard, Jean-Michel Gregersen, Niels Claudon, Julien Vannucci, Luca Jacobsen, Martin Arentoft |
Author_xml | – sequence: 1 givenname: Benedek surname: Gaál fullname: Gaál, Benedek organization: DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 2 givenname: Martin Arentoft surname: Jacobsen fullname: Jacobsen, Martin Arentoft organization: DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 3 givenname: Luca surname: Vannucci fullname: Vannucci, Luca organization: DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 4 givenname: Julien surname: Claudon fullname: Claudon, Julien organization: University Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, “Nanophysique et Semiconducteurs” Group – sequence: 5 givenname: Jean-Michel surname: Gérard fullname: Gérard, Jean-Michel organization: University Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, “Nanophysique et Semiconducteurs” Group – sequence: 6 givenname: Niels surname: Gregersen fullname: Gregersen, Niels organization: DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark |
BackLink | https://hal.science/hal-03864813$$DView record in HAL |
BookMark | eNqdkctuGyEUhlHlSnXSLPoGSF010sRcPAyzjKJcKlntplkjhgEP7himwETyLm-QF0heLk8SfEm96aor4Pzff_iPzgmYOO80AF8wusCI0Vl5gTCqGJl_ANN8qQqKMZ-AKUKIFqwu8SdwEuMqP0tC6RQ8_dAyFKOzaQO1MVZZ7dQGStfCofPJO2hda2Oybjna2MnG9lvU-ABTp-Hr43Pnx7DsZYyvjy8wZq7XxcEas6Q0HLdVGMdhCDpGmwVvdu5Gqt_L4Mf8mV7bnfQZfDSyj_rscJ6C-5vrX1d3xeLn7fery0WhaM1SwbFitDFlxTFFiPCqZUaZSiNWVmXNta4NbyWpjSGyJoxiMjdIqrbhulGqqegp-Lbv28leDMGuZdgIL624u1yIbQ1Rzua5-wPO7Nc9OwT_Z9QxiVUezOV4glSEE87pnGVqtqdU8DEGbYSySaY8UwrS9gIjsd2QKMVhQ8cMfx3vQf7Fnu_Z-N71_-AHH46gGFpD3wCScLNN |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1039_D2NR07132K crossref_primary_10_1103_PhysRevB_107_195306 crossref_primary_10_1103_PhysRevB_110_115308 crossref_primary_10_3390_photonics11060512 crossref_primary_10_1364_AOP_490091 crossref_primary_10_1063_5_0231204 crossref_primary_10_1088_1367_2630_ad7635 crossref_primary_10_1364_OE_527641 |
Cites_doi | 10.1364/OE.18.021204 10.1038/nphoton.2010.312 10.1038/nphoton.2007.46 10.1021/acs.nanolett.8b05132 10.1103/PhysRevE.103.033301 10.1103/PhysRevLett.113.093603 10.1103/PhysRevLett.110.177402 10.1038/ncomms8662 10.1051/anphys:2008030 10.1364/OPTICA.382273 10.1038/s41565-022-01092-6 10.1364/OE.24.020904 10.1103/PhysRevLett.106.103601 10.1103/PhysRevLett.128.093603 10.1002/qute.201900073 10.1103/PhysRevLett.103.167402 10.1103/PhysRevB.90.241404 10.1103/PhysRevB.65.235311 10.1063/1.89199 10.1038/s41565-020-00831-x 10.1103/PhysRevLett.110.147401 10.1103/PhysRevApplied.9.064019 10.1038/s41567-019-0585-6 10.1063/1.4939264 10.1103/PhysRevLett.111.239902 10.1103/PhysRevB.102.125301 10.1021/acs.nanolett.1c03543 10.1103/PhysRevLett.123.250503 10.1002/cphc.201300033 10.1063/1.2890166 10.1063/1.4939831 10.1103/PhysRevLett.116.020401 10.1103/PhysRevLett.126.047403 10.1038/nphoton.2016.186 10.1103/PhysRevLett.108.107401 10.1103/PhysRevB.98.121306 10.1201/9781315152318-26 10.1063/5.0044018 10.1088/1367-2630/15/3/035027 10.1364/OL.44.002617 10.1038/nphoton.2009.229 10.1038/nphoton.2009.287x 10.1103/PhysRevB.92.205406 10.1103/PhysRevLett.99.023902 10.1038/s41565-019-0435-9 10.1088/0957-4484/21/27/274011 10.1364/AO.35.000404 10.1063/5.0041565 10.1103/PhysRevLett.114.137401 10.1103/PhysRevB.102.235303 10.1038/nphoton.2017.101 10.1038/nphoton.2016.23 10.1103/PhysRevLett.81.1110 10.1103/PRXQuantum.2.040354 10.1103/PhysRevLett.108.077405 10.1103/PhysRevA.69.032305 10.1063/1.5020038 10.1038/nphys433 10.1103/PhysRevLett.126.233601 10.1038/s41566-019-0494-3 10.1103/PhysRevB.75.205437 10.1063/1.373462 10.1021/acs.nanolett.2c01783 10.1103/PhysRevLett.75.4337 10.1103/RevModPhys.84.777 10.1109/JSTQE.2013.2255265 10.1364/OL.33.001693 10.1063/1.120582 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC |
DOI | 10.1063/5.0107624 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | oai_HAL_hal_03864813v1 10_1063_5_0107624 apl |
GrantInformation_xml | – fundername: European Research Council grantid: 865230 funderid: 10.13039/501100000781 – fundername: Independent Research Fund Denmark grantid: DFF-9041-00046B – fundername: French National Research Agency (ANR), IPOD project grantid: ANR-19-CE47-0009-02 – fundername: European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grantid: Agreement No. 861097 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 1XC |
ID | FETCH-LOGICAL-c396t-81c63bf5781300287d6fcf7e0657598ee9f8da29ff2a9263124f0acdb8ebccb73 |
ISSN | 0003-6951 |
IngestDate | Fri May 09 12:15:27 EDT 2025 Mon Jun 30 06:25:45 EDT 2025 Tue Jul 01 01:08:22 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 04 19:18:47 EDT 2023 Fri Jun 21 00:12:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Published under an exclusive license by AIP Publishing. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-81c63bf5781300287d6fcf7e0657598ee9f8da29ff2a9263124f0acdb8ebccb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3626-3630 0000-0001-7534-6135 0000-0002-0929-0409 0000-0002-8252-8989 0000-0001-7833-0673 0000-0001-6653-1494 |
OpenAccessLink | https://figshare.com/articles/preprint/Near-unity_efficiency_and_photon_indistinguishability_for_the_hourglass_single-photon_source_using_suppression_of_background_emission/21847926 |
PQID | 2728288346 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1063_5_0107624 proquest_journals_2728288346 hal_primary_oai_HAL_hal_03864813v1 crossref_citationtrail_10_1063_5_0107624 scitation_primary_10_1063_5_0107624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221024 2022-10-24 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221024 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Gérard, Sermage, Gayral, Legrand, Costard, Thierry-Mieg (c42) 1998 Aharonovich, Englund, Toth (c3) 2016 Quilter, Brash, Liu, Glässl, Barth, Axt, Ramsay, Skolnick, Fox (c62) 2015 Iles-Smith, McCutcheon, Nazir, Mørk (c13) 2017 Patel, Bennett, Cooper, Atkinson, Nicoll, Ritchie, Shields (c58) 2010 Gregersen, McCutcheon, Mørk, Gérard, Claudon (c20) 2016 Gür, Arslanagić, Mattes, Gregersen (c44) 2021 Burns, Milton, Lee (c54) 1977 Karli, Kappe, Remesh, Bracht, Münzberg, Covre da Silva, Seidelmann, Axt, Rastelli, Reiter, Weihs (c72) 2022 Schlehahn, Thoma, Munnelly, Kamp, Höfling, Heindel, Schneider, Reitzenstein (c57) 2016 Munsch, Malik, Dupuy, Delga, Bleuse, Gérard, Claudon, Gregersen, Mørk (c17) 2013 Huber, Davanco, Müller, Shuai, Gazzano, Solomon (c37) 2020 Schweickert, Jöns, Zeuner, Covre da Silva, Huang, Lettner, Reindl, Zichi, Trotta, Rastelli, Zwiller (c65) 2018 Wei, Liu, Li, Yu, Su, Li, Shang, Liu, Hao, Ni, Yu, Niu, Iles-Smith, Liu, Wang (c67) 2022 Pan, Chen, Lu, Weinfurter, Zeilinger, Zukowski (c1) 2012 Gregersen, Kaer, Mørk (c4) 2013 Kaer, Gregersen, Mørk (c9) 2013 Koong, Scerri, Rambach, Cygorek, Brotons-Gisbert, Picard, Ma, Park, Song, Gauger, Gerardot (c70) 2021 Wang, Denning, Gür, Lu, Gregersen (c35) 2020 Gehrsitz, Reinhart, Gourgon, Herres, Vonlanthen, Sigg (c51) 2000 Wang, Qin, Ding, Chen, Chen, You, He, Jiang, You, Wang, Schneider, Renema, Höfling, Lu, Pan (c6) 2019 Kwiat, Mattle, Weinfurter, Zeilinger, Sergienko, Shih (c7) 1995 Thomas, Billard, Coste, Wein, Priya, Ollivier, Krebs, Tazaïrt, Harouri, Lemaitre, Sagnes, Anton, Lanco, Somaschi, Loredo, Senellart (c63) 2021 Liu, Konthasinghe, Davanço, Lawall, Anant, Verma, Mirin, Nam, Song, Ma, Chen, Ni, Niu, Srinivasan (c55) 2018 Bleuse, Claudon, Creasey, Malik, Gérard, Maksymov, Hugonin, Lalanne (c16) 2011 Karioja, Howe (c53) 1996 Shields (c8) 2007 Wang, Häyrynen, Vannucci, Jacobsen, Lu, Gregersen (c36) 2021 Kiraz, Atatüre, Imamoğlu (c59) 2004 Claudon, Gregersen, Lalanne, Gérard (c23) 2013 Yan, Liu, Lin, Ye, Yu, Wang, Yu, Zhao, Meng, Hu, Wang, Jin, Liu (c68) 2022 Ates, Ulrich, Reitzenstein, Löffler, Forchel, Michler (c38) 2009 Claudon, Bleuse, Malik, Bazin, Jaffrennou, Gregersen, Sauvan, Lalanne, Gérard (c15) 2010 Gregersen, Nielsen, Claudon, Gérard, Mørk (c21) 2008 Somaschi, Giesz, De Santis, Loredo, Almeida, Hornecker, Portalupi, Grange, Antón, Demory, Gómez, Sagnes, Lanzillotti-Kimura, Lemaítre, Auffeves, White, Lanco, Senellart (c11) 2016 Schöll, Hanschke, Schweickert, Zeuner, Reindl, Covre da Silva, Lettner, Trotta, Finley, Müller, Rastelli, Zwiller, Jöns (c14) 2019 Ding, He, Duan, Gregersen, Chen, Unsleber, Maier, Schneider, Kamp, Höfling, Lu, Pan (c34) 2016 Roy-Choudhury, Hughes (c48) 2015 Munsch, Claudon, Bleuse, Malik, Dupuy, Gérard, Chen, Gregersen, Mørk (c26) 2012 Nowicki-Bringuier, Hahner, Claudon, Lecamp, Lalanne, Gérard (c24) 2007 Arcari, Söllner, Javadi, Lindskov Hansen, Mahmoodian, Liu, Thyrrestrup, Lee, Song, Stobbe, Lodahl (c30) 2014 Ardelt, Hanschke, Fischer, Müller, Kleinkauf, Koller, Bechtold, Simmet, Wierzbowski, Riedl, Abstreiter, Finley (c61) 2014 Wang, He, Chung, Hu, Yu, Chen, Ding, Chen, Qin, Yang, Liu, Duan, Li, Gerhardt, Winkler, Jurkat, Wang, Gregersen, Huo, Dai, Yu, Höfling, Lu, Pan (c27) 2019 Osterkryger, Gérard, Claudon, Gregersen (c19) 2019 Gustin, Hughes (c64) 2020 Gregersen, Nielsen, Mørk, Claudon, Gérard (c22) 2010 O'Brien, Furusawa, Vučković (c2) 2009 Denning, Iles-Smith, Osterkryger, Gregersen, Mork (c49) 2018 Sbresny, Hanschke, Schöll, Rauhaus, Scaparra, Boos, Zubizarreta Casalengua, Riedl, del Valle, Finley, Jöns, Müller (c66) 2022 Wilson-Rae, Imamoğlu (c50) 2002 Bracht, Cosacchi, Seidelmann, Cygorek, Vagov, Axt, Heindel, Reiter (c71) 2021 Berthelot, Favero, Cassabois, Voisin, Delalande, Roussignol, Ferreira, Gérard (c10) 2006 Denning, Bundgaard-Nielsen, Mørk (c43) 2020 Houel, Kuhlmann, Greuter, Xue, Poggio, Gerardot, Dalgarno, Badolato, Petroff, Ludwig, Reuter, Wieck, Warburton (c12) 2012 Gür, Mattes, Arslanagić, Gregersen (c40) 2021 Gschrey, Thoma, Schnauber, Seifried, Schmidt, Wohlfeil, Krüger, Schulze, Heindel, Burger, Schmidt, Strittmatter, Rodt, Reitzenstein (c29) 2015 Liu, Su, Wei, Yao, da Silva, Yu, Iles-Smith, Srinivasan, Rastelli, Li, Wang (c28) 2019 Gayral, Gérard, Legrand, Costard, Thierry-Mieg (c39) 1998 Tomm, Javadi, Antoniadis, Najer, Löbl, Korsch, Schott, Valentin, Wieck, Ludwig, Warburton (c41) 2021 Glässl, Barth, Axt (c60) 2013 Manga Rao, Hughes (c31) 2007 Lee, Chen, Eghlidi, Renn, Sandoghdar, Götzinger (c33) 2011 Böckler, Reitzenstein, Kistner, Debusmann, Löffler, Kida, Höfling, Forchel, Grenouillet, Claudon, Gérard (c56) 2008 Lecamp, Lalanne, Hugonin (c32) 2007 He, Wang, Wang, Chen, Ding, Qin, Duan, Chen, Li, Liu, Schneider, Atatüre, Höfling, Lu, Pan (c69) 2019 Cadeddu, Teissier, Braakman, Gregersen, Stepanov, Gérard, Claudon, Warburton, Poggio, Munsch (c25) 2016 Munsch, Malik, Dupuy, Delga, Bleuse, Gérard, Claudon, Gregersen, Mørk (c18) 2013 (2024070915411793600_c35) 2020; 102 (2024070915411793600_c24) 2007; 32 (2024070915411793600_c28) 2019; 14 (2024070915411793600_c37) 2020; 7 (2024070915411793600_c48) 2015; 92 (2024070915411793600_c18) 2013; 111 (2024070915411793600_c33) 2011; 5 (2024070915411793600_c64) 2020; 3 (2024070915411793600_c31) 2007; 75 (2024070915411793600_c57) 2016; 1 (2024070915411793600_c65) 2018; 112 DTU Computing Center (2024070915411793600_c46) 2022 (2024070915411793600_c30) 2014; 113 (2024070915411793600_c7) 1995; 75 (2024070915411793600_c20) 2016; 24 (2024070915411793600_c42) 1998; 81 (2024070915411793600_c60) 2013; 110 (2024070915411793600_c6) 2019; 123 (2024070915411793600_c58) 2010; 21 (2024070915411793600_c68) 2022; 22 (2024070915411793600_c55) 2018; 9 (2024070915411793600_c43) 2020; 102 (2024070915411793600_c13) 2017; 11 (2024070915411793600_c15) 2010; 4 (2024070915411793600_c34) 2016; 116 (2024070915411793600_c45) 2014 (2024070915411793600_c22) 2010; 18 (2024070915411793600_c1) 2012; 84 (2024070915411793600_c11) 2016; 10 (2024070915411793600_c2) 2009; 3 (2024070915411793600_c38) 2009; 103 (2024070915411793600_c39) 1998; 72 Piprek (2024070915411793600_c5) 2017 (2024070915411793600_c25) 2016; 108 (2024070915411793600_c44) 2021; 103 (2024070915411793600_c51) 2000; 87 (2024070915411793600_c12) 2012; 108 (2024070915411793600_c70) 2021; 126 (2024070915411793600_c49) 2018; 98 (2024070915411793600_c66) 2022; 128 (2024070915411793600_c16) 2011; 106 (2024070915411793600_c10) 2006; 2 (2024070915411793600_c71) 2021; 2 (2024070915411793600_c62) 2015; 114 (2024070915411793600_c63) 2021; 126 (2024070915411793600_c29) 2015; 6 (2024070915411793600_c32) 2007; 99 (2024070915411793600_c4) 2013; 19 (2024070915411793600_c40) 2021; 118 (2024070915411793600_c53) 1996; 35 (2024070915411793600_c3) 2016; 10 (2024070915411793600_c67) 2022; 17 (2024070915411793600_c9) 2013; 15 (2024070915411793600_c21) 2008; 33 (2024070915411793600_c54) 1977; 30 (2024070915411793600_c47) 2012 (2024070915411793600_c14) 2019; 19 (2024070915411793600_c41) 2021; 16 (2024070915411793600_c59) 2004; 69 (2024070915411793600_c72) 2022; 22 (2024070915411793600_c27) 2019; 13 (2024070915411793600_c56) 2008; 92 (2024070915411793600_c26) 2012; 108 (2024070915411793600_c50) 2002; 65 (2024070915411793600_c19) 2019; 44 (2024070915411793600_c61) 2014; 90 (2024070915411793600_c8) 2007; 1 (2024070915411793600_c36) 2021; 118 (2024070915411793600_c17) 2013; 110 2024070915411793600_c52 (2024070915411793600_c23) 2013; 14 (2024070915411793600_c69) 2019; 15 |
References_xml | – start-page: 7825 year: 2000 ident: c51 article-title: The refractive index of Al Ga As below the band gap: Accurate determination and empirical modeling publication-title: J. Appl. Phys. – start-page: 770 year: 2019 ident: c27 article-title: Towards optimal single-photon sources from polarized microcavities publication-title: Nat. Photonics – start-page: 033301 year: 2021 ident: c44 article-title: Open-geometry modal method based on transverse electric and transverse magnetic mode expansion for orthogonal curvilinear coordinates publication-title: Phys. Rev. E – start-page: 340 year: 2016 ident: c11 article-title: Near-optimal single-photon sources in the solid state publication-title: Nat. Photonics – start-page: 2617 year: 2019 ident: c19 article-title: Photonic ‘hourglass’ design for efficient quantum light emission publication-title: Opt. Lett. – start-page: 011112 year: 2016 ident: c25 article-title: A fiber-coupled quantum-dot on a photonic tip publication-title: Appl. Phys. Lett. – start-page: 047403 year: 2021 ident: c70 article-title: Coherent dynamics in quantum emitters under dichromatic excitation publication-title: Phys. Rev. Lett. – start-page: 137401 year: 2015 ident: c62 article-title: Phonon-assisted population inversion of a single quantum dot by pulsed laser excitation publication-title: Phys. Rev. Lett. – start-page: 235303 year: 2020 ident: c43 article-title: Optical signatures of electron-phonon decoupling due to strong light-matter interactions publication-title: Phys. Rev. B – start-page: 205437 year: 2007 ident: c31 article-title: Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide publication-title: Phys. Rev. B – start-page: 032305 year: 2004 ident: c59 article-title: Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing publication-title: Phys. Rev. A – start-page: 274011 year: 2010 ident: c58 article-title: Quantum interference of electrically generated single photons from a quantum dot publication-title: Nanotechnology – start-page: 1483 year: 2022 ident: c68 article-title: Double-pulse generation of indistinguishable single photons with optically controlled polarization publication-title: Nano Lett. – start-page: 215 year: 2007 ident: c8 article-title: Semiconductor quantum light sources publication-title: Nat. Photonics – start-page: 035027 year: 2013 ident: c9 article-title: The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems publication-title: New J. Phys. – start-page: 151 year: 2007 ident: c24 article-title: A novel high-efficiency single-mode single photon source publication-title: Ann. Phys. – start-page: 125301 year: 2020 ident: c35 article-title: Micropillar single-photon source design for simultaneous near-unity efficiency and indistinguishability publication-title: Phys. Rev. B – start-page: 093603 year: 2014 ident: c30 article-title: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide publication-title: Phys. Rev. Lett. – start-page: 093603 year: 2022 ident: c66 article-title: Stimulated generation of indistinguishable single photons from a quantum ladder system publication-title: Phys. Rev. Lett. – start-page: 777 year: 2012 ident: c1 article-title: Multiphoton entanglement and interferometry publication-title: Rev. Mod. Phys. – start-page: 941 year: 2019 ident: c69 article-title: Coherently driving a single quantum two-level system with dichromatic laser pulses publication-title: Nat. Phys. – start-page: 2393 year: 2013 ident: c23 article-title: Harnessing light with photonic nanowires: Fundamentals and applications to quantum optics publication-title: ChemPhysChem – start-page: 521 year: 2017 ident: c13 article-title: Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources publication-title: Nat. Photonics – start-page: 250503 year: 2019 ident: c6 article-title: Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional Hilbert space publication-title: Phys. Rev. Lett. – start-page: 114003 year: 2021 ident: c36 article-title: Suppression of background emission for efficient single-photon generation in micropillar cavities publication-title: Appl. Phys. Lett. – start-page: 586 year: 2019 ident: c28 article-title: A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability publication-title: Nat. Nanotechnol. – start-page: 1421 year: 1998 ident: c39 article-title: Optical study of GaAs/AlAs pillar microcavities with elliptical cross section publication-title: Appl. Phys. Lett. – start-page: 6567 year: 2022 ident: c72 article-title: SUPER scheme in action: Experimental demonstration of red-detuned excitation of a quantum emitter publication-title: Nano Lett. – start-page: 4337 year: 1995 ident: c7 article-title: New high-intensity source of polarization-entangled photon pairs publication-title: Phys. Rev. Lett. – start-page: 9000516 year: 2013 ident: c4 article-title: Modeling and design of high-efficiency single-photon sources publication-title: IEEE J. Sel. Top. Quantum Electron. – start-page: 235311 year: 2002 ident: c50 article-title: Quantum dot cavity-QED in the presence of strong electron-phonon interactions publication-title: Phys. Rev. B – start-page: 21204 year: 2010 ident: c22 article-title: Designs for high-efficiency electrically pumped photonic nanowire single-photon sources publication-title: Opt. Express – start-page: 167402 year: 2009 ident: c38 article-title: Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity publication-title: Phys. Rev. Lett. – start-page: 241404 year: 2014 ident: c61 article-title: Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales publication-title: Phys. Rev. B – start-page: 020401 year: 2016 ident: c34 article-title: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar publication-title: Phys. Rev. Lett. – start-page: 233601 year: 2021 ident: c63 article-title: Bright polarized single-photon source based on a linear dipole publication-title: Phys. Rev. Lett. – start-page: 7662 year: 2015 ident: c29 article-title: Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography publication-title: Nat. Commun. – start-page: 121306 year: 2018 ident: c49 article-title: Cavity-waveguide interplay in optical resonators and its role in optimal single-photon sources publication-title: Phys. Rev. B – start-page: 023902 year: 2007 ident: c32 article-title: Very large spontaneous-emission β factors in photonic-crystal waveguides publication-title: Phys. Rev. Lett. – start-page: 166 year: 2011 ident: c33 article-title: A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency publication-title: Nat. Photonics – start-page: 1110 year: 1998 ident: c42 article-title: Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity publication-title: Phys. Rev. Lett. – start-page: 399 year: 2021 ident: c41 article-title: A bright and fast source of coherent single photons publication-title: Nat. Nanotechnol. – start-page: 20904 year: 2016 ident: c20 article-title: A broadband tapered nanocavity for efficient nonclassical light emission publication-title: Opt. Express – start-page: 28 year: 1977 ident: c54 article-title: Optical waveguide parabolic coupling horns publication-title: Appl. Phys. Lett. – start-page: 205406 year: 2015 ident: c48 article-title: Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons publication-title: Phys. Rev. B – start-page: 380 year: 2020 ident: c37 article-title: Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device publication-title: Optica – start-page: 470 year: 2022 ident: c67 article-title: Tailoring solid-state single-photon sources with stimulated emissions publication-title: Nat. Nanotechnol. – start-page: 404 year: 1996 ident: c53 article-title: Diode-laser-to-waveguide butt coupling publication-title: Appl. Opt. – start-page: 174 year: 2010 ident: c15 article-title: A highly efficient single-photon source based on a quantum dot in a photonic nanowire publication-title: Nat. Photonics – start-page: 759 year: 2006 ident: c10 article-title: Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot publication-title: Nat. Phys. – start-page: 177402 year: 2013 ident: c17 article-title: Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam publication-title: Phys. Rev. Lett. – start-page: 040354 year: 2021 ident: c71 article-title: Swing-up of quantum emitter population using detuned pulses publication-title: PRX Quantum – start-page: 103601 year: 2011 ident: c16 article-title: Inhibition, enhancement, and control of spontaneous emission in photonic nanowires publication-title: Phys. Rev. Lett. – start-page: 2404 year: 2019 ident: c14 article-title: Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability publication-title: Nano Lett. – start-page: 093106 year: 2018 ident: c65 article-title: On-demand generation of background-free single photons from a solid-state source publication-title: Appl. Phys. Lett. – start-page: 147401 year: 2013 ident: c60 article-title: Proposed robust and high-fidelity preparation of excitons and biexcitons in semiconductor quantum dots making active use of phonons publication-title: Phys. Rev. Lett. – start-page: 1900073 year: 2020 ident: c64 article-title: Efficient pulse–excitation techniques for single photon sources from quantum dots in optical cavities publication-title: Adv. Quantum Technol. – start-page: 687 year: 2009 ident: c2 article-title: Photonic quantum technologies publication-title: Nat. Photonics – start-page: 1693 year: 2008 ident: c21 article-title: Controlling the emission profile of a nanowire with a conical taper publication-title: Opt. Lett. – start-page: 631 year: 2016 ident: c3 article-title: Solid-state single-photon emitters publication-title: Nat. Photonics – start-page: 061101 year: 2021 ident: c40 article-title: Elliptical micropillar cavity design for highly efficient polarized emission of single photons publication-title: Appl. Phys. Lett. – start-page: 077405 year: 2012 ident: c26 article-title: Linearly polarized, single-mode spontaneous emission in a photonic nanowire publication-title: Phys. Rev. Lett. – start-page: 107401 year: 2012 ident: c12 article-title: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot publication-title: Phys. Rev. Lett. – start-page: 239902 year: 2013 ident: c18 article-title: Erratum: Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam [Phys. Rev. Lett. , 177402 (2013)] publication-title: Phys. Rev. Lett. – start-page: 091107 year: 2008 ident: c56 article-title: Electrically driven high-Q quantum dot-micropillar cavities publication-title: Appl. Phys. Lett. – start-page: 064019 year: 2018 ident: c55 article-title: Single self-assembled quantum dots in photonic nanostructures: The role of nanofabrication publication-title: Phys. Rev. Appl. – start-page: 011301 year: 2016 ident: c57 article-title: An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency publication-title: APL Photonics – volume: 18 start-page: 21204 year: 2010 ident: 2024070915411793600_c22 article-title: Designs for high-efficiency electrically pumped photonic nanowire single-photon sources publication-title: Opt. Express doi: 10.1364/OE.18.021204 – volume: 5 start-page: 166 year: 2011 ident: 2024070915411793600_c33 article-title: A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.312 – volume-title: DTU Computing Center Resources year: 2022 ident: 2024070915411793600_c46 – volume: 1 start-page: 215 year: 2007 ident: 2024070915411793600_c8 article-title: Semiconductor quantum light sources publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.46 – volume-title: Principles of Nano-Optics year: 2012 ident: 2024070915411793600_c47 – volume: 19 start-page: 2404 year: 2019 ident: 2024070915411793600_c14 article-title: Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05132 – volume: 103 start-page: 033301 year: 2021 ident: 2024070915411793600_c44 article-title: Open-geometry modal method based on transverse electric and transverse magnetic mode expansion for orthogonal curvilinear coordinates publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.033301 – ident: 2024070915411793600_c52 – volume: 113 start-page: 093603 year: 2014 ident: 2024070915411793600_c30 article-title: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.093603 – volume: 110 start-page: 177402 year: 2013 ident: 2024070915411793600_c17 article-title: Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.177402 – volume: 6 start-page: 7662 year: 2015 ident: 2024070915411793600_c29 article-title: Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography publication-title: Nat. Commun. doi: 10.1038/ncomms8662 – volume: 32 start-page: 151 year: 2007 ident: 2024070915411793600_c24 article-title: A novel high-efficiency single-mode single photon source publication-title: Ann. Phys. doi: 10.1051/anphys:2008030 – volume: 7 start-page: 380 year: 2020 ident: 2024070915411793600_c37 article-title: Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device publication-title: Optica doi: 10.1364/OPTICA.382273 – volume: 17 start-page: 470 year: 2022 ident: 2024070915411793600_c67 article-title: Tailoring solid-state single-photon sources with stimulated emissions publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01092-6 – volume: 24 start-page: 20904 year: 2016 ident: 2024070915411793600_c20 article-title: A broadband tapered nanocavity for efficient nonclassical light emission publication-title: Opt. Express doi: 10.1364/OE.24.020904 – volume: 106 start-page: 103601 year: 2011 ident: 2024070915411793600_c16 article-title: Inhibition, enhancement, and control of spontaneous emission in photonic nanowires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.103601 – volume: 128 start-page: 093603 year: 2022 ident: 2024070915411793600_c66 article-title: Stimulated generation of indistinguishable single photons from a quantum ladder system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.093603 – volume: 3 start-page: 1900073 year: 2020 ident: 2024070915411793600_c64 article-title: Efficient pulse–excitation techniques for single photon sources from quantum dots in optical cavities publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201900073 – volume: 103 start-page: 167402 year: 2009 ident: 2024070915411793600_c38 article-title: Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.167402 – volume: 90 start-page: 241404 year: 2014 ident: 2024070915411793600_c61 article-title: Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.241404 – volume: 65 start-page: 235311 year: 2002 ident: 2024070915411793600_c50 article-title: Quantum dot cavity-QED in the presence of strong electron-phonon interactions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.235311 – volume: 30 start-page: 28 year: 1977 ident: 2024070915411793600_c54 article-title: Optical waveguide parabolic coupling horns publication-title: Appl. Phys. Lett. doi: 10.1063/1.89199 – volume: 16 start-page: 399 year: 2021 ident: 2024070915411793600_c41 article-title: A bright and fast source of coherent single photons publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00831-x – volume: 110 start-page: 147401 year: 2013 ident: 2024070915411793600_c60 article-title: Proposed robust and high-fidelity preparation of excitons and biexcitons in semiconductor quantum dots making active use of phonons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.147401 – volume: 9 start-page: 064019 year: 2018 ident: 2024070915411793600_c55 article-title: Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.064019 – volume: 15 start-page: 941 year: 2019 ident: 2024070915411793600_c69 article-title: Coherently driving a single quantum two-level system with dichromatic laser pulses publication-title: Nat. Phys. doi: 10.1038/s41567-019-0585-6 – volume: 108 start-page: 011112 year: 2016 ident: 2024070915411793600_c25 article-title: A fiber-coupled quantum-dot on a photonic tip publication-title: Appl. Phys. Lett. doi: 10.1063/1.4939264 – volume: 111 start-page: 239902 year: 2013 ident: 2024070915411793600_c18 article-title: Erratum: Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam [Phys. Rev. Lett. 110, 177402 (2013)] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.239902 – volume: 102 start-page: 125301 year: 2020 ident: 2024070915411793600_c35 article-title: Micropillar single-photon source design for simultaneous near-unity efficiency and indistinguishability publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.125301 – volume: 22 start-page: 1483 year: 2022 ident: 2024070915411793600_c68 article-title: Double-pulse generation of indistinguishable single photons with optically controlled polarization publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03543 – volume: 123 start-page: 250503 year: 2019 ident: 2024070915411793600_c6 article-title: Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional Hilbert space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.250503 – volume: 14 start-page: 2393 year: 2013 ident: 2024070915411793600_c23 article-title: Harnessing light with photonic nanowires: Fundamentals and applications to quantum optics publication-title: ChemPhysChem doi: 10.1002/cphc.201300033 – volume: 92 start-page: 091107 year: 2008 ident: 2024070915411793600_c56 article-title: Electrically driven high-Q quantum dot-micropillar cavities publication-title: Appl. Phys. Lett. doi: 10.1063/1.2890166 – volume: 1 start-page: 011301 year: 2016 ident: 2024070915411793600_c57 article-title: An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency publication-title: APL Photonics doi: 10.1063/1.4939831 – volume: 116 start-page: 020401 year: 2016 ident: 2024070915411793600_c34 article-title: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.020401 – volume: 126 start-page: 047403 year: 2021 ident: 2024070915411793600_c70 article-title: Coherent dynamics in quantum emitters under dichromatic excitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.047403 – volume: 10 start-page: 631 year: 2016 ident: 2024070915411793600_c3 article-title: Solid-state single-photon emitters publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.186 – volume: 108 start-page: 107401 year: 2012 ident: 2024070915411793600_c12 article-title: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.107401 – volume: 98 start-page: 121306 year: 2018 ident: 2024070915411793600_c49 article-title: Cavity-waveguide interplay in optical resonators and its role in optimal single-photon sources publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.121306 – start-page: 585 volume-title: Handbook of Optoelectronic Device Modeling and Simulation year: 2017 ident: 2024070915411793600_c5 article-title: Single-photon sources doi: 10.1201/9781315152318-26 – volume: 118 start-page: 114003 year: 2021 ident: 2024070915411793600_c36 article-title: Suppression of background emission for efficient single-photon generation in micropillar cavities publication-title: Appl. Phys. Lett. doi: 10.1063/5.0044018 – volume: 15 start-page: 035027 year: 2013 ident: 2024070915411793600_c9 article-title: The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems publication-title: New J. Phys. doi: 10.1088/1367-2630/15/3/035027 – volume-title: Numerical Methods in Photonics year: 2014 ident: 2024070915411793600_c45 – volume: 44 start-page: 2617 year: 2019 ident: 2024070915411793600_c19 article-title: Photonic ‘hourglass’ design for efficient quantum light emission publication-title: Opt. Lett. doi: 10.1364/OL.44.002617 – volume: 3 start-page: 687 year: 2009 ident: 2024070915411793600_c2 article-title: Photonic quantum technologies publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.229 – volume: 4 start-page: 174 year: 2010 ident: 2024070915411793600_c15 article-title: A highly efficient single-photon source based on a quantum dot in a photonic nanowire publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.287x – volume: 92 start-page: 205406 year: 2015 ident: 2024070915411793600_c48 article-title: Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.205406 – volume: 99 start-page: 023902 year: 2007 ident: 2024070915411793600_c32 article-title: Very large spontaneous-emission β factors in photonic-crystal waveguides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.023902 – volume: 14 start-page: 586 year: 2019 ident: 2024070915411793600_c28 article-title: A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0435-9 – volume: 21 start-page: 274011 year: 2010 ident: 2024070915411793600_c58 article-title: Quantum interference of electrically generated single photons from a quantum dot publication-title: Nanotechnology doi: 10.1088/0957-4484/21/27/274011 – volume: 35 start-page: 404 year: 1996 ident: 2024070915411793600_c53 article-title: Diode-laser-to-waveguide butt coupling publication-title: Appl. Opt. doi: 10.1364/AO.35.000404 – volume: 118 start-page: 061101 year: 2021 ident: 2024070915411793600_c40 article-title: Elliptical micropillar cavity design for highly efficient polarized emission of single photons publication-title: Appl. Phys. Lett. doi: 10.1063/5.0041565 – volume: 114 start-page: 137401 year: 2015 ident: 2024070915411793600_c62 article-title: Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.137401 – volume: 102 start-page: 235303 year: 2020 ident: 2024070915411793600_c43 article-title: Optical signatures of electron-phonon decoupling due to strong light-matter interactions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.235303 – volume: 11 start-page: 521 year: 2017 ident: 2024070915411793600_c13 article-title: Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.101 – volume: 10 start-page: 340 year: 2016 ident: 2024070915411793600_c11 article-title: Near-optimal single-photon sources in the solid state publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.23 – volume: 81 start-page: 1110 year: 1998 ident: 2024070915411793600_c42 article-title: Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1110 – volume: 2 start-page: 040354 year: 2021 ident: 2024070915411793600_c71 article-title: Swing-up of quantum emitter population using detuned pulses publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.040354 – volume: 108 start-page: 077405 year: 2012 ident: 2024070915411793600_c26 article-title: Linearly polarized, single-mode spontaneous emission in a photonic nanowire publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.077405 – volume: 69 start-page: 032305 year: 2004 ident: 2024070915411793600_c59 article-title: Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.032305 – volume: 112 start-page: 093106 year: 2018 ident: 2024070915411793600_c65 article-title: On-demand generation of background-free single photons from a solid-state source publication-title: Appl. Phys. Lett. doi: 10.1063/1.5020038 – volume: 2 start-page: 759 year: 2006 ident: 2024070915411793600_c10 article-title: Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot publication-title: Nat. Phys. doi: 10.1038/nphys433 – volume: 126 start-page: 233601 year: 2021 ident: 2024070915411793600_c63 article-title: Bright polarized single-photon source based on a linear dipole publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.233601 – volume: 13 start-page: 770 year: 2019 ident: 2024070915411793600_c27 article-title: Towards optimal single-photon sources from polarized microcavities publication-title: Nat. Photonics doi: 10.1038/s41566-019-0494-3 – volume: 75 start-page: 205437 year: 2007 ident: 2024070915411793600_c31 article-title: Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.205437 – volume: 87 start-page: 7825 year: 2000 ident: 2024070915411793600_c51 article-title: The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling publication-title: J. Appl. Phys. doi: 10.1063/1.373462 – volume: 22 start-page: 6567 year: 2022 ident: 2024070915411793600_c72 article-title: SUPER scheme in action: Experimental demonstration of red-detuned excitation of a quantum emitter publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01783 – volume: 75 start-page: 4337 year: 1995 ident: 2024070915411793600_c7 article-title: New high-intensity source of polarization-entangled photon pairs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4337 – volume: 84 start-page: 777 year: 2012 ident: 2024070915411793600_c1 article-title: Multiphoton entanglement and interferometry publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.777 – volume: 19 start-page: 9000516 year: 2013 ident: 2024070915411793600_c4 article-title: Modeling and design of high-efficiency single-photon sources publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2013.2255265 – volume: 33 start-page: 1693 year: 2008 ident: 2024070915411793600_c21 article-title: Controlling the emission profile of a nanowire with a conical taper publication-title: Opt. Lett. doi: 10.1364/OL.33.001693 – volume: 72 start-page: 1421 year: 1998 ident: 2024070915411793600_c39 article-title: Optical study of GaAs/AlAs pillar microcavities with elliptical cross section publication-title: Appl. Phys. Lett. doi: 10.1063/1.120582 |
SSID | ssj0005233 |
Score | 2.4753568 |
Snippet | An on-going challenge within scalable optical quantum information processing is to increase the collection efficiency ε and the photon indistinguishability η... |
SourceID | hal proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Background radiation Data processing Design standards Efficiency Emissions control Engineering Sciences Photons Physics Quantum dots Quantum phenomena Spontaneous emission Tradeoffs Unity |
Title | Near-unity efficiency and photon indistinguishability for the “hourglass” single-photon source using suppression of the background emission |
URI | http://dx.doi.org/10.1063/5.0107624 https://www.proquest.com/docview/2728288346 https://hal.science/hal-03864813 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6Tgh4QDBAFAaygAekKqy1Uyd5rDagmrYJiQ3tLYodh0pUabU2k-BpnwC-AHy5fRLu_CdJpQoNXqLIde0298vd-Xy_MyGvOVq9osiCRIUiCAXcSZmwQHPFVBLnYGWRO3x8IiZn4eH56LzT-dHKWqpW8q36vpFX8j9ShTaQK7Jk_0Gy9aDQAPcgX7iChOF6IxmfAEyDqkRHWptSEIZHaaj_0_nKJDHm-A6XXyo8ZNnkwX6rEwt9nsP-FOYyXrRvOehjBGGmAzeMjfD3KxNXWFYLlzxb-gQDmamvSA-BifH4uKWXta9u6zxdG0VZ9meGQlQ78x8ys1s_tPsfoHtzXdOHDkFhSxckshUP-mOsJwXGw3f5jGRnpSzLu1rLPKrcSSVIAneUNxfggLUxWAbLq66VNg9E4urSaqunBxGGV53q9orccq09YqONFgJcMhAr1modgB0IGzNYJydmi9kW2Waw7GBdsj0-OD761Eoa4tyfwYg_ydeqEnyvHnLNw9maYn5ta_FyGzwbm2TR8mNO75N7bgFCxxZND0hHlzvkbqss5Q659dEK6iH52SCMNgijgDBqoUE3IYwCwijggl5f_aqxdX31m66hilpUUYMq2kIVnRfm2w2qqEfVI3L2_t3p_iRwR3gEiidiFcRDJbgswCzgtimsznNRqCLSA9zvS2KtkyLOMwbagmUJExy8zWKQqVzGWiolI_6YdMt5qZ9gcQGtRlJkko14mA1FnOeRHkqWZbmIFGM98sY_9tQ_YjxmZZaaPAvB01HqJNQjL-uuC1vUZWMnkF39OZZhn4yPUmwb8FiE8I8uhz2y60WbOsWwTFmEcYyYh6JHXtXi_ttMG3pdzi-aHukiL57eaKxn5E7zDu2S7uqi0s_BbV7JFw7LfwAFq8sM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-unity+efficiency+and+photon+indistinguishability+for+the+%E2%80%9Chourglass%E2%80%9D+single-photon+source+using+suppression+of+the+background+emission&rft.jtitle=Applied+physics+letters&rft.au=Ga%C3%A1l%2C+Benedek&rft.au=Jacobsen%2C+Martin+Arentoft&rft.au=Vannucci%2C+Luca&rft.au=Claudon%2C+Julien&rft.date=2022-10-24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=121&rft.issue=17&rft_id=info:doi/10.1063%2F5.0107624&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |