Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study

The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow ec...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 17; no. 16; pp. 1821 - 1834
Main Authors Bahraseman, Hamidreza Ghasemi, Hassani, Kamran, Navidbakhsh, Mahdi, Espino, Daniel M., Sani, Zahra Alizadeh, Fatouraee, Nasser
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.01.2014
Subjects
Online AccessGet full text
ISSN1025-5842
1476-8259
1476-8259
DOI10.1080/10255842.2013.771179

Cover

Loading…
Abstract The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.
AbstractList The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.
The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.
The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.
Author Sani, Zahra Alizadeh
Navidbakhsh, Mahdi
Bahraseman, Hamidreza Ghasemi
Fatouraee, Nasser
Espino, Daniel M.
Hassani, Kamran
Author_xml – sequence: 1
  givenname: Hamidreza Ghasemi
  surname: Bahraseman
  fullname: Bahraseman, Hamidreza Ghasemi
  email: hamid_ghasemi57@yahoo.com
  organization: Department of Biomechanics, Science and Research Branch, Islamic Azad University
– sequence: 2
  givenname: Kamran
  surname: Hassani
  fullname: Hassani, Kamran
  organization: Department of Biomechanics, Science and Research Branch, Islamic Azad University
– sequence: 3
  givenname: Mahdi
  surname: Navidbakhsh
  fullname: Navidbakhsh, Mahdi
  organization: Department of Mechanical Engineering, Iran University of Science and Technology
– sequence: 4
  givenname: Daniel M.
  surname: Espino
  fullname: Espino, Daniel M.
  organization: School of Mechanical Engineering, University of Birmingham
– sequence: 5
  givenname: Zahra Alizadeh
  surname: Sani
  fullname: Sani, Zahra Alizadeh
  organization: Department of Cardiovascular Imaging, Shaheed Rajaei Cardiovascular, Medical and Research Center, Tehran University of Medical Science
– sequence: 6
  givenname: Nasser
  surname: Fatouraee
  fullname: Fatouraee, Nasser
  organization: Department of Biomedical Engineering, Amirkabir University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23531150$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUQImpsR_6D4xh6WZe-RhmmG6MaWo1aeJG14SBi8UwUIFp-_69vL7WhQvr6kJyzg3hHKODmCIg9JaSDSWSnFLChJA92zBC-WYcKR2nF-iI9uPQSSamg3ZuSLdjDtFxKT8JIZLK_hU6ZFxwSgU5QvOFc2AqTg7DPWTjC-AU8RxSstiFdIfrdU7rj-s2AeuUqzf4VodbOMMam7TMPoLFJvjojQ5YR4vjukB-uJW62u1r9NLpUODN4zxB3z9dfDv_3F19vfxy_vGqM3waaiepoNNIBsbtZJilw-DAgmGOaSKBsRlgJMIyPtv24p5wKUZnp1kbMQveT_wEvd_vvcnp1wqlqsUXAyHoCGktioqesGaR_0E5mYQkI2vou0d0nRew6ib7ReetevrCBvR7wORUSgb3B6FE7Uqpp1JqV0rtSzXt7C_N-KqrT7Fm7cNz8oe97KNLedF3KQerqt6GlF3WsWVU_J8bfgN1Rqqs
CitedBy_id crossref_primary_10_1142_S0219519415500414
crossref_primary_10_1007_s13239_020_00469_9
crossref_primary_10_1177_0267659114521103
crossref_primary_10_1177_09544119231158248
crossref_primary_10_1016_j_jmbbm_2013_11_013
crossref_primary_10_3390_jfb9010015
crossref_primary_10_1016_j_euromechflu_2015_01_006
crossref_primary_10_3389_fphys_2021_716015
crossref_primary_10_1007_s10237_021_01529_2
crossref_primary_10_1007_s40846_016_0142_z
crossref_primary_10_1080_10255842_2018_1552683
crossref_primary_10_3390_prosthesis2030015
Cites_doi 10.1016/S0021-9290(00)00068-3
10.1016/S0022-5223(19)40619-3
10.1007/s10558-005-3072-x
10.1161/01.CIR.76.3.539
10.1007/s10439-009-9760-8
10.1016/B978-0-12-089901-2.50015-6
10.1080/10255840903120160
10.1142/S0217984905009626
10.1016/j.jfluidstructs.2004.04.007
10.1097/MCC.0b013e3280c56afb
10.4037/ajcc2005.14.1.40
10.1080/10255842.2012.688818
10.1142/S0219519411003971
10.1016/S0010-4825(02)00026-4
10.1016/S0021-9290(02)00448-7
10.1016/S0022-5223(19)41751-0
10.1016/S0021-9290(02)00244-0
10.15746/sms.11.015
10.1016/0003-4975(95)00922-1
10.1017/CBO9780511712289
10.1016/0021-9991(72)90065-4
10.1080/10255842.2011.623676
10.1378/chest.114.2.457
10.1152/jappl.1997.82.3.908
10.1016/j.ijcard.2007.07.112
10.1080/10255840310001606071
10.1002/9780470692608.ch10
10.1016/j.ijcard.2007.02.053
10.1016/j.athoracsur.2010.02.036
10.1146/annurev.fluid.33.1.445
10.1007/s00371-010-0537-8
10.1299/jbse.5.78
10.1016/j.jbiomech.2005.06.016
10.1016/0021-9991(66)90001-5
10.1016/j.jbiomech.2008.08.006
10.1046/j.0001-6772.2003.01211.x
10.1007/3-540-34596-5_9
10.1016/0021-9991(77)90100-0
10.1016/0045-7825(82)90128-1
10.1007/978-0-387-77452-7
10.1023/B:ENGI.0000007985.17625.43
ContentType Journal Article
Copyright 2013 Taylor & Francis 2013
Copyright_xml – notice: 2013 Taylor & Francis 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TS
8FD
FR3
P64
DOI 10.1080/10255842.2013.771179
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Physical Education Index
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 1834
ExternalDocumentID 23531150
10_1080_10255842_2013_771179
771179
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
1TA
ACTTO
ADUMR
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
CGR
COF
CUY
CVF
CYRSC
DAOYK
ECM
EIF
LJTGL
NPM
OPCYK
7X8
TASJS
7QO
7TS
8FD
FR3
P64
ID FETCH-LOGICAL-c396t-8151970623d9c2d166fedec2f2a08e22bee705d23bdfec403857fd9bac5b53493
ISSN 1025-5842
1476-8259
IngestDate Fri Jul 11 05:23:36 EDT 2025
Tue Aug 05 09:59:41 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Jul 01 03:32:04 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Dec 25 09:02:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords cardiac output
fluid–structure interaction
echo-Doppler flow
stroke volume
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-8151970623d9c2d166fedec2f2a08e22bee705d23bdfec403857fd9bac5b53493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23531150
PQID 1530958072
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1540238509
informaworld_taylorfrancis_310_1080_10255842_2013_771179
crossref_primary_10_1080_10255842_2013_771179
pubmed_primary_23531150
proquest_miscellaneous_1530958072
crossref_citationtrail_10_1080_10255842_2013_771179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2014
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
Engoren M (cit0014) 2005; 14
Lavdaniti M (cit0030) 2008; 1
Clark RE (cit0005) 1973; 66
cit0039
cit0037
cit0038
cit0035
cit0022
cit0023
cit0021
cit0028
cit0029
Formaggia L (cit0019) 1999; 7
cit0026
cit0027
cit0024
cit0025
cit0011
cit0012
cit0010
cit0051
cit0052
Govindarajan V (cit0020) 2010; 4
cit0050
Stringer WW (cit0044) 1997; 82
Park SH (cit0036) 2011; 17
cit0017
cit0018
cit0015
Clark RE (cit0006) 1974; 67
cit0016
cit0013
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0007
cit0004
cit0048
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0009
  doi: 10.1016/S0021-9290(00)00068-3
– volume: 66
  start-page: 202
  issue: 2
  year: 1973
  ident: cit0005
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/S0022-5223(19)40619-3
– ident: cit0049
  doi: 10.1007/s10558-005-3072-x
– ident: cit0034
– ident: cit0040
– ident: cit0004
  doi: 10.1161/01.CIR.76.3.539
– ident: cit0023
  doi: 10.1007/s10439-009-9760-8
– ident: cit0031
– ident: cit0021
– ident: cit0002
  doi: 10.1016/B978-0-12-089901-2.50015-6
– volume: 4
  issue: 1
  year: 2010
  ident: cit0020
  publication-title: J Med Dev.
– ident: cit0026
  doi: 10.1080/10255840903120160
– ident: cit0052
  doi: 10.1142/S0217984905009626
– ident: cit0042
  doi: 10.1016/j.jfluidstructs.2004.04.007
– ident: cit0022
  doi: 10.1097/MCC.0b013e3280c56afb
– volume: 14
  start-page: 40
  issue: 1
  year: 2005
  ident: cit0014
  publication-title: Am J Crit Care.
  doi: 10.4037/ajcc2005.14.1.40
– ident: cit0016
  doi: 10.1080/10255842.2012.688818
– ident: cit0033
  doi: 10.1142/S0219519411003971
– ident: cit0039
  doi: 10.1016/S0010-4825(02)00026-4
– ident: cit0003
– ident: cit0011
  doi: 10.1016/S0021-9290(02)00448-7
– volume: 67
  start-page: 792
  issue: 5
  year: 1974
  ident: cit0006
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/S0022-5223(19)41751-0
– ident: cit0010
  doi: 10.1016/S0021-9290(02)00244-0
– ident: cit0028
– volume: 17
  start-page: 65
  issue: 2
  year: 2011
  ident: cit0036
  publication-title: J Soonchunhyang Med Sci.
  doi: 10.15746/sms.11.015
– ident: cit0007
– ident: cit0029
  doi: 10.1016/0003-4975(95)00922-1
– ident: cit0041
  doi: 10.1017/CBO9780511712289
– ident: cit0037
  doi: 10.1016/0021-9991(72)90065-4
– ident: cit0018
  doi: 10.1080/10255842.2011.623676
– ident: cit0032
  doi: 10.1378/chest.114.2.457
– volume: 82
  start-page: 908
  issue: 1
  year: 1997
  ident: cit0044
  publication-title: J Appl Physiol.
  doi: 10.1152/jappl.1997.82.3.908
– ident: cit0025
  doi: 10.1016/j.ijcard.2007.07.112
– ident: cit0015
  doi: 10.1080/10255840310001606071
– ident: cit0043
  doi: 10.1002/9780470692608.ch10
– ident: cit0024
  doi: 10.1016/j.ijcard.2007.02.053
– ident: cit0050
  doi: 10.1016/j.athoracsur.2010.02.036
– ident: cit0013
  doi: 10.1146/annurev.fluid.33.1.445
– volume: 7
  start-page: 105
  issue: 2
  year: 1999
  ident: cit0019
  publication-title: East-West J Numer Math.
– ident: cit0035
  doi: 10.1007/s00371-010-0537-8
– ident: cit0001
  doi: 10.1299/jbse.5.78
– ident: cit0027
  doi: 10.1016/j.jbiomech.2005.06.016
– ident: cit0051
  doi: 10.1016/0021-9991(66)90001-5
– ident: cit0048
  doi: 10.1016/j.jbiomech.2008.08.006
– ident: cit0045
  doi: 10.1046/j.0001-6772.2003.01211.x
– ident: cit0047
  doi: 10.1007/3-540-34596-5_9
– ident: cit0038
  doi: 10.1016/0021-9991(77)90100-0
– volume: 1
  start-page: 112
  issue: 3
  year: 2008
  ident: cit0030
  publication-title: Int J Caring Sci.
– ident: cit0012
  doi: 10.1016/0045-7825(82)90128-1
– ident: cit0008
  doi: 10.1007/978-0-387-77452-7
– ident: cit0017
  doi: 10.1080/10255842.2011.623676
– ident: cit0046
  doi: 10.1023/B:ENGI.0000007985.17625.43
SSID ssj0008184
Score 2.0745392
Snippet The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1821
SubjectTerms Adult
Aortic Valve - diagnostic imaging
Aortic Valve - physiology
Blood Pressure - physiology
cardiac output
Cardiac Output - physiology
Coronary Circulation - physiology
echo-Doppler flow
Echocardiography, Doppler
Elastic Modulus
Exercise - physiology
fluid-structure interaction
Heart Rate - physiology
Hemodynamics
Hemorheology - physiology
Humans
Male
Numerical Analysis, Computer-Assisted
Regression Analysis
stroke volume
Stroke Volume - physiology
Systole - physiology
Title Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2013.771179
https://www.ncbi.nlm.nih.gov/pubmed/23531150
https://www.proquest.com/docview/1530958072
https://www.proquest.com/docview/1540238509
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVEi8IO6GS4vEW-Ri7_pa3ipIiaCEl0RUvFj2HkpE6lQ5kOjP4Zcye9muFErhxY5W3kMzX3ZnZudA6HWkWCSpEoGIiApiFqcBo6EMqpgzpnKZEJNS6PMkHc_ij2fJWa_3q-O1tNtWR_xyb1zJ_3AV2oCvOkr2HzjbDAoN8Bv4C0_gMDxvxGOXehjkPV85Sdv-jS_6UC11sThXhUdLl-VKDzCE-X9IG-IMSwK9GCTOJjxSW9Hrnb3EWXZSz_pUBq4EhKs7bVxpTfy-Dh_26Z5tQL8ZQLbJDluL6XwNB6ezu47L84VYy8ty-GGuWxfthrjZ2GpTw0_l-bqF8ET74Ffl9_lmbkON5qLpNNpcLEwlcRc47yy9zqYRxR2bht2G4ywNQHe1m6nc0-b37qyL0e5ODHpTtPeIsD6Vkdal8liH4kX0KMt0Zrz2SPRuAJMvxcns9LSYjs6mt9ABAVWE9NHB8fj9t6_NeQ8ij_Fd8OvzAZp5-GbfLFcEoCvpcf-s5BhhZ3oP3XVaCj62kLuPerJ-gG7buqU_H6LKAg-vFPbAw6saG-BhDTzsgAdviS3wsAHeW1xiDzvsYYcBNriBHTawe4RmJ6Ppu3HginUEnLJ0G-SRDoEOQZoWjBMRpamSQnKiSBnmkpBKyixMBKGVgBXG-kI6U4JVJU-qhMaMPkb9elXLQ4Q5YSVVGU8VK4GoIuc0U4RxCbKuAHIPEPUULLjLZK8LqiyLyCW89XQvNN0LS_cBCppeFzaTy1--z7vMKbbGgqZsuZuCXt_1lWdkAbu1voIra7nabQqQL0CnycOMXPdNrAVpkOQH6IlFQbNgQhOdHit8eoMZnqE77X_rOepv1zv5AiTobfXSQfg3_PnERQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Vqgou9EGBpS9X4ppVYjtxzA1VRdsW9gRSb1b8unSVIMiC4NczjuNVqQSV2pMPia2xPbY_e2a-ATgovCwc8zazBfUZl7zKJMtdprmR0teupAOl0Om8mp3z7z_L5E14NbpVhju0j0QRw14dFnd4jE4ucVgiEK55iKMq2FSIQGu2Bs9LWYmQxIDl89VmjOfRYFgOWVtDlRQ990grD06nB9yljyPQ4SQ6fgk69SE6oPyaLns9NXd_0Dv-VydfwdaIU8lRVKzX8My1b-BFzFx5uw06sh6TzpOUtIl0LRnc4IlfdDdkTACEpSNNF5ohqNTX7pA0BCXBC7mzJMVlEhSTtMtoPVqQgfP2LZwffz37MsvGdA2ZYbLqs7oIQbA54ikrDbVFVXlnnaGeNnntKNXOiby0lGmLEvJgkhTeSt2YUpeMS7YD623Xuj0ghsqGeWEqLxsuKlsbJjyVxiHasTinE2BpmpQZucxDSo2FKkbK0zR6KoyeiqM3gWxV6yJyefzl__p3DVD98IbiY8ITxZ6u-jlpi8L1GowwTeu65ZXCEwZRbZ0L-tQ_PEApxHIT2I2qthKYsjIQJOX7_y7cJ9iYnZ2eqJNv8x_vYBO_8Pio9B7W-8ul-4Awq9cfh4V0DxaeF_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUCsuLbRAtxRwpV6zSmzn4d4q2hXPFQeQuFmJHxdWyarNtmp_fWfiZAVIUAlOPiS2xvbY_uyZ-Qbgc-JV4oS3kU24j6SSWaRE7KJKGqV84VLeUQqdT7OjK3lynV7fiuInt0q6Q_tAFNHt1bS459YPHnFYIg4uJIVRJWKc58Rq9gLWMuIOpyCOeLrci_E46uzKlLSVqgzBcw-0cudwukNd-jAA7Q6iyRsohy4E_5Ob8aKtxubvPXbH5_RxA173KJV9DWq1CSuufgsvQ97KP--gCpzHrPFsSNnEmpp1TvDMz5rfrE__g6VjZUPNMFTpX-4LKxkKgtdxZ9kQlclQSlYvgu1oxjrG2y24mny_PDyK-mQNkREqa6MioRDYGNGUVYbbJMu8s85wz8u4cJxXzuVxarmoLEooySCZe6uq0qRVKqQS27BaN7V7D8xwVQqfm8yrUuaZLYzIPVfGIdaxOKUjEMMsadMzmVNCjZlOesLTYfQ0jZ4OozeCaFlrHpg8_vN_cVsBdNu9oPiQ7kSLx6t-GpRF42olE0xZu2bxU-P5gpi2iHP-2D-SgBQiuRHsBE1bCsxFSvRI8YenC3cAry6-TfTZ8fR0F9bxgwwvSh9htf2xcHuIsdpqv1tG_wCEHxaf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+exercise+on+blood+flow+through+the+aortic+valve%3A+a+combined+clinical+and+numerical+study&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Bahraseman%2C+Hamidreza+Ghasemi&rft.au=Hassani%2C+Kamran&rft.au=Navidbakhsh%2C+Mahdi&rft.au=Espino%2C+Daniel+M&rft.date=2014-01-01&rft.issn=1476-8259&rft.eissn=1476-8259&rft.volume=17&rft.issue=16&rft.spage=1821&rft_id=info:doi/10.1080%2F10255842.2013.771179&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon