Towards Optimizing the Quality of Long-Term Physiological Signals Monitoring by Using Anhydrous Carbon Paste Electrode
Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short period of a hospital visit. However, the conventional wet electrodes suffered from the problem of signal quality degradation due to the grad...
Saved in:
Published in | IEEE Transactions on Biomedical Engineering Vol. 70; no. 2; pp. 423 - 435 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2023
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short period of a hospital visit. However, the conventional wet electrodes suffered from the problem of signal quality degradation due to the gradual dehydration of the conductive gel. An anhydrous carbon paste electrode (CPE) constructed by a composite of carbon black and polydimethylsiloxane was proposed to enable long-term physiological signal monitoring without signal quality degradation as time elapses. The performance was systematically compared with conventional electrodes when measuring long-term physiological signals including electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and auditory brainstem response (ABR). The proposed CPE showed more stable skin-electrode impedance and higher signal qualities as the monitoring time increased up to 48 days, with signal-to-noise ratios (SNRs) of 16.43 ± 10.39 dB higher for ECG and 24.30 ± 7.79 dB higher for EMG when compared with wet electrodes. The CPE method could also obtain more consistent ABR waveform morphologies and could measure EEG under sweating conditions. It is believed that the proposed CPE could be a potential candidate for durable and robust wearable sensors systems on long-term physiological signal monitoring. |
---|---|
AbstractList | Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short period of a hospital visit. However, the conventional wet electrodes suffered from the problem of signal quality degradation due to the gradual dehydration of the conductive gel. An anhydrous carbon paste electrode (CPE) constructed by a composite of carbon black and polydimethylsiloxane was proposed to enable long-term physiological signal monitoring without signal quality degradation as time elapses. The performance was systematically compared with conventional electrodes when measuring long-term physiological signals including electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and auditory brainstem response (ABR). The proposed CPE showed more stable skin-electrode impedance and higher signal qualities as the monitoring time increased up to 48 days, with signal-to-noise ratios (SNRs) of 16.43 ± 10.39 dB higher for ECG and 24.30 ± 7.79 dB higher for EMG when compared with wet electrodes. The CPE method could also obtain more consistent ABR waveform morphologies and could measure EEG under sweating conditions. It is believed that the proposed CPE could be a potential candidate for durable and robust wearable sensors systems on long-term physiological signal monitoring.Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short period of a hospital visit. However, the conventional wet electrodes suffered from the problem of signal quality degradation due to the gradual dehydration of the conductive gel. An anhydrous carbon paste electrode (CPE) constructed by a composite of carbon black and polydimethylsiloxane was proposed to enable long-term physiological signal monitoring without signal quality degradation as time elapses. The performance was systematically compared with conventional electrodes when measuring long-term physiological signals including electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and auditory brainstem response (ABR). The proposed CPE showed more stable skin-electrode impedance and higher signal qualities as the monitoring time increased up to 48 days, with signal-to-noise ratios (SNRs) of 16.43 ± 10.39 dB higher for ECG and 24.30 ± 7.79 dB higher for EMG when compared with wet electrodes. The CPE method could also obtain more consistent ABR waveform morphologies and could measure EEG under sweating conditions. It is believed that the proposed CPE could be a potential candidate for durable and robust wearable sensors systems on long-term physiological signal monitoring. Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short period of a hospital visit. However, the conventional wet electrodes suffered from the problem of signal quality degradation due to the gradual dehydration of the conductive gel. An anhydrous carbon paste electrode (CPE) constructed by a composite of carbon black and polydimethylsiloxane was proposed to enable long-term physiological signal monitoring without signal quality degradation as time elapses. The performance was systematically compared with conventional electrodes when measuring long-term physiological signals including electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and auditory brainstem response (ABR). The proposed CPE showed more stable skin-electrode impedance and higher signal qualities as the monitoring time increased up to 48 days, with signal-to-noise ratios (SNRs) of 16.43 ± 10.39 dB higher for ECG and 24.30 ± 7.79 dB higher for EMG when compared with wet electrodes. The CPE method could also obtain more consistent ABR waveform morphologies and could measure EEG under sweating conditions. It is believed that the proposed CPE could be a potential candidate for durable and robust wearable sensors systems on long-term physiological signal monitoring. |
Author | Li, Lin Huang, Weimin Wang, Xin Jing, Xiaobei Wang, Yingying Wang, Boya Liu, Zhenzhen Chen, Shixiong Zhu, Mingxing Liu, Zhiyuan Tian, Qiong Yokoi, Hiroshi Li, Guanglin |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-3352-6829 surname: Wang fullname: Wang, Xin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China – sequence: 2 givenname: Qiong surname: Tian fullname: Tian, Qiong organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China – sequence: 3 givenname: Mingxing surname: Zhu fullname: Zhu, Mingxing organization: School of Electronics and Information Engineering, Harbin Institute of Technology, China – sequence: 4 givenname: Yingying orcidid: 0000-0001-9485-010X surname: Wang fullname: Wang, Yingying organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China – sequence: 5 givenname: Boya surname: Wang fullname: Wang, Boya organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China – sequence: 6 givenname: Xiaobei surname: Jing fullname: Jing, Xiaobei organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China – sequence: 7 givenname: Hiroshi surname: Yokoi fullname: Yokoi, Hiroshi organization: Department of Mechanical and Intelligent Systems Engineering and Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Japan – sequence: 8 givenname: Lin surname: Li fullname: Li, Lin organization: Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, China – sequence: 9 givenname: Zhenzhen surname: Liu fullname: Liu, Zhenzhen organization: Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, China – sequence: 10 givenname: Weimin surname: Huang fullname: Huang, Weimin organization: Department of Neonatology, Shenzhen Children's Hospital, China – sequence: 11 givenname: Shixiong orcidid: 0000-0002-5868-6952 surname: Chen fullname: Chen, Shixiong email: sx.chen@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 12 givenname: Zhiyuan orcidid: 0000-0001-9231-8195 surname: Liu fullname: Liu, Zhiyuan email: zy.liu1@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 13 givenname: Guanglin orcidid: 0000-0001-9016-2617 surname: Li fullname: Li, Guanglin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China |
BackLink | https://cir.nii.ac.jp/crid/1872835442918082816$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35867372$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtv1DAUhS1URKeFH4CQkCVYsMngV2xnWUbDQ5qqRYS15TjOjKvEntoJKPx6HM3QBRs_pO9cnXvOFbjwwVsAXmO0xhhVH-tPt9s1QYSsKa4oxuUzsMJlKQtSUnwBVghhWVSkYpfgKqWH_GWS8RfgkpaSCyrICvyqw28d2wTvjqMb3B_n93A8WPh90r0bZxg6uAt-X9Q2DvD-MCcX-rB3Rvfwh9t73Sd4G7wbQ1yUzQx_puVx4w9zG8OU4EbHJnh4r9No4ba3ZoyhtS_B8y5r7avzfQ3qz9t687XY3X35trnZFYZWfCxE0yDGWIMQR63tOm0MorIlbccazETVNqyUujOlaHMMQkvNpOCyoZ3hnFJ6DT6cxh5jeJxsGtXgkrF9r73N5hThFRVC0pJn9N1_6EOY4rKgIiKHhblgy8C3Z2pqBtuqY3SDjrP6F2gG8AkwMaQUbfeEYKSW0tRSmlpKU-fSsub9SeOdU8YtJ5aCZFuMkQpLJInEi8M3J8xZa5_GVpJmY4T-BRBFnJA |
CODEN | IEBEAX |
Cites_doi | 10.1109/TBME.2021.3070541 10.1038/s41587-019-0045-y 10.1007/s12274-020-2628-9 10.1097/ALN.0000000000003029 10.1021/acsnano.7b04898 10.1016/j.sna.2007.11.019 10.1111/ijcp.12846 10.1007/s00339-019-3124-5 10.1007/s10916-020-01653-z 10.1021/acsami.7b09954 10.1016/j.future.2018.04.024 10.1016/j.nano.2012.12.004 10.1109/ICRCICN.2017.8234487 10.1016/j.compscitech.2017.07.004 10.1016/j.resuscitation.2019.01.017 10.1021/acsnano.6b01355 10.1109/IEMBS.2007.4353650 10.1088/1361-6528/ab9476 10.1002/adfm.202007086 10.1021/acsnano.7b04292 10.3390/s18061719 10.1109/JSEN.2020.3003300 10.3390/s20144009 10.1109/BSN.2011.39 10.1016/j.matpr.2020.04.822 10.1002/adfm.202007495 10.1378/chest.98.6.1388 10.1111/jocn.13102 10.1007/978-3-540-74471-9_102 10.1002/adfm.201805224 10.1002/aelm.201800463 10.1109/TSMCC.2009.2032660 10.1038/s41699-018-0064-4 10.1109/RCAR47638.2019.9044127 10.1007/s10439-015-1528-8 10.1016/S0020-7489(00)00119-X 10.1109/RBME.2010.2084078 10.1007/s11431-018-9253-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2022.3193115 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 435 |
ExternalDocumentID | 35867372 10_1109_TBME_2022_3193115 9837432 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022M710968 funderid: 10.13039/501100002858 – fundername: Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers; SIAT Innovation Program for Excellent Young Researchers grantid: E1G027 funderid: 10.13039/501100013289 – fundername: Shenzhen Governmental Basic Research grantid: JCYJ20180507182241622 – fundername: CAS President's International Fellowship Initiative Project grantid: 2022VEA0012 – fundername: National Key R&D Program of China grantid: 2021YFF0501600 – fundername: Science and Technology Planning Project of Shenzhen grantid: JSGG20210713091808027; JSGG20211029095801002 – fundername: National Natural Science Foundation of China grantid: 81927804; 62101538; 62101544 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP RYH AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c396t-7bb0444b0060deffacc038d2df4b1479db458afc57d2027a8a48768b3fc66333 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 04:30:55 EDT 2025 Mon Jun 30 08:19:00 EDT 2025 Thu Apr 03 07:07:39 EDT 2025 Tue Jul 01 03:28:37 EDT 2025 Thu Jun 26 23:42:24 EDT 2025 Wed Aug 27 02:14:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-7bb0444b0060deffacc038d2df4b1479db458afc57d2027a8a48768b3fc66333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9485-010X 0000-0002-5868-6952 0000-0001-9016-2617 0000-0001-9231-8195 0000-0003-3352-6829 0009-0004-2153-2927 |
PMID | 35867372 |
PQID | 2767316743 |
PQPubID | 85474 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9837432 proquest_journals_2767316743 nii_cinii_1872835442918082816 pubmed_primary_35867372 crossref_primary_10_1109_TBME_2022_3193115 proquest_miscellaneous_2693778356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE Transactions on Biomedical Engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2023 |
Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref34 doi: 10.1109/TBME.2021.3070541 – ident: ref2 doi: 10.1038/s41587-019-0045-y – ident: ref4 doi: 10.1007/s12274-020-2628-9 – ident: ref11 doi: 10.1097/ALN.0000000000003029 – ident: ref1 doi: 10.1021/acsnano.7b04898 – ident: ref15 doi: 10.1016/j.sna.2007.11.019 – ident: ref8 doi: 10.1111/ijcp.12846 – ident: ref38 doi: 10.1007/s00339-019-3124-5 – ident: ref6 doi: 10.1007/s10916-020-01653-z – ident: ref29 doi: 10.1021/acsami.7b09954 – ident: ref3 doi: 10.1016/j.future.2018.04.024 – ident: ref30 doi: 10.1016/j.nano.2012.12.004 – ident: ref33 doi: 10.1109/ICRCICN.2017.8234487 – ident: ref37 doi: 10.1016/j.compscitech.2017.07.004 – ident: ref13 doi: 10.1016/j.resuscitation.2019.01.017 – ident: ref23 doi: 10.1021/acsnano.6b01355 – ident: ref14 doi: 10.1109/IEMBS.2007.4353650 – ident: ref22 doi: 10.1088/1361-6528/ab9476 – ident: ref5 doi: 10.1002/adfm.202007086 – ident: ref24 doi: 10.1021/acsnano.7b04292 – ident: ref35 doi: 10.3390/s18061719 – ident: ref26 doi: 10.1109/JSEN.2020.3003300 – ident: ref21 doi: 10.3390/s20144009 – ident: ref18 doi: 10.1109/BSN.2011.39 – ident: ref20 doi: 10.1016/j.matpr.2020.04.822 – ident: ref25 doi: 10.1002/adfm.202007495 – ident: ref10 doi: 10.1378/chest.98.6.1388 – ident: ref9 doi: 10.1111/jocn.13102 – ident: ref17 doi: 10.1007/978-3-540-74471-9_102 – ident: ref27 doi: 10.1002/adfm.201805224 – ident: ref36 doi: 10.1002/aelm.201800463 – ident: ref7 doi: 10.1109/TSMCC.2009.2032660 – ident: ref32 doi: 10.1038/s41699-018-0064-4 – ident: ref19 doi: 10.1109/RCAR47638.2019.9044127 – ident: ref31 doi: 10.1007/s10439-015-1528-8 – ident: ref12 doi: 10.1016/S0020-7489(00)00119-X – ident: ref16 doi: 10.1109/RBME.2010.2084078 – ident: ref28 doi: 10.1007/s11431-018-9253-9 |
SSID | ssj0014846 ssib006366158 ssib012345362 ssib017384876 ssib000440638 ssib004836781 ssib053851713 ssib007716232 ssib000858650 ssib001191643 ssib042488885 |
Score | 2.411209 |
Snippet | Long-term physiological signal monitoring is very important for the diagnosis of health conditions that occur randomly and cannot be easily detected by a short... |
SourceID | proquest pubmed crossref nii ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 423 |
SubjectTerms | Anhydrous carbon paste electrodes Biomedical monitoring Black carbon Brain stem Carbon Carbon black Degradation Dehydration EEG EKG Electric Conductivity Electric Impedance Electrocardiography Electrocardiography - methods Electrodes Electroencephalography Electromyography Impedance long-term monitoring Monitoring Monitoring, Physiologic physiological signals Physiology Polydimethylsiloxane Signal monitoring Signal quality Skin Sweating Telemedicine Waveforms |
Title | Towards Optimizing the Quality of Long-Term Physiological Signals Monitoring by Using Anhydrous Carbon Paste Electrode |
URI | https://ieeexplore.ieee.org/document/9837432 https://cir.nii.ac.jp/crid/1872835442918082816 https://www.ncbi.nlm.nih.gov/pubmed/35867372 https://www.proquest.com/docview/2767316743 https://www.proquest.com/docview/2693778356 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5qH0p9qLX1Em1lBZ_EnCbZze2xllOKeFQwQt_C3tIexKSci3D6653ZTYItFXwJgU02m53ZuezMfgPwDpWEsSj1wiYyMhRxzkPF0ZAzKSF9xGnBIzrgPPuSXfwQny7Tyy34MJ6Fsda65DM7oVsXyzedXtNW2UmJ3pTgKHAfoePmz2qNEQNR-EM5UYwLOClFH8GMo_Kk-jiboieYJOigloQusws7PC1chZY76sjVV0El087n_zY4neI5fwKzYcg-3-TnZL1SE317D83xf_9pH_Z6C5SdepZ5Clu2PYDHf-ESHsDOrI-4H8LvyuXVLtlXlC2_5rfYztBmZB57Y8O6hn3u2quwQgnPXDrpIE3Z9_kVgTMzLzaoZ6Y2zOUosNP2emMW3XrJzuRCdS37JpHd2NQX5TH2GVTn0-rsIuxrNYSal9kqzJUi5DlaxEj8ppFaR7wwiWmEikVeGiXSQjY6zQ1tt8hCoqeUFYo3Gm0ezp_Ddtu19iUw2Ug0y_LE2FwL3aSltQIljUmQYujLiwDeDxSrbzwiR-08maisidI1UbruKR3AIU35-GA_2wEcI41rnEi8xkVOoHMCNXNcEKJfnAVwNFC_7tf0sk7yjMp84fsBvB2bcTVSiEW2FuesTjI092gzDbt44blm_PbAcq8eHtNr2KVS9j4j_Ai2V4u1PUaDZ6XeOE7_AyKn9wg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFD-MCXM--LE5rW4awSexd22TtunjHHdc9XYKVthbSJp0XsRW7odw99d7krRFRcGXUkibpjkn5yPn5HcAXqKS0AalXthEWoYszmmoKBpyOrVIH3HKaWQPOJeX2ewze3eVXu3A6_EsjDHGJZ-Zib11sXzd1Ru7VXZaoDfFKArcW6j309if1hpjBoz7YzlRjEs4KVgfw4yj4rR6U07RF0wSdFELiy-zD3s05a5Gy28KyVVYQTXTLhb_Njmd6rm4B-UwaJ9x8nWyWatJffMHnuP__tV9uNvboOTMM80D2DHtAdz5BZnwAPbKPuZ-CD8ql1m7Ih9Qunxb3GA7QauRePSNLekaMu_a67BCGU9cQukgT8mnxbWFZyZecNieidoSl6VAztovW73sNityLpeqa8lHiQxHpr4sjzYPobqYVuezsK_WENa0yNZhrpTFnrPLGMnfNLKuI8p1ohumYpYXWrGUy6ZOc203XCSX6CtlXNGmRquH0iPYbbvWPAYiG4mGWZ5ok9esbtLCGIayRidIMfTmWQCvBoqJ7x6TQzhfJiqEpbSwlBY9pQM4tFM-PtjPdgAnSGOBE4nXmOcWdo6hbo65xfSLswCOB-qLflWvRJJnttAXvh_Ai7EZ16MNssjW4JyJJEODz26nYRePPNeM3x5Y7snfx_Qcbs-qci7mby_fP4V9W9je54cfw-56uTEnaP6s1TPH9T8BLJ76UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Optimizing+the+Quality+of+Long-Term+Physiological+Signals+Monitoring+by+Using+Anhydrous+Carbon+Paste+Electrode&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Xin&rft.au=Tian%2C+Qiong&rft.au=Zhu%2C+Mingxing&rft.au=Wang%2C+Yingying&rft.date=2023-02-01&rft.eissn=1558-2531&rft.volume=70&rft.issue=2&rft.spage=423&rft_id=info:doi/10.1109%2FTBME.2022.3193115&rft_id=info%3Apmid%2F35867372&rft.externalDocID=35867372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |