Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata
Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata ,...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 15; pp. 6914 - 6920 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of
Nepenthes alata
, which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built
via
two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features,
i.e.
the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering. |
---|---|
AbstractList | Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata, which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built via two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features, i.e. the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering. Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata , which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built via two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features, i.e. the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering. |
Author | Zhang, Yi Zhang, Pengfei Jiang, Lei Zhang, Liwen Zhang, Deyuan Chen, Huawei |
Author_xml | – sequence: 1 givenname: Huawei orcidid: 0000-0003-1766-421X surname: Chen fullname: Chen, Huawei organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 2 givenname: Liwen orcidid: 0000-0003-3250-9867 surname: Zhang fullname: Zhang, Liwen organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 4 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 5 givenname: Deyuan surname: Zhang fullname: Zhang, Deyuan organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 6 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China |
BookMark | eNqFkU9rHDEMxU1Joek2l34CH0NgUtme9Z_jsrRJYGkvm_Og8Wgah1l7YnsP_fadJSGBUogOkhC_9w56n9lZTJEY-yrgWoBy37ZmvwGhwW0_sHMJa2hM6_TZ627tJ3ZRyiMsZQG0c-fs4T6GZgiZfA0p4sSn8HQMAy9zJhxC_M19ijWniafIkfchNSGWeREszDGP6ImPOR14fSA-Uw6lpgPxNPKfNFNcroXjhBW_sI8jToUuXuaK3f_4vt_eNrtfN3fbza7xyunaGNca3TtP1kLbgrTonV8r1aLx2oEePQ7SAipUyvRi7A2SpaEdxWD7AVGt2OWz75zT05FK7Q6heJomjJSOpZPSCLtWWqt3UeGgldLKtXwftU5YszRYUHhGfU6lZBo7HyqevlszhqkT0J3S6t7SWiRX_0jmHA6Y__wP_gt63ZcG |
CitedBy_id | crossref_primary_10_1021_acsami_3c01454 crossref_primary_10_1186_s10033_025_01197_8 crossref_primary_10_1049_mnl_2017_0472 crossref_primary_10_1002_ls_1622 crossref_primary_10_3390_mi11110978 crossref_primary_10_1016_j_fmre_2022_03_022 crossref_primary_10_1007_s42765_021_00116_5 crossref_primary_10_1039_D0MH00768D crossref_primary_10_1039_C9SM00072K crossref_primary_10_1016_j_porgcoat_2024_108797 crossref_primary_10_1016_j_pmatsci_2022_101064 crossref_primary_10_1039_C9RA09329J crossref_primary_10_1039_D4TC03236E crossref_primary_10_3390_fluids6120463 crossref_primary_10_3390_ma12071043 crossref_primary_10_1038_s41557_023_01158_5 crossref_primary_10_1039_C8TA01096J crossref_primary_10_1021_acsami_3c10211 crossref_primary_10_1039_D2LC00993E crossref_primary_10_1039_C8RA08768G crossref_primary_10_1016_j_colsurfa_2022_130429 crossref_primary_10_3390_coatings12060755 crossref_primary_10_1016_j_triboint_2023_109049 crossref_primary_10_1016_j_apsusc_2022_155212 crossref_primary_10_1088_2051_672X_ad54dd crossref_primary_10_1177_14644207241269652 crossref_primary_10_1016_j_jcis_2018_06_081 crossref_primary_10_1002_dro2_165 crossref_primary_10_1088_2631_7990_ad8a25 crossref_primary_10_1016_j_renene_2019_05_055 crossref_primary_10_1364_OE_418173 crossref_primary_10_1016_j_cej_2024_149192 crossref_primary_10_1039_C8NR04354J crossref_primary_10_1021_acsanm_1c03988 crossref_primary_10_1073_pnas_1821493116 crossref_primary_10_1016_j_cej_2023_145491 crossref_primary_10_1016_j_colsurfa_2020_125253 crossref_primary_10_1016_j_jcis_2024_09_170 crossref_primary_10_1016_j_surfin_2024_105111 crossref_primary_10_1039_C7MH01138E crossref_primary_10_1016_j_apsusc_2021_151625 crossref_primary_10_1002_admi_201901791 crossref_primary_10_1021_acsami_9b15385 crossref_primary_10_1039_C9TA08133J crossref_primary_10_1039_D2CP06086H crossref_primary_10_1007_s41871_018_0022_y crossref_primary_10_1016_j_apsusc_2017_09_158 crossref_primary_10_1016_j_compositesa_2024_108241 crossref_primary_10_1016_j_surfin_2023_103307 crossref_primary_10_1007_s42235_025_00667_y crossref_primary_10_1063_5_0197049 crossref_primary_10_1063_5_0102883 crossref_primary_10_1016_j_apsusc_2020_146052 crossref_primary_10_1007_s42235_021_0009_z crossref_primary_10_1002_admi_202101231 crossref_primary_10_1002_adfm_202011288 crossref_primary_10_1016_j_optlaseng_2019_06_021 crossref_primary_10_1002_adem_202302240 crossref_primary_10_1021_acs_nanolett_0c04814 crossref_primary_10_1021_acsami_0c14664 crossref_primary_10_1063_5_0005358 crossref_primary_10_1039_C7NR05188C crossref_primary_10_1016_j_mser_2020_100562 crossref_primary_10_1088_1361_6463_ab5df7 crossref_primary_10_1002_adma_201800718 crossref_primary_10_1002_adma_201702995 crossref_primary_10_1016_j_ces_2025_121514 crossref_primary_10_1016_j_cocis_2017_12_006 crossref_primary_10_1016_j_colsurfa_2018_02_023 crossref_primary_10_1016_j_apsusc_2021_149612 crossref_primary_10_1002_adfm_202417841 |
Cites_doi | 10.1039/b603634a 10.1021/la3036242 10.1073/pnas.93.11.5556 10.1021/acsami.6b15802 10.1039/c003728a 10.1016/0021-9797(77)90052-2 10.1126/science.283.5398.46 10.1038/nmat2726 10.1038/nature08729 10.1002/adfm.200600101 10.1021/la00086a025 10.1021/la00032a052 10.1063/1.1459099 10.1002/smll.201601676 10.1017/S0022112004009152 10.1126/sciadv.1600148 10.1002/adma.201101740 10.1002/aic.690441218 10.1126/science.256.5063.1539 10.1002/adma.201003169 10.1039/C5TA03309H 10.1038/ncomms2253 10.1126/science.291.5504.633 10.1039/C6TA08333A 10.1038/35102108 10.1126/science.283.5398.41 10.1002/adma.200501772 10.1021/acsami.5b03039 10.1021/la063376k 10.1016/j.jcis.2011.07.019 10.1038/nature17189 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C7TA01609C |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 6920 |
ExternalDocumentID | 10_1039_C7TA01609C |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-79476b9ce88044028ac9c5334a7c6906fcad280a3a337b1fb7ae8ed4f1d8bdaa3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:26:18 EDT 2025 Fri Jul 11 10:18:54 EDT 2025 Fri Jul 11 05:16:29 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 03:13:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-79476b9ce88044028ac9c5334a7c6906fcad280a3a337b1fb7ae8ed4f1d8bdaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1766-421X 0000-0003-3250-9867 |
PQID | 1891878910 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271853663 proquest_miscellaneous_1904228252 proquest_miscellaneous_1891878910 crossref_citationtrail_10_1039_C7TA01609C crossref_primary_10_1039_C7TA01609C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2017 |
References | Zheng (C7TA01609C-(cit2)/*[position()=1]) 2010; 463 Bai (C7TA01609C-(cit15)/*[position()=1]) 2010; 22 Zhang (C7TA01609C-(cit22)/*[position()=1]) 2017; 9 Bai (C7TA01609C-(cit23)/*[position()=1]) 2011; 23 Wang (C7TA01609C-(cit14)/*[position()=1]) 2016; 4 Xia (C7TA01609C-(cit20)/*[position()=1]) 2006; 18 Oliver (C7TA01609C-(cit29)/*[position()=1]) 1977; 59 Daniel (C7TA01609C-(cit8)/*[position()=1]) 2001; 291 Chu (C7TA01609C-(cit18)/*[position()=1]) 2010; 9 Chen (C7TA01609C-(cit9)/*[position()=1]) 2015; 7 Burns (C7TA01609C-(cit5)/*[position()=1]) 1996; 93 Chen (C7TA01609C-(cit27)/*[position()=1]) 2017; 13 Zhang (C7TA01609C-(cit25)/*[position()=1]) 2007; 23 Wang (C7TA01609C-(cit19)/*[position()=1]) 2007; 17 Chen (C7TA01609C-(cit26)/*[position()=1]) 2016; 532 Grunze (C7TA01609C-(cit6)/*[position()=1]) 1999; 283 Lorenceau (C7TA01609C-(cit24)/*[position()=1]) 2004; 510 Ma (C7TA01609C-(cit16)/*[position()=1]) 2015; 3 Agranovski (C7TA01609C-(cit4)/*[position()=1]) 1998; 44 Zhu (C7TA01609C-(cit21)/*[position()=1]) 2006 Ju (C7TA01609C-(cit3)/*[position()=1]) 2012; 3 Brochard (C7TA01609C-(cit10)/*[position()=1]) 1989; 5 Gau (C7TA01609C-(cit7)/*[position()=1]) 1999; 283 Wang (C7TA01609C-(cit28)/*[position()=1]) 2012; 28 Chaudhury (C7TA01609C-(cit11)/*[position()=1]) 1992; 256 Li (C7TA01609C-(cit17)/*[position()=1]) 2016; 2 Parker (C7TA01609C-(cit1)/*[position()=1]) 2001; 414 Yarin (C7TA01609C-(cit13)/*[position()=1]) 2002; 91 Shao (C7TA01609C-(cit31)/*[position()=1]) 2011; 363 Tian (C7TA01609C-(cit30)/*[position()=1]) 2010; 10 Brzoska (C7TA01609C-(cit12)/*[position()=1]) 1993; 9 |
References_xml | – start-page: 2753 year: 2006 ident: C7TA01609C-(cit21)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b603634a – volume: 28 start-page: 16917 year: 2012 ident: C7TA01609C-(cit28)/*[position()=1] publication-title: Langmuir doi: 10.1021/la3036242 – volume: 93 start-page: 5556 year: 1996 ident: C7TA01609C-(cit5)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.11.5556 – volume: 9 start-page: 5645 year: 2017 ident: C7TA01609C-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15802 – volume: 10 start-page: 2258 year: 2010 ident: C7TA01609C-(cit30)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c003728a – volume: 59 start-page: 568 year: 1977 ident: C7TA01609C-(cit29)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(77)90052-2 – volume: 283 start-page: 46 year: 1999 ident: C7TA01609C-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.283.5398.46 – volume: 9 start-page: 413 year: 2010 ident: C7TA01609C-(cit18)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2726 – volume: 463 start-page: 640 year: 2010 ident: C7TA01609C-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature08729 – volume: 17 start-page: 219 year: 2007 ident: C7TA01609C-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600101 – volume: 5 start-page: 432 year: 1989 ident: C7TA01609C-(cit10)/*[position()=1] publication-title: Langmuir doi: 10.1021/la00086a025 – volume: 9 start-page: 2220 year: 1993 ident: C7TA01609C-(cit12)/*[position()=1] publication-title: Langmuir doi: 10.1021/la00032a052 – volume: 91 start-page: 4751 year: 2002 ident: C7TA01609C-(cit13)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1459099 – volume: 13 start-page: 1601676 year: 2017 ident: C7TA01609C-(cit27)/*[position()=1] publication-title: Small doi: 10.1002/smll.201601676 – volume: 510 start-page: 29 year: 2004 ident: C7TA01609C-(cit24)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112004009152 – volume: 2 start-page: e1600148 year: 2016 ident: C7TA01609C-(cit17)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1600148 – volume: 23 start-page: 3708 year: 2011 ident: C7TA01609C-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201101740 – volume: 44 start-page: 2775 year: 1998 ident: C7TA01609C-(cit4)/*[position()=1] publication-title: AIChE J. doi: 10.1002/aic.690441218 – volume: 256 start-page: 1539 year: 1992 ident: C7TA01609C-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.256.5063.1539 – volume: 22 start-page: 5521 year: 2010 ident: C7TA01609C-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201003169 – volume: 3 start-page: 15540 year: 2015 ident: C7TA01609C-(cit16)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03309H – volume: 3 start-page: 1247 year: 2012 ident: C7TA01609C-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2253 – volume: 291 start-page: 633 year: 2001 ident: C7TA01609C-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.291.5504.633 – volume: 4 start-page: 18289 year: 2016 ident: C7TA01609C-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08333A – volume: 414 start-page: 33 year: 2001 ident: C7TA01609C-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/35102108 – volume: 283 start-page: 41 year: 1999 ident: C7TA01609C-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.283.5398.41 – volume: 18 start-page: 432 year: 2006 ident: C7TA01609C-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200501772 – volume: 7 start-page: 13987 year: 2015 ident: C7TA01609C-(cit9)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03039 – volume: 23 start-page: 6136 year: 2007 ident: C7TA01609C-(cit25)/*[position()=1] publication-title: Langmuir doi: 10.1021/la063376k – volume: 363 start-page: 425 year: 2011 ident: C7TA01609C-(cit31)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.07.019 – volume: 532 start-page: 85 year: 2016 ident: C7TA01609C-(cit26)/*[position()=1] publication-title: Nature doi: 10.1038/nature17189 |
SSID | ssj0000800699 |
Score | 2.4742873 |
Snippet | Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 6914 |
SubjectTerms | Anisotropy Devices energy hydrophilicity Liquids mechanical engineering Microcavities Microfluidics Nepenthes alata peristome Spreading ultraviolet radiation Wedges Wettability |
Title | Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata |
URI | https://www.proquest.com/docview/1891878910 https://www.proquest.com/docview/1904228252 https://www.proquest.com/docview/2271853663 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKdYXjKCC4qypM7D8bGquiqoWjikUjlFtuNApJKUNtFK_BB-L-M4cbO0oIVLVLmWm3q-jCfj-T4j9CYLvTwgOXcjIYSrFelcTjhxlVKBpEzpnThdbXEZzZfBh1W4Go1-DqqWmlqcyx9HeSX_Y1VoA7tqluw_WNYOCg3wGewLV7AwXG9kYwgYXbMmmYTeuvjeFJmz22xNabwtRNclx44oKrco9c46BJm7ZptzeKYtvWTTajZX30wOQR-NC607h68Nee1YBAvBrvmXjuyPjTt3JoYB1H_TKoobfmGbou_5Wrok12bzpx1FZN7wK1Uc5LIXxdWesGZbPx92_KTKL3k3QJfJMJRN4-qIF3pa1dR4YjVsM-fd9r46HEIyHDjeiBkuareIR6yl2B0uEJ6v9VUlrbmW1mNyvwz2W_-XH9OL5WKRJrNVcgudEnj9AId_Opkl7xc2e6fj7Kg9nNTeeq9967N3--GvRzvXF_s2gknuobud4fDE4Og-GqnyAbozEKR8iL7-hihsEIUtonCHKFyVmOMhonCHKKwRhQE72CIKVzm2iMItoh6h5cUsmc7d7iwOV_osql1w2zQSTCrw90EAQSmXTGoaN6dSa13nkmck9rjPfZ-KcS4oV7HKgnycxSLj3H-MTsqqVE8QhhcKoiTlTGQ00IqVgQyYzFRIfBpLT5yht_2cpbITqtfnpazTtmDCZ-mUJpN2fqdn6LXtuzHyLEd7veqnPoWnQW-J8VJVzS4dx2wcU7h4f-nDWp08EpI_9yGE6sAXwvenN_itZ-i2xr_J5D1HJ_W2US8gtq3Fyw5ovwDAmaz3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uni-directional+liquid+spreading+control+on+a+bio-inspired+surface+from+the+peristome+of+Nepenthes+alata&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chen%2C+Huawei&rft.au=Zhang%2C+Liwen&rft.au=Zhang%2C+Yi&rft.au=Zhang%2C+Pengfei&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=15&rft.spage=6914&rft.epage=6920&rft_id=info:doi/10.1039%2Fc7ta01609c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |