Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study
The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow ec...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 17; no. 16; pp. 1821 - 1834 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1025-5842 1476-8259 1476-8259 |
DOI | 10.1080/10255842.2013.771179 |
Cover
Loading…
Abstract | The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates. |
---|---|
AbstractList | The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates. The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates. The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates. |
Author | Sani, Zahra Alizadeh Navidbakhsh, Mahdi Bahraseman, Hamidreza Ghasemi Fatouraee, Nasser Espino, Daniel M. Hassani, Kamran |
Author_xml | – sequence: 1 givenname: Hamidreza Ghasemi surname: Bahraseman fullname: Bahraseman, Hamidreza Ghasemi email: hamid_ghasemi57@yahoo.com organization: Department of Biomechanics, Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Kamran surname: Hassani fullname: Hassani, Kamran organization: Department of Biomechanics, Science and Research Branch, Islamic Azad University – sequence: 3 givenname: Mahdi surname: Navidbakhsh fullname: Navidbakhsh, Mahdi organization: Department of Mechanical Engineering, Iran University of Science and Technology – sequence: 4 givenname: Daniel M. surname: Espino fullname: Espino, Daniel M. organization: School of Mechanical Engineering, University of Birmingham – sequence: 5 givenname: Zahra Alizadeh surname: Sani fullname: Sani, Zahra Alizadeh organization: Department of Cardiovascular Imaging, Shaheed Rajaei Cardiovascular, Medical and Research Center, Tehran University of Medical Science – sequence: 6 givenname: Nasser surname: Fatouraee fullname: Fatouraee, Nasser organization: Department of Biomedical Engineering, Amirkabir University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23531150$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vFSEUQImpsR_6D4xh6WZe-RhmmG6MaWo1aeJG14SBi8UwUIFp-_69vL7WhQvr6kJyzg3hHKODmCIg9JaSDSWSnFLChJA92zBC-WYcKR2nF-iI9uPQSSamg3ZuSLdjDtFxKT8JIZLK_hU6ZFxwSgU5QvOFc2AqTg7DPWTjC-AU8RxSstiFdIfrdU7rj-s2AeuUqzf4VodbOMMam7TMPoLFJvjojQ5YR4vjukB-uJW62u1r9NLpUODN4zxB3z9dfDv_3F19vfxy_vGqM3waaiepoNNIBsbtZJilw-DAgmGOaSKBsRlgJMIyPtv24p5wKUZnp1kbMQveT_wEvd_vvcnp1wqlqsUXAyHoCGktioqesGaR_0E5mYQkI2vou0d0nRew6ib7ReetevrCBvR7wORUSgb3B6FE7Uqpp1JqV0rtSzXt7C_N-KqrT7Fm7cNz8oe97KNLedF3KQerqt6GlF3WsWVU_J8bfgN1Rqqs |
CitedBy_id | crossref_primary_10_1142_S0219519415500414 crossref_primary_10_1007_s13239_020_00469_9 crossref_primary_10_1177_0267659114521103 crossref_primary_10_1177_09544119231158248 crossref_primary_10_1016_j_jmbbm_2013_11_013 crossref_primary_10_3390_jfb9010015 crossref_primary_10_1016_j_euromechflu_2015_01_006 crossref_primary_10_3389_fphys_2021_716015 crossref_primary_10_1007_s10237_021_01529_2 crossref_primary_10_1007_s40846_016_0142_z crossref_primary_10_1080_10255842_2018_1552683 crossref_primary_10_3390_prosthesis2030015 |
Cites_doi | 10.1016/S0021-9290(00)00068-3 10.1016/S0022-5223(19)40619-3 10.1007/s10558-005-3072-x 10.1161/01.CIR.76.3.539 10.1007/s10439-009-9760-8 10.1016/B978-0-12-089901-2.50015-6 10.1080/10255840903120160 10.1142/S0217984905009626 10.1016/j.jfluidstructs.2004.04.007 10.1097/MCC.0b013e3280c56afb 10.4037/ajcc2005.14.1.40 10.1080/10255842.2012.688818 10.1142/S0219519411003971 10.1016/S0010-4825(02)00026-4 10.1016/S0021-9290(02)00448-7 10.1016/S0022-5223(19)41751-0 10.1016/S0021-9290(02)00244-0 10.15746/sms.11.015 10.1016/0003-4975(95)00922-1 10.1017/CBO9780511712289 10.1016/0021-9991(72)90065-4 10.1080/10255842.2011.623676 10.1378/chest.114.2.457 10.1152/jappl.1997.82.3.908 10.1016/j.ijcard.2007.07.112 10.1080/10255840310001606071 10.1002/9780470692608.ch10 10.1016/j.ijcard.2007.02.053 10.1016/j.athoracsur.2010.02.036 10.1146/annurev.fluid.33.1.445 10.1007/s00371-010-0537-8 10.1299/jbse.5.78 10.1016/j.jbiomech.2005.06.016 10.1016/0021-9991(66)90001-5 10.1016/j.jbiomech.2008.08.006 10.1046/j.0001-6772.2003.01211.x 10.1007/3-540-34596-5_9 10.1016/0021-9991(77)90100-0 10.1016/0045-7825(82)90128-1 10.1007/978-0-387-77452-7 10.1023/B:ENGI.0000007985.17625.43 |
ContentType | Journal Article |
Copyright | 2013 Taylor & Francis 2013 |
Copyright_xml | – notice: 2013 Taylor & Francis 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TS 8FD FR3 P64 |
DOI | 10.1080/10255842.2013.771179 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Physical Education Index Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 1834 |
ExternalDocumentID | 23531150 10_1080_10255842_2013_771179 771179 |
Genre | Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 1TA ACTTO ADUMR AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG CGR COF CUY CVF CYRSC DAOYK ECM EIF LJTGL NPM OPCYK 7X8 TASJS 7QO 7TS 8FD FR3 P64 |
ID | FETCH-LOGICAL-c396t-8151970623d9c2d166fedec2f2a08e22bee705d23bdfec403857fd9bac5b53493 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Fri Jul 11 05:23:36 EDT 2025 Tue Aug 05 09:59:41 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Jul 01 03:32:04 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Dec 25 09:02:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | cardiac output fluid–structure interaction echo-Doppler flow stroke volume |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-8151970623d9c2d166fedec2f2a08e22bee705d23bdfec403857fd9bac5b53493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23531150 |
PQID | 1530958072 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1540238509 informaworld_taylorfrancis_310_1080_10255842_2013_771179 crossref_primary_10_1080_10255842_2013_771179 pubmed_primary_23531150 proquest_miscellaneous_1530958072 crossref_citationtrail_10_1080_10255842_2013_771179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2014 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0033 cit0034 cit0031 cit0032 Engoren M (cit0014) 2005; 14 Lavdaniti M (cit0030) 2008; 1 Clark RE (cit0005) 1973; 66 cit0039 cit0037 cit0038 cit0035 cit0022 cit0023 cit0021 cit0028 cit0029 Formaggia L (cit0019) 1999; 7 cit0026 cit0027 cit0024 cit0025 cit0011 cit0012 cit0010 cit0051 cit0052 Govindarajan V (cit0020) 2010; 4 cit0050 Stringer WW (cit0044) 1997; 82 Park SH (cit0036) 2011; 17 cit0017 cit0018 cit0015 Clark RE (cit0006) 1974; 67 cit0016 cit0013 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0007 cit0004 cit0048 cit0049 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0009 doi: 10.1016/S0021-9290(00)00068-3 – volume: 66 start-page: 202 issue: 2 year: 1973 ident: cit0005 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/S0022-5223(19)40619-3 – ident: cit0049 doi: 10.1007/s10558-005-3072-x – ident: cit0034 – ident: cit0040 – ident: cit0004 doi: 10.1161/01.CIR.76.3.539 – ident: cit0023 doi: 10.1007/s10439-009-9760-8 – ident: cit0031 – ident: cit0021 – ident: cit0002 doi: 10.1016/B978-0-12-089901-2.50015-6 – volume: 4 issue: 1 year: 2010 ident: cit0020 publication-title: J Med Dev. – ident: cit0026 doi: 10.1080/10255840903120160 – ident: cit0052 doi: 10.1142/S0217984905009626 – ident: cit0042 doi: 10.1016/j.jfluidstructs.2004.04.007 – ident: cit0022 doi: 10.1097/MCC.0b013e3280c56afb – volume: 14 start-page: 40 issue: 1 year: 2005 ident: cit0014 publication-title: Am J Crit Care. doi: 10.4037/ajcc2005.14.1.40 – ident: cit0016 doi: 10.1080/10255842.2012.688818 – ident: cit0033 doi: 10.1142/S0219519411003971 – ident: cit0039 doi: 10.1016/S0010-4825(02)00026-4 – ident: cit0003 – ident: cit0011 doi: 10.1016/S0021-9290(02)00448-7 – volume: 67 start-page: 792 issue: 5 year: 1974 ident: cit0006 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/S0022-5223(19)41751-0 – ident: cit0010 doi: 10.1016/S0021-9290(02)00244-0 – ident: cit0028 – volume: 17 start-page: 65 issue: 2 year: 2011 ident: cit0036 publication-title: J Soonchunhyang Med Sci. doi: 10.15746/sms.11.015 – ident: cit0007 – ident: cit0029 doi: 10.1016/0003-4975(95)00922-1 – ident: cit0041 doi: 10.1017/CBO9780511712289 – ident: cit0037 doi: 10.1016/0021-9991(72)90065-4 – ident: cit0018 doi: 10.1080/10255842.2011.623676 – ident: cit0032 doi: 10.1378/chest.114.2.457 – volume: 82 start-page: 908 issue: 1 year: 1997 ident: cit0044 publication-title: J Appl Physiol. doi: 10.1152/jappl.1997.82.3.908 – ident: cit0025 doi: 10.1016/j.ijcard.2007.07.112 – ident: cit0015 doi: 10.1080/10255840310001606071 – ident: cit0043 doi: 10.1002/9780470692608.ch10 – ident: cit0024 doi: 10.1016/j.ijcard.2007.02.053 – ident: cit0050 doi: 10.1016/j.athoracsur.2010.02.036 – ident: cit0013 doi: 10.1146/annurev.fluid.33.1.445 – volume: 7 start-page: 105 issue: 2 year: 1999 ident: cit0019 publication-title: East-West J Numer Math. – ident: cit0035 doi: 10.1007/s00371-010-0537-8 – ident: cit0001 doi: 10.1299/jbse.5.78 – ident: cit0027 doi: 10.1016/j.jbiomech.2005.06.016 – ident: cit0051 doi: 10.1016/0021-9991(66)90001-5 – ident: cit0048 doi: 10.1016/j.jbiomech.2008.08.006 – ident: cit0045 doi: 10.1046/j.0001-6772.2003.01211.x – ident: cit0047 doi: 10.1007/3-540-34596-5_9 – ident: cit0038 doi: 10.1016/0021-9991(77)90100-0 – volume: 1 start-page: 112 issue: 3 year: 2008 ident: cit0030 publication-title: Int J Caring Sci. – ident: cit0012 doi: 10.1016/0045-7825(82)90128-1 – ident: cit0008 doi: 10.1007/978-0-387-77452-7 – ident: cit0017 doi: 10.1080/10255842.2011.623676 – ident: cit0046 doi: 10.1023/B:ENGI.0000007985.17625.43 |
SSID | ssj0008184 |
Score | 2.0745392 |
Snippet | The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1821 |
SubjectTerms | Adult Aortic Valve - diagnostic imaging Aortic Valve - physiology Blood Pressure - physiology cardiac output Cardiac Output - physiology Coronary Circulation - physiology echo-Doppler flow Echocardiography, Doppler Elastic Modulus Exercise - physiology fluid-structure interaction Heart Rate - physiology Hemodynamics Hemorheology - physiology Humans Male Numerical Analysis, Computer-Assisted Regression Analysis stroke volume Stroke Volume - physiology Systole - physiology |
Title | Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2013.771179 https://www.ncbi.nlm.nih.gov/pubmed/23531150 https://www.proquest.com/docview/1530958072 https://www.proquest.com/docview/1540238509 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVEi8IO6GS4vEW-Ri7_pa3ipIiaCEl0RUvFj2HkpE6lQ5kOjP4Zcye9muFErhxY5W3kMzX3ZnZudA6HWkWCSpEoGIiApiFqcBo6EMqpgzpnKZEJNS6PMkHc_ij2fJWa_3q-O1tNtWR_xyb1zJ_3AV2oCvOkr2HzjbDAoN8Bv4C0_gMDxvxGOXehjkPV85Sdv-jS_6UC11sThXhUdLl-VKDzCE-X9IG-IMSwK9GCTOJjxSW9Hrnb3EWXZSz_pUBq4EhKs7bVxpTfy-Dh_26Z5tQL8ZQLbJDluL6XwNB6ezu47L84VYy8ty-GGuWxfthrjZ2GpTw0_l-bqF8ET74Ffl9_lmbkON5qLpNNpcLEwlcRc47yy9zqYRxR2bht2G4ywNQHe1m6nc0-b37qyL0e5ODHpTtPeIsD6Vkdal8liH4kX0KMt0Zrz2SPRuAJMvxcns9LSYjs6mt9ABAVWE9NHB8fj9t6_NeQ8ij_Fd8OvzAZp5-GbfLFcEoCvpcf-s5BhhZ3oP3XVaCj62kLuPerJ-gG7buqU_H6LKAg-vFPbAw6saG-BhDTzsgAdviS3wsAHeW1xiDzvsYYcBNriBHTawe4RmJ6Ppu3HginUEnLJ0G-SRDoEOQZoWjBMRpamSQnKiSBnmkpBKyixMBKGVgBXG-kI6U4JVJU-qhMaMPkb9elXLQ4Q5YSVVGU8VK4GoIuc0U4RxCbKuAHIPEPUULLjLZK8LqiyLyCW89XQvNN0LS_cBCppeFzaTy1--z7vMKbbGgqZsuZuCXt_1lWdkAbu1voIra7nabQqQL0CnycOMXPdNrAVpkOQH6IlFQbNgQhOdHit8eoMZnqE77X_rOepv1zv5AiTobfXSQfg3_PnERQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Vqgou9EGBpS9X4ppVYjtxzA1VRdsW9gRSb1b8unSVIMiC4NczjuNVqQSV2pMPia2xPbY_e2a-ATgovCwc8zazBfUZl7zKJMtdprmR0teupAOl0Om8mp3z7z_L5E14NbpVhju0j0QRw14dFnd4jE4ucVgiEK55iKMq2FSIQGu2Bs9LWYmQxIDl89VmjOfRYFgOWVtDlRQ990grD06nB9yljyPQ4SQ6fgk69SE6oPyaLns9NXd_0Dv-VydfwdaIU8lRVKzX8My1b-BFzFx5uw06sh6TzpOUtIl0LRnc4IlfdDdkTACEpSNNF5ohqNTX7pA0BCXBC7mzJMVlEhSTtMtoPVqQgfP2LZwffz37MsvGdA2ZYbLqs7oIQbA54ikrDbVFVXlnnaGeNnntKNXOiby0lGmLEvJgkhTeSt2YUpeMS7YD623Xuj0ghsqGeWEqLxsuKlsbJjyVxiHasTinE2BpmpQZucxDSo2FKkbK0zR6KoyeiqM3gWxV6yJyefzl__p3DVD98IbiY8ITxZ6u-jlpi8L1GowwTeu65ZXCEwZRbZ0L-tQ_PEApxHIT2I2qthKYsjIQJOX7_y7cJ9iYnZ2eqJNv8x_vYBO_8Pio9B7W-8ul-4Awq9cfh4V0DxaeF_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUCsuLbRAtxRwpV6zSmzn4d4q2hXPFQeQuFmJHxdWyarNtmp_fWfiZAVIUAlOPiS2xvbY_uyZ-Qbgc-JV4oS3kU24j6SSWaRE7KJKGqV84VLeUQqdT7OjK3lynV7fiuInt0q6Q_tAFNHt1bS459YPHnFYIg4uJIVRJWKc58Rq9gLWMuIOpyCOeLrci_E46uzKlLSVqgzBcw-0cudwukNd-jAA7Q6iyRsohy4E_5Ob8aKtxubvPXbH5_RxA173KJV9DWq1CSuufgsvQ97KP--gCpzHrPFsSNnEmpp1TvDMz5rfrE__g6VjZUPNMFTpX-4LKxkKgtdxZ9kQlclQSlYvgu1oxjrG2y24mny_PDyK-mQNkREqa6MioRDYGNGUVYbbJMu8s85wz8u4cJxXzuVxarmoLEooySCZe6uq0qRVKqQS27BaN7V7D8xwVQqfm8yrUuaZLYzIPVfGIdaxOKUjEMMsadMzmVNCjZlOesLTYfQ0jZ4OozeCaFlrHpg8_vN_cVsBdNu9oPiQ7kSLx6t-GpRF42olE0xZu2bxU-P5gpi2iHP-2D-SgBQiuRHsBE1bCsxFSvRI8YenC3cAry6-TfTZ8fR0F9bxgwwvSh9htf2xcHuIsdpqv1tG_wCEHxaf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+exercise+on+blood+flow+through+the+aortic+valve%3A+a+combined+clinical+and+numerical+study&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Bahraseman%2C+Hamidreza+Ghasemi&rft.au=Hassani%2C+Kamran&rft.au=Navidbakhsh%2C+Mahdi&rft.au=Espino%2C+Daniel+M&rft.date=2014-01-01&rft.issn=1476-8259&rft.eissn=1476-8259&rft.volume=17&rft.issue=16&rft.spage=1821&rft_id=info:doi/10.1080%2F10255842.2013.771179&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |