Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata

Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata ,...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 15; pp. 6914 - 6920
Main Authors Chen, Huawei, Zhang, Liwen, Zhang, Yi, Zhang, Pengfei, Zhang, Deyuan, Jiang, Lei
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata , which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built via two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features, i.e. the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering.
AbstractList Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata, which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built via two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features, i.e. the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering.
Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices and energy fields. Recently, continuous uni-directional liquid spreading with fast speed was discovered on the peristome of Nepenthes alata , which possesses superhydrophilic hierarchical microgrooves and duck-billed microcavities with arc-shaped edges and gradient wedge corners. Inspired by the surface structure of the peristome, a novel bio-inspired uni-directional liquid spreading surface with various arc curvatures and wedge angles was built via two-step inclined UV exposure photolithography. The effects of the surface wettability and structural features, i.e. the arc-shaped outlines and wedge corners of microcavities, on the anisotropy of liquid spreading were investigated. The underlying mechanisms were made clear by comparing the effects of surface wettability and structural features of microcavities on both liquid spreading ability and liquid pinning ability. Finally, the controlling of anisotropic liquid spreading and thorough uni-directional liquid spreading were realized. This study provides inspiration to design novel uni-directional liquid spreading surfaces without energy input, and can further expand their application in areas such as non-powered delivery systems, microfluidic devices and self-lubrication in mechanical engineering.
Author Zhang, Yi
Zhang, Pengfei
Jiang, Lei
Zhang, Liwen
Zhang, Deyuan
Chen, Huawei
Author_xml – sequence: 1
  givenname: Huawei
  orcidid: 0000-0003-1766-421X
  surname: Chen
  fullname: Chen, Huawei
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 2
  givenname: Liwen
  orcidid: 0000-0003-3250-9867
  surname: Zhang
  fullname: Zhang, Liwen
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 3
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 4
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 5
  givenname: Deyuan
  surname: Zhang
  fullname: Zhang, Deyuan
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 6
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
BookMark eNqFkU9rHDEMxU1Joek2l34CH0NgUtme9Z_jsrRJYGkvm_Og8Wgah1l7YnsP_fadJSGBUogOkhC_9w56n9lZTJEY-yrgWoBy37ZmvwGhwW0_sHMJa2hM6_TZ627tJ3ZRyiMsZQG0c-fs4T6GZgiZfA0p4sSn8HQMAy9zJhxC_M19ijWniafIkfchNSGWeREszDGP6ImPOR14fSA-Uw6lpgPxNPKfNFNcroXjhBW_sI8jToUuXuaK3f_4vt_eNrtfN3fbza7xyunaGNca3TtP1kLbgrTonV8r1aLx2oEePQ7SAipUyvRi7A2SpaEdxWD7AVGt2OWz75zT05FK7Q6heJomjJSOpZPSCLtWWqt3UeGgldLKtXwftU5YszRYUHhGfU6lZBo7HyqevlszhqkT0J3S6t7SWiRX_0jmHA6Y__wP_gt63ZcG
CitedBy_id crossref_primary_10_1021_acsami_3c01454
crossref_primary_10_1186_s10033_025_01197_8
crossref_primary_10_1049_mnl_2017_0472
crossref_primary_10_1002_ls_1622
crossref_primary_10_3390_mi11110978
crossref_primary_10_1016_j_fmre_2022_03_022
crossref_primary_10_1007_s42765_021_00116_5
crossref_primary_10_1039_D0MH00768D
crossref_primary_10_1039_C9SM00072K
crossref_primary_10_1016_j_porgcoat_2024_108797
crossref_primary_10_1016_j_pmatsci_2022_101064
crossref_primary_10_1039_C9RA09329J
crossref_primary_10_1039_D4TC03236E
crossref_primary_10_3390_fluids6120463
crossref_primary_10_3390_ma12071043
crossref_primary_10_1038_s41557_023_01158_5
crossref_primary_10_1039_C8TA01096J
crossref_primary_10_1021_acsami_3c10211
crossref_primary_10_1039_D2LC00993E
crossref_primary_10_1039_C8RA08768G
crossref_primary_10_1016_j_colsurfa_2022_130429
crossref_primary_10_3390_coatings12060755
crossref_primary_10_1016_j_triboint_2023_109049
crossref_primary_10_1016_j_apsusc_2022_155212
crossref_primary_10_1088_2051_672X_ad54dd
crossref_primary_10_1177_14644207241269652
crossref_primary_10_1016_j_jcis_2018_06_081
crossref_primary_10_1002_dro2_165
crossref_primary_10_1088_2631_7990_ad8a25
crossref_primary_10_1016_j_renene_2019_05_055
crossref_primary_10_1364_OE_418173
crossref_primary_10_1016_j_cej_2024_149192
crossref_primary_10_1039_C8NR04354J
crossref_primary_10_1021_acsanm_1c03988
crossref_primary_10_1073_pnas_1821493116
crossref_primary_10_1016_j_cej_2023_145491
crossref_primary_10_1016_j_colsurfa_2020_125253
crossref_primary_10_1016_j_jcis_2024_09_170
crossref_primary_10_1016_j_surfin_2024_105111
crossref_primary_10_1039_C7MH01138E
crossref_primary_10_1016_j_apsusc_2021_151625
crossref_primary_10_1002_admi_201901791
crossref_primary_10_1021_acsami_9b15385
crossref_primary_10_1039_C9TA08133J
crossref_primary_10_1039_D2CP06086H
crossref_primary_10_1007_s41871_018_0022_y
crossref_primary_10_1016_j_apsusc_2017_09_158
crossref_primary_10_1016_j_compositesa_2024_108241
crossref_primary_10_1016_j_surfin_2023_103307
crossref_primary_10_1007_s42235_025_00667_y
crossref_primary_10_1063_5_0197049
crossref_primary_10_1063_5_0102883
crossref_primary_10_1016_j_apsusc_2020_146052
crossref_primary_10_1007_s42235_021_0009_z
crossref_primary_10_1002_admi_202101231
crossref_primary_10_1002_adfm_202011288
crossref_primary_10_1016_j_optlaseng_2019_06_021
crossref_primary_10_1002_adem_202302240
crossref_primary_10_1021_acs_nanolett_0c04814
crossref_primary_10_1021_acsami_0c14664
crossref_primary_10_1063_5_0005358
crossref_primary_10_1039_C7NR05188C
crossref_primary_10_1016_j_mser_2020_100562
crossref_primary_10_1088_1361_6463_ab5df7
crossref_primary_10_1002_adma_201800718
crossref_primary_10_1002_adma_201702995
crossref_primary_10_1016_j_ces_2025_121514
crossref_primary_10_1016_j_cocis_2017_12_006
crossref_primary_10_1016_j_colsurfa_2018_02_023
crossref_primary_10_1016_j_apsusc_2021_149612
crossref_primary_10_1002_adfm_202417841
Cites_doi 10.1039/b603634a
10.1021/la3036242
10.1073/pnas.93.11.5556
10.1021/acsami.6b15802
10.1039/c003728a
10.1016/0021-9797(77)90052-2
10.1126/science.283.5398.46
10.1038/nmat2726
10.1038/nature08729
10.1002/adfm.200600101
10.1021/la00086a025
10.1021/la00032a052
10.1063/1.1459099
10.1002/smll.201601676
10.1017/S0022112004009152
10.1126/sciadv.1600148
10.1002/adma.201101740
10.1002/aic.690441218
10.1126/science.256.5063.1539
10.1002/adma.201003169
10.1039/C5TA03309H
10.1038/ncomms2253
10.1126/science.291.5504.633
10.1039/C6TA08333A
10.1038/35102108
10.1126/science.283.5398.41
10.1002/adma.200501772
10.1021/acsami.5b03039
10.1021/la063376k
10.1016/j.jcis.2011.07.019
10.1038/nature17189
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C7TA01609C
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Environment Abstracts
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 6920
ExternalDocumentID 10_1039_C7TA01609C
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c396t-79476b9ce88044028ac9c5334a7c6906fcad280a3a337b1fb7ae8ed4f1d8bdaa3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:26:18 EDT 2025
Fri Jul 11 10:18:54 EDT 2025
Fri Jul 11 05:16:29 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 03:13:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-79476b9ce88044028ac9c5334a7c6906fcad280a3a337b1fb7ae8ed4f1d8bdaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1766-421X
0000-0003-3250-9867
PQID 1891878910
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271853663
proquest_miscellaneous_1904228252
proquest_miscellaneous_1891878910
crossref_citationtrail_10_1039_C7TA01609C
crossref_primary_10_1039_C7TA01609C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2017
References Zheng (C7TA01609C-(cit2)/*[position()=1]) 2010; 463
Bai (C7TA01609C-(cit15)/*[position()=1]) 2010; 22
Zhang (C7TA01609C-(cit22)/*[position()=1]) 2017; 9
Bai (C7TA01609C-(cit23)/*[position()=1]) 2011; 23
Wang (C7TA01609C-(cit14)/*[position()=1]) 2016; 4
Xia (C7TA01609C-(cit20)/*[position()=1]) 2006; 18
Oliver (C7TA01609C-(cit29)/*[position()=1]) 1977; 59
Daniel (C7TA01609C-(cit8)/*[position()=1]) 2001; 291
Chu (C7TA01609C-(cit18)/*[position()=1]) 2010; 9
Chen (C7TA01609C-(cit9)/*[position()=1]) 2015; 7
Burns (C7TA01609C-(cit5)/*[position()=1]) 1996; 93
Chen (C7TA01609C-(cit27)/*[position()=1]) 2017; 13
Zhang (C7TA01609C-(cit25)/*[position()=1]) 2007; 23
Wang (C7TA01609C-(cit19)/*[position()=1]) 2007; 17
Chen (C7TA01609C-(cit26)/*[position()=1]) 2016; 532
Grunze (C7TA01609C-(cit6)/*[position()=1]) 1999; 283
Lorenceau (C7TA01609C-(cit24)/*[position()=1]) 2004; 510
Ma (C7TA01609C-(cit16)/*[position()=1]) 2015; 3
Agranovski (C7TA01609C-(cit4)/*[position()=1]) 1998; 44
Zhu (C7TA01609C-(cit21)/*[position()=1]) 2006
Ju (C7TA01609C-(cit3)/*[position()=1]) 2012; 3
Brochard (C7TA01609C-(cit10)/*[position()=1]) 1989; 5
Gau (C7TA01609C-(cit7)/*[position()=1]) 1999; 283
Wang (C7TA01609C-(cit28)/*[position()=1]) 2012; 28
Chaudhury (C7TA01609C-(cit11)/*[position()=1]) 1992; 256
Li (C7TA01609C-(cit17)/*[position()=1]) 2016; 2
Parker (C7TA01609C-(cit1)/*[position()=1]) 2001; 414
Yarin (C7TA01609C-(cit13)/*[position()=1]) 2002; 91
Shao (C7TA01609C-(cit31)/*[position()=1]) 2011; 363
Tian (C7TA01609C-(cit30)/*[position()=1]) 2010; 10
Brzoska (C7TA01609C-(cit12)/*[position()=1]) 1993; 9
References_xml – start-page: 2753
  year: 2006
  ident: C7TA01609C-(cit21)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b603634a
– volume: 28
  start-page: 16917
  year: 2012
  ident: C7TA01609C-(cit28)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la3036242
– volume: 93
  start-page: 5556
  year: 1996
  ident: C7TA01609C-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.11.5556
– volume: 9
  start-page: 5645
  year: 2017
  ident: C7TA01609C-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15802
– volume: 10
  start-page: 2258
  year: 2010
  ident: C7TA01609C-(cit30)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c003728a
– volume: 59
  start-page: 568
  year: 1977
  ident: C7TA01609C-(cit29)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(77)90052-2
– volume: 283
  start-page: 46
  year: 1999
  ident: C7TA01609C-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.283.5398.46
– volume: 9
  start-page: 413
  year: 2010
  ident: C7TA01609C-(cit18)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2726
– volume: 463
  start-page: 640
  year: 2010
  ident: C7TA01609C-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08729
– volume: 17
  start-page: 219
  year: 2007
  ident: C7TA01609C-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600101
– volume: 5
  start-page: 432
  year: 1989
  ident: C7TA01609C-(cit10)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la00086a025
– volume: 9
  start-page: 2220
  year: 1993
  ident: C7TA01609C-(cit12)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la00032a052
– volume: 91
  start-page: 4751
  year: 2002
  ident: C7TA01609C-(cit13)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1459099
– volume: 13
  start-page: 1601676
  year: 2017
  ident: C7TA01609C-(cit27)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201601676
– volume: 510
  start-page: 29
  year: 2004
  ident: C7TA01609C-(cit24)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004009152
– volume: 2
  start-page: e1600148
  year: 2016
  ident: C7TA01609C-(cit17)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600148
– volume: 23
  start-page: 3708
  year: 2011
  ident: C7TA01609C-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101740
– volume: 44
  start-page: 2775
  year: 1998
  ident: C7TA01609C-(cit4)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.690441218
– volume: 256
  start-page: 1539
  year: 1992
  ident: C7TA01609C-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.256.5063.1539
– volume: 22
  start-page: 5521
  year: 2010
  ident: C7TA01609C-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003169
– volume: 3
  start-page: 15540
  year: 2015
  ident: C7TA01609C-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03309H
– volume: 3
  start-page: 1247
  year: 2012
  ident: C7TA01609C-(cit3)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2253
– volume: 291
  start-page: 633
  year: 2001
  ident: C7TA01609C-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.291.5504.633
– volume: 4
  start-page: 18289
  year: 2016
  ident: C7TA01609C-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08333A
– volume: 414
  start-page: 33
  year: 2001
  ident: C7TA01609C-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35102108
– volume: 283
  start-page: 41
  year: 1999
  ident: C7TA01609C-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.283.5398.41
– volume: 18
  start-page: 432
  year: 2006
  ident: C7TA01609C-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501772
– volume: 7
  start-page: 13987
  year: 2015
  ident: C7TA01609C-(cit9)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03039
– volume: 23
  start-page: 6136
  year: 2007
  ident: C7TA01609C-(cit25)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la063376k
– volume: 363
  start-page: 425
  year: 2011
  ident: C7TA01609C-(cit31)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.07.019
– volume: 532
  start-page: 85
  year: 2016
  ident: C7TA01609C-(cit26)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature17189
SSID ssj0000800699
Score 2.4742873
Snippet Uni-directional liquid spreading without energy input has gained much attention due to its potential application in various areas such as microfluidic devices...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 6914
SubjectTerms Anisotropy
Devices
energy
hydrophilicity
Liquids
mechanical engineering
Microcavities
Microfluidics
Nepenthes alata
peristome
Spreading
ultraviolet radiation
Wedges
Wettability
Title Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata
URI https://www.proquest.com/docview/1891878910
https://www.proquest.com/docview/1904228252
https://www.proquest.com/docview/2271853663
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKdYXjKCC4qypM7D8bGquiqoWjikUjlFtuNApJKUNtFK_BB-L-M4cbO0oIVLVLmWm3q-jCfj-T4j9CYLvTwgOXcjIYSrFelcTjhxlVKBpEzpnThdbXEZzZfBh1W4Go1-DqqWmlqcyx9HeSX_Y1VoA7tqluw_WNYOCg3wGewLV7AwXG9kYwgYXbMmmYTeuvjeFJmz22xNabwtRNclx44oKrco9c46BJm7ZptzeKYtvWTTajZX30wOQR-NC607h68Nee1YBAvBrvmXjuyPjTt3JoYB1H_TKoobfmGbou_5Wrok12bzpx1FZN7wK1Uc5LIXxdWesGZbPx92_KTKL3k3QJfJMJRN4-qIF3pa1dR4YjVsM-fd9r46HEIyHDjeiBkuareIR6yl2B0uEJ6v9VUlrbmW1mNyvwz2W_-XH9OL5WKRJrNVcgudEnj9AId_Opkl7xc2e6fj7Kg9nNTeeq9967N3--GvRzvXF_s2gknuobud4fDE4Og-GqnyAbozEKR8iL7-hihsEIUtonCHKFyVmOMhonCHKKwRhQE72CIKVzm2iMItoh6h5cUsmc7d7iwOV_osql1w2zQSTCrw90EAQSmXTGoaN6dSa13nkmck9rjPfZ-KcS4oV7HKgnycxSLj3H-MTsqqVE8QhhcKoiTlTGQ00IqVgQyYzFRIfBpLT5yht_2cpbITqtfnpazTtmDCZ-mUJpN2fqdn6LXtuzHyLEd7veqnPoWnQW-J8VJVzS4dx2wcU7h4f-nDWp08EpI_9yGE6sAXwvenN_itZ-i2xr_J5D1HJ_W2US8gtq3Fyw5ovwDAmaz3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uni-directional+liquid+spreading+control+on+a+bio-inspired+surface+from+the+peristome+of+Nepenthes+alata&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chen%2C+Huawei&rft.au=Zhang%2C+Liwen&rft.au=Zhang%2C+Yi&rft.au=Zhang%2C+Pengfei&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=15&rft.spage=6914&rft.epage=6920&rft_id=info:doi/10.1039%2Fc7ta01609c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon