Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry
Reactive distillation (RD) is a great process intensification concept taking advantage of the synergy created when combining (catalyzed) reaction and separation into a single unit, which allows the concurrent production and removal of products. This feat improves the productivity and selectivity, re...
Saved in:
Published in | Topics in catalysis Vol. 62; no. 17-20; pp. 1132 - 1148 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1022-5528 1572-9028 |
DOI | 10.1007/s11244-018-1052-9 |
Cover
Loading…
Abstract | Reactive distillation (RD) is a great process intensification concept taking advantage of the synergy created when combining (catalyzed) reaction and separation into a single unit, which allows the concurrent production and removal of products. This feat improves the productivity and selectivity, reduces the energy usage, eliminates the need for solvents, and leads to highly-efficient systems with improved sustainability metrics (e.g. less waste and emissions). This paper provides an overview of the key features of RD processes, with emphasis on novel catalytic/reactive distillation processes that can make a difference at large scale and pave the way for a more sustainable chemical process industry that is more profitable, safer and less polluting. These examples include the production of: acrylic and methacrylic monomers, unsaturated polyesters resins, di-alkyl ethers, fatty esters, as well as other short alkyl esters (e.g. by enzymatic reactive distillation). The main drivers for such new RD applications are:
economical
(large reduction of costs and energy use),
environmental
(lower CO
2
emissions, no or reduced waste) and
social
(improved safety and health due to lower reactive content, reduced footprint and run away sensitivity). Hence RD technology strongly contributes to all three pillars of sustainability in the chemical process industry. Nonetheless, the potential of RD technology has not been fully tapped yet, and there is still undergoing research to improve it further by various means: e.g. ultrasound or microwave assisted RD, use of high-gravity fields (HiGee), internally heat integration, cyclic operation, or coupling RD with other operations such as membrane separations. |
---|---|
AbstractList | Reactive distillation (RD) is a great process intensification concept taking advantage of the synergy created when combining (catalyzed) reaction and separation into a single unit, which allows the concurrent production and removal of products. This feat improves the productivity and selectivity, reduces the energy usage, eliminates the need for solvents, and leads to highly-efficient systems with improved sustainability metrics (e.g. less waste and emissions). This paper provides an overview of the key features of RD processes, with emphasis on novel catalytic/reactive distillation processes that can make a difference at large scale and pave the way for a more sustainable chemical process industry that is more profitable, safer and less polluting. These examples include the production of: acrylic and methacrylic monomers, unsaturated polyesters resins, di-alkyl ethers, fatty esters, as well as other short alkyl esters (e.g. by enzymatic reactive distillation). The main drivers for such new RD applications are: economical (large reduction of costs and energy use), environmental (lower CO2 emissions, no or reduced waste) and social (improved safety and health due to lower reactive content, reduced footprint and run away sensitivity). Hence RD technology strongly contributes to all three pillars of sustainability in the chemical process industry. Nonetheless, the potential of RD technology has not been fully tapped yet, and there is still undergoing research to improve it further by various means: e.g. ultrasound or microwave assisted RD, use of high-gravity fields (HiGee), internally heat integration, cyclic operation, or coupling RD with other operations such as membrane separations. Reactive distillation (RD) is a great process intensification concept taking advantage of the synergy created when combining (catalyzed) reaction and separation into a single unit, which allows the concurrent production and removal of products. This feat improves the productivity and selectivity, reduces the energy usage, eliminates the need for solvents, and leads to highly-efficient systems with improved sustainability metrics (e.g. less waste and emissions). This paper provides an overview of the key features of RD processes, with emphasis on novel catalytic/reactive distillation processes that can make a difference at large scale and pave the way for a more sustainable chemical process industry that is more profitable, safer and less polluting. These examples include the production of: acrylic and methacrylic monomers, unsaturated polyesters resins, di-alkyl ethers, fatty esters, as well as other short alkyl esters (e.g. by enzymatic reactive distillation). The main drivers for such new RD applications are: economical (large reduction of costs and energy use), environmental (lower CO 2 emissions, no or reduced waste) and social (improved safety and health due to lower reactive content, reduced footprint and run away sensitivity). Hence RD technology strongly contributes to all three pillars of sustainability in the chemical process industry. Nonetheless, the potential of RD technology has not been fully tapped yet, and there is still undergoing research to improve it further by various means: e.g. ultrasound or microwave assisted RD, use of high-gravity fields (HiGee), internally heat integration, cyclic operation, or coupling RD with other operations such as membrane separations. |
Author | Kiss, Anton A. |
Author_xml | – sequence: 1 givenname: Anton A. orcidid: 0000-0001-5099-606X surname: Kiss fullname: Kiss, Anton A. email: tony.kiss@manchester.ac.uk, TonyKiss@gmail.com organization: School of Chemical Engineering and Analytical Science, The University of Manchester, Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeA59VM9iPZo6xfhaJi9Ryy2aympJuapIX-e1MrCIKe5mWYZ2Z4jtFocING6AzIBRDCLgMALYqMAM-AlDSrD9AYSpYCoXyUMqE0K0vKj9BxCAtCKLC6HqP5g9toixsZpd1Go_CzliqajcbXJkRjrYzGDfjJO6VD0AH3zmOJ5-sQpRlkazVu3vXSKGnxdOhS229P0GEvbdCn33WCXm9vXpr7bPZ4N22uZpnK6ypmrJJMcVZUOq95LnMAaDtQmnSka2Wn-kp3bUF4xTTlBSdl29clbQvKu4onMJ-g8_3elXcfax2iWLi1H9JJQXPgHCjJd1Own1LeheB1L1beLKXfCiBi507s3YnkTuzciTox7BejTPwyEb009l-S7smQrgxv2v_89Df0Cb8_hQM |
CitedBy_id | crossref_primary_10_1016_j_cherd_2023_06_052 crossref_primary_10_1515_ijcre_2023_0136 crossref_primary_10_1016_j_jclepro_2020_125129 crossref_primary_10_1016_j_psep_2024_06_112 crossref_primary_10_1021_acs_iecr_4c02605 crossref_primary_10_1021_acs_iecr_2c04305 crossref_primary_10_1016_j_cep_2023_109493 crossref_primary_10_1021_acs_iecr_4c04602 crossref_primary_10_1002_aic_16819 crossref_primary_10_1016_j_est_2024_110736 crossref_primary_10_1007_s11705_021_2128_9 crossref_primary_10_3390_catal13020296 crossref_primary_10_1016_j_rser_2024_114522 crossref_primary_10_1021_acssuschemeng_0c05908 crossref_primary_10_1016_j_ces_2020_116294 crossref_primary_10_1016_j_cherd_2021_11_013 crossref_primary_10_1021_acs_iecr_8b05450 crossref_primary_10_1007_s42452_024_06221_5 crossref_primary_10_1016_j_jece_2024_115282 crossref_primary_10_1515_psr_2022_0058 crossref_primary_10_1016_j_cep_2022_108843 crossref_primary_10_1016_j_fuel_2020_119372 crossref_primary_10_3390_pr10061146 crossref_primary_10_1016_j_jtice_2023_104908 crossref_primary_10_1002_aic_17227 crossref_primary_10_1016_j_compchemeng_2022_107869 crossref_primary_10_1016_j_ces_2021_116559 crossref_primary_10_1134_S1070363224140172 crossref_primary_10_1016_j_energy_2020_117788 crossref_primary_10_3390_molecules29194709 crossref_primary_10_1016_j_mset_2022_11_005 crossref_primary_10_1016_j_cherd_2023_06_060 crossref_primary_10_1021_acs_iecr_1c02681 crossref_primary_10_1021_acs_iecr_2c00799 crossref_primary_10_1016_j_cherd_2022_11_048 crossref_primary_10_1016_j_cherd_2019_03_014 crossref_primary_10_1016_j_seppur_2021_119808 crossref_primary_10_1515_ijcre_2022_0085 crossref_primary_10_1016_j_cep_2021_108515 crossref_primary_10_1007_s43153_022_00243_5 crossref_primary_10_1016_j_cej_2023_147494 crossref_primary_10_1016_j_seppur_2024_130030 crossref_primary_10_1002_jctb_7633 crossref_primary_10_1016_j_cscee_2023_100465 crossref_primary_10_1016_j_compchemeng_2020_106804 |
Cites_doi | 10.1016/j.cej.2016.11.127 10.1016/j.compchemeng.2011.11.012 10.1016/j.cep.2015.09.004 10.1016/S0009-2509(00)00240-2 10.1016/j.cherd.2017.06.038 10.1016/j.biombioe.2016.05.021 10.1002/(SICI)1521-4125(199901)22:1<11::AID-CEAT11>3.0.CO;2-6 10.1016/S0255-2701(02)00085-5 10.1007/s11244-006-0116-4 10.1002/9781118543702 10.1016/S0009-2509(02)00020-9 10.1016/j.cep.2018.04.001 10.1021/ie301934w 10.1021/es034467w 10.1016/j.cep.2012.05.007 10.1016/j.compchemeng.2008.09.020 10.1016/j.cej.2012.10.003 10.1016/S0009-2509(00)00120-2 10.1016/S0255-2701(02)00084-3 10.1016/j.ces.2011.09.027 10.1016/j.cep.2007.06.005 10.1016/S0255-2701(02)00086-7 10.1021/ie020925i 10.1002/9780470377741 10.1016/j.compchemeng.2004.03.014 10.1016/S0255-2701(03)00121-1 10.1002/jctb.4683 10.1007/978-3-319-03554-3 10.1002/jctb.4262 10.1016/j.compchemeng.2013.01.008 10.1002/jctb.3785 10.1016/j.cep.2014.06.007 10.1016/j.cep.2014.04.006 10.1016/j.biortech.2010.08.066 10.1016/S0920-5861(01)00370-4 10.1016/j.compchemeng.2017.01.004 10.1016/S0255-2701(03)00128-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11244-018-1052-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 1148 |
ExternalDocumentID | 10_1007_s11244_018_1052_9 |
GrantInformation_xml | – fundername: Royal Society |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c396t-76a7c8746e3983a3111bd1ce0d0dbadcf6edb40867e284805bf952b428d68c873 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Fri Jul 25 11:02:06 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Tue Jul 01 01:10:50 EDT 2025 Fri Feb 21 02:36:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17-20 |
Keywords | Reactive distillation Process design Eco-efficiency Sustainability Catalytic distillation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-76a7c8746e3983a3111bd1ce0d0dbadcf6edb40867e284805bf952b428d68c873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5099-606X |
OpenAccessLink | https://link.springer.com/10.1007/s11244-018-1052-9 |
PQID | 2318812037 |
PQPubID | 2043828 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2318812037 crossref_primary_10_1007_s11244_018_1052_9 crossref_citationtrail_10_1007_s11244_018_1052_9 springer_journals_10_1007_s11244_018_1052_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ShahMKissAAZondervanEde HaanABInfluence of liquid back mixing on a kinetically controlled reactive distillation processChem Eng Sci2012681841911:CAS:528:DC%2BC3MXhsVGmtrjE KissAARongB-GProcess intensification for reactive distillationProcess synthesis and process intensification: Methodological approaches2017Berlinde Gruyter KissAABildeaCSA review on biodiesel production by integrated reactive separation technologiesJ Chem Technol Biotechnol2012878618791:CAS:528:DC%2BC38XkvVGhu7s%3D KissAASuszwalakDJPCInnovative dimethyl ether synthesis in a reactive dividing-wall columnComput Chem Eng20123874811:CAS:528:DC%2BC38XislOmu7w%3D BildeaCSGyorgyRBrunchiCCKissAAOptimal design of intensified processes for DME synthesisComput Chem Eng20171051421511:CAS:528:DC%2BC2sXpsFGksQ%3D%3D BaurRKrishnaRDistillation column with reactive pump arounds: an alternative to reactive distillationChem Eng Process2004434354451:CAS:528:DC%2BD3sXovVWrsr4%3D ShahMKissAAZondervanEde HaanABEvaluation of configuration alternatives for multi-product polyester synthesis by reactive distillationComput Chem Eng2013521932031:CAS:528:DC%2BC3sXjvFakt7o%3D BildeaCSGyorgyRSánchez-RamírezEQuiroz-RamírezJJSegovia-HernandezJGKissAAOptimal design and plantwide control of novel processes for di-n-pentyl ether productionJ Chem Technol Biotechnol20159099210011:CAS:528:DC%2BC2MXmt1SjtL4%3D DohertyMFMaloneMFConceptual design of distillation systems2001New YorkMcGraw-Hill GoetzeLBailerOMoritzCvon ScalaCReactive distillation with KatapakCatal Today200169201208 Almeida-RiveraCPSwinkelsPLJGrievinkJDesigning reactive distillation processes: present and futureComput Chem Eng200428199720201:CAS:528:DC%2BD2cXmtFCnsb4%3D KissAAProcess intensification technologies for biodiesel production—reactive separation processes2014HeidelbergSpringer KissAALangeJPSchuurBBrilmanDWFvan der HamAGJKerstenSRASeparation technology - Making a difference in biorefineriesBiomass Bioenergy2016952963091:CAS:528:DC%2BC28XptVyjsbw%3D ShahMKissAAZondervanEde HaanABPilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillationChem Eng J20122131751851:CAS:528:DC%2BC38XhsleitL3N NoeresCKenigEYGorakAModelling of reactive separation processes: reactive absorption and reactive distillationChem Eng Process2003421571781:CAS:528:DC%2BD38XoslCmtLs%3D FreyTStichlmairJThermodynamic fundamentals of reactive distillationChem Eng Technol19992211181:CAS:528:DyaK1MXlvFansg%3D%3D MuthiaRReijneveldAGTvan der HamAGJBargemanGten KateAJBKerstenSRAKissAANovel method for mapping the applicability of reactive distillationChem Eng Process20181282632751:CAS:528:DC%2BC1cXpsVWns7k%3D LuybenWLYuCCReactive distillation design and control2008HobokenWiley AziziZRezaeimaneshMTohidianTRahimpourMRDimethyl ether: a review of technologies and production challengesChem Eng Process2014821501721:CAS:528:DC%2BC2cXht1Ghur7L TaylorRKrishnaRModelling reactive distillationChem Eng Sci200055518352291:CAS:528:DC%2BD3cXos1aru7w%3D SundmacherKKienleAReactive distillation: Status and future directions2003WeinheimWiley KrishnaRReactive separations: more ways to skin a catChem Eng Sci200257149115041:CAS:528:DC%2BD38XjslaltLk%3D HoffmanANoeresCGorakAScale-up of reactive distillation columns with catalytic packingsChem Eng Process200443383395 ShahMKissAAZondervanEde HaanABA systematic framework for the feasibility and technical evaluation of reactive distillation processesChem Eng Process20126055641:CAS:528:DC%2BC38XhtFOqsLbI HarmsenGJReactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operationChem Eng Process2007467747801:CAS:528:DC%2BD2sXovFyltb8%3D DimianACBildeaCSOmotaFKissAAInnovative process for fatty acid esters by dual reactive distillationComput Chem Eng2009337437501:CAS:528:DC%2BD1MXht1eis7s%3D StankiewiczAReactive separations for process intensification: an industrial perspectiveChem Eng Process2003421371441:CAS:528:DC%2BD38XoslCmtL8%3D NiesbachAFuhrmeisterRKellerTLutzePGórakAEsterification of acrylic acid and n-butanol in a pilot-scale reactive distillation column—experimental investigation, model validation, and process analysisInd Eng Chem Res20125116444164561:CAS:528:DC%2BC38XhslWksbbP KissAADistillation technology - Still young and full of breakthrough opportunitiesJ Chem Technol Biot2014894794981:CAS:528:DC%2BC3sXhvVOhsbfJ Segovia-HernándezJGHernándezSBonilla PetricioletAReactive distillation: a review of optimal design using deterministic and stochastic techniquesChem Eng Process201597134143 KissAABildeaCSIntegrated reactive absorption process for synthesis of fatty estersBioresour Technol20111024904981:CAS:528:DC%2BC3MXitlalsg%3D%3D20855198 KissAAAdvanced distillation technologies—design, control and applications2013ChichesterWiley de Haan AB, Kiss AA, Oudshoorn ML, Shah MR (2013) Manufacturing polyesters by reactive distillation, Patent No. WO/2013/048247, Publication date: 4.04.2013 KissAARothenbergGDimianACOmotaFThe heterogeneous advantage: biodiesel by catalytic reactive distillationTop Catal2006401411501:CAS:528:DC%2BD28Xhtlait7vF MullerMHubschUDimethyl etherUllmann’s encyclopedia industrial chemistry20057WeinheimWiley WierschemMSchlimperSHeilsRSmirnovaIKissAASkiborowskiMLutzePPilot-scale validation of enzymatic reactive distillation for butyl butyrate productionChem Eng J20173121061171:CAS:528:DC%2BC28XitVWmsb7K SchoenmakersHGBesslingBReactive and catalytic distillation from an industrial perspectiveChem Eng Process2003421451551:CAS:528:DC%2BD38XoslCmtLw%3D PatrutCBildeaCSKissAACatalytic cyclic distillation—a novel process intensification approach in reactive separationsChem Eng Process2014811121:CAS:528:DC%2BC2cXpvVajt7k%3D Kiss AA, Bildea CS, Patrut C (2015) Process and installation for the production of dialkyl ethers. Patent No. WO/2015/113914, Publication date: 06.08.2015 MaloneMFHussRSDohertyMFGreen chemical engineering aspects of reactive distillationEnviron Sci Technol200337532553291:CAS:528:DC%2BD3sXosFWmtbc%3D14700316 SteinigewegSGmehlingJEsterification of a fatty acid by reactive distillationInd Eng Chem Res200342361236191:CAS:528:DC%2BD3sXks12ms70%3D Kiss AA, ten Kate AJB, Conte E (2015) Continuous process for the esterification of an alpha,beta-unsaturated carboxylic acid and an alcohol, Patent No. WO/2015/018773, Publication date: 12.02.2015 TuchlenskiABeckmannAReuschDDusselRWeidlichUJanowskyRReactive distillation - Industrial applications, process design & scale-upChem Eng Sci2001563873941:CAS:528:DC%2BD3MXht1yktrg%3D MoraruMDBildeaCSProcess for n-butyl acrylate production using reactive distillation: design, control and economic evaluationChem Eng Res Des20171251301451:CAS:528:DC%2BC2sXhtFCht7rO HiwaleRSBhateNVMahajanYSMahajaniSMIndustrial applications of reactive distillation: Recent trendsInt J Chem React Eng20042R1 K Sundmacher (1052_CR21) 2003 AA Kiss (1052_CR2) 2014; 89 A Tuchlenski (1052_CR17) 2001; 56 R Krishna (1052_CR23) 2002; 57 C Noeres (1052_CR11) 2003; 42 M Shah (1052_CR6) 2012; 60 AA Kiss (1052_CR1) 2013 R Muthia (1052_CR7) 2018; 128 MD Moraru (1052_CR26) 2017; 125 Z Azizi (1052_CR38) 2014; 82 CS Bildea (1052_CR44) 2015; 90 AA Kiss (1052_CR35) 2011; 102 A Niesbach (1052_CR25) 2012; 51 AA Kiss (1052_CR33) 2012; 87 AA Kiss (1052_CR32) 2006; 40 CS Bildea (1052_CR40) 2017; 105 L Goetze (1052_CR41) 2001; 69 M Shah (1052_CR30) 2012; 213 T Frey (1052_CR5) 1999; 22 CP Almeida-Rivera (1052_CR9) 2004; 28 M Wierschem (1052_CR45) 2017; 312 R Taylor (1052_CR10) 2000; 55 AA Kiss (1052_CR39) 2012; 38 WL Luyben (1052_CR13) 2008 M Shah (1052_CR29) 2012; 68 AA Kiss (1052_CR31) 2014 HG Schoenmakers (1052_CR22) 2003; 42 GJ Harmsen (1052_CR3) 2007; 46 A Stankiewicz (1052_CR18) 2003; 42 C Patrut (1052_CR42) 2014; 81 R Baur (1052_CR14) 2004; 43 AA Kiss (1052_CR4) 2017 MF Doherty (1052_CR8) 2001 AA Kiss (1052_CR20) 2016; 95 JG Segovia-Hernández (1052_CR12) 2015; 97 1052_CR28 S Steinigeweg (1052_CR34) 2003; 42 M Muller (1052_CR37) 2005 MF Malone (1052_CR16) 2003; 37 M Shah (1052_CR27) 2013; 52 A Hoffman (1052_CR15) 2004; 43 1052_CR43 1052_CR24 RS Hiwale (1052_CR19) 2004; 2 AC Dimian (1052_CR36) 2009; 33 |
References_xml | – reference: DohertyMFMaloneMFConceptual design of distillation systems2001New YorkMcGraw-Hill – reference: HarmsenGJReactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operationChem Eng Process2007467747801:CAS:528:DC%2BD2sXovFyltb8%3D – reference: BildeaCSGyorgyRBrunchiCCKissAAOptimal design of intensified processes for DME synthesisComput Chem Eng20171051421511:CAS:528:DC%2BC2sXpsFGksQ%3D%3D – reference: MoraruMDBildeaCSProcess for n-butyl acrylate production using reactive distillation: design, control and economic evaluationChem Eng Res Des20171251301451:CAS:528:DC%2BC2sXhtFCht7rO – reference: KrishnaRReactive separations: more ways to skin a catChem Eng Sci200257149115041:CAS:528:DC%2BD38XjslaltLk%3D – reference: FreyTStichlmairJThermodynamic fundamentals of reactive distillationChem Eng Technol19992211181:CAS:528:DyaK1MXlvFansg%3D%3D – reference: BaurRKrishnaRDistillation column with reactive pump arounds: an alternative to reactive distillationChem Eng Process2004434354451:CAS:528:DC%2BD3sXovVWrsr4%3D – reference: Kiss AA, Bildea CS, Patrut C (2015) Process and installation for the production of dialkyl ethers. Patent No. WO/2015/113914, Publication date: 06.08.2015 – reference: Kiss AA, ten Kate AJB, Conte E (2015) Continuous process for the esterification of an alpha,beta-unsaturated carboxylic acid and an alcohol, Patent No. WO/2015/018773, Publication date: 12.02.2015 – reference: StankiewiczAReactive separations for process intensification: an industrial perspectiveChem Eng Process2003421371441:CAS:528:DC%2BD38XoslCmtL8%3D – reference: LuybenWLYuCCReactive distillation design and control2008HobokenWiley – reference: ShahMKissAAZondervanEde HaanABPilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillationChem Eng J20122131751851:CAS:528:DC%2BC38XhsleitL3N – reference: ShahMKissAAZondervanEde HaanABA systematic framework for the feasibility and technical evaluation of reactive distillation processesChem Eng Process20126055641:CAS:528:DC%2BC38XhtFOqsLbI – reference: KissAABildeaCSA review on biodiesel production by integrated reactive separation technologiesJ Chem Technol Biotechnol2012878618791:CAS:528:DC%2BC38XkvVGhu7s%3D – reference: MullerMHubschUDimethyl etherUllmann’s encyclopedia industrial chemistry20057WeinheimWiley – reference: KissAALangeJPSchuurBBrilmanDWFvan der HamAGJKerstenSRASeparation technology - Making a difference in biorefineriesBiomass Bioenergy2016952963091:CAS:528:DC%2BC28XptVyjsbw%3D – reference: AziziZRezaeimaneshMTohidianTRahimpourMRDimethyl ether: a review of technologies and production challengesChem Eng Process2014821501721:CAS:528:DC%2BC2cXht1Ghur7L – reference: TaylorRKrishnaRModelling reactive distillationChem Eng Sci200055518352291:CAS:528:DC%2BD3cXos1aru7w%3D – reference: KissAAAdvanced distillation technologies—design, control and applications2013ChichesterWiley – reference: SchoenmakersHGBesslingBReactive and catalytic distillation from an industrial perspectiveChem Eng Process2003421451551:CAS:528:DC%2BD38XoslCmtLw%3D – reference: MuthiaRReijneveldAGTvan der HamAGJBargemanGten KateAJBKerstenSRAKissAANovel method for mapping the applicability of reactive distillationChem Eng Process20181282632751:CAS:528:DC%2BC1cXpsVWns7k%3D – reference: ShahMKissAAZondervanEde HaanABInfluence of liquid back mixing on a kinetically controlled reactive distillation processChem Eng Sci2012681841911:CAS:528:DC%2BC3MXhsVGmtrjE – reference: KissAARothenbergGDimianACOmotaFThe heterogeneous advantage: biodiesel by catalytic reactive distillationTop Catal2006401411501:CAS:528:DC%2BD28Xhtlait7vF – reference: WierschemMSchlimperSHeilsRSmirnovaIKissAASkiborowskiMLutzePPilot-scale validation of enzymatic reactive distillation for butyl butyrate productionChem Eng J20173121061171:CAS:528:DC%2BC28XitVWmsb7K – reference: KissAASuszwalakDJPCInnovative dimethyl ether synthesis in a reactive dividing-wall columnComput Chem Eng20123874811:CAS:528:DC%2BC38XislOmu7w%3D – reference: KissAARongB-GProcess intensification for reactive distillationProcess synthesis and process intensification: Methodological approaches2017Berlinde Gruyter – reference: TuchlenskiABeckmannAReuschDDusselRWeidlichUJanowskyRReactive distillation - Industrial applications, process design & scale-upChem Eng Sci2001563873941:CAS:528:DC%2BD3MXht1yktrg%3D – reference: GoetzeLBailerOMoritzCvon ScalaCReactive distillation with KatapakCatal Today200169201208 – reference: KissAADistillation technology - Still young and full of breakthrough opportunitiesJ Chem Technol Biot2014894794981:CAS:528:DC%2BC3sXhvVOhsbfJ – reference: SteinigewegSGmehlingJEsterification of a fatty acid by reactive distillationInd Eng Chem Res200342361236191:CAS:528:DC%2BD3sXks12ms70%3D – reference: KissAABildeaCSIntegrated reactive absorption process for synthesis of fatty estersBioresour Technol20111024904981:CAS:528:DC%2BC3MXitlalsg%3D%3D20855198 – reference: BildeaCSGyorgyRSánchez-RamírezEQuiroz-RamírezJJSegovia-HernandezJGKissAAOptimal design and plantwide control of novel processes for di-n-pentyl ether productionJ Chem Technol Biotechnol20159099210011:CAS:528:DC%2BC2MXmt1SjtL4%3D – reference: NiesbachAFuhrmeisterRKellerTLutzePGórakAEsterification of acrylic acid and n-butanol in a pilot-scale reactive distillation column—experimental investigation, model validation, and process analysisInd Eng Chem Res20125116444164561:CAS:528:DC%2BC38XhslWksbbP – reference: HiwaleRSBhateNVMahajanYSMahajaniSMIndustrial applications of reactive distillation: Recent trendsInt J Chem React Eng20042R1 – reference: ShahMKissAAZondervanEde HaanABEvaluation of configuration alternatives for multi-product polyester synthesis by reactive distillationComput Chem Eng2013521932031:CAS:528:DC%2BC3sXjvFakt7o%3D – reference: KissAAProcess intensification technologies for biodiesel production—reactive separation processes2014HeidelbergSpringer – reference: Segovia-HernándezJGHernándezSBonilla PetricioletAReactive distillation: a review of optimal design using deterministic and stochastic techniquesChem Eng Process201597134143 – reference: SundmacherKKienleAReactive distillation: Status and future directions2003WeinheimWiley – reference: MaloneMFHussRSDohertyMFGreen chemical engineering aspects of reactive distillationEnviron Sci Technol200337532553291:CAS:528:DC%2BD3sXosFWmtbc%3D14700316 – reference: NoeresCKenigEYGorakAModelling of reactive separation processes: reactive absorption and reactive distillationChem Eng Process2003421571781:CAS:528:DC%2BD38XoslCmtLs%3D – reference: HoffmanANoeresCGorakAScale-up of reactive distillation columns with catalytic packingsChem Eng Process200443383395 – reference: DimianACBildeaCSOmotaFKissAAInnovative process for fatty acid esters by dual reactive distillationComput Chem Eng2009337437501:CAS:528:DC%2BD1MXht1eis7s%3D – reference: Almeida-RiveraCPSwinkelsPLJGrievinkJDesigning reactive distillation processes: present and futureComput Chem Eng200428199720201:CAS:528:DC%2BD2cXmtFCnsb4%3D – reference: de Haan AB, Kiss AA, Oudshoorn ML, Shah MR (2013) Manufacturing polyesters by reactive distillation, Patent No. WO/2013/048247, Publication date: 4.04.2013 – reference: PatrutCBildeaCSKissAACatalytic cyclic distillation—a novel process intensification approach in reactive separationsChem Eng Process2014811121:CAS:528:DC%2BC2cXpvVajt7k%3D – volume: 312 start-page: 106 year: 2017 ident: 1052_CR45 publication-title: Chem Eng J doi: 10.1016/j.cej.2016.11.127 – volume: 38 start-page: 74 year: 2012 ident: 1052_CR39 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2011.11.012 – volume: 97 start-page: 134 year: 2015 ident: 1052_CR12 publication-title: Chem Eng Process doi: 10.1016/j.cep.2015.09.004 – volume: 56 start-page: 387 year: 2001 ident: 1052_CR17 publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(00)00240-2 – volume: 2 start-page: R1 year: 2004 ident: 1052_CR19 publication-title: Int J Chem React Eng – volume: 125 start-page: 130 year: 2017 ident: 1052_CR26 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.06.038 – volume-title: Process synthesis and process intensification: Methodological approaches year: 2017 ident: 1052_CR4 – volume: 95 start-page: 296 year: 2016 ident: 1052_CR20 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.05.021 – volume-title: Ullmann’s encyclopedia industrial chemistry year: 2005 ident: 1052_CR37 – volume: 22 start-page: 11 year: 1999 ident: 1052_CR5 publication-title: Chem Eng Technol doi: 10.1002/(SICI)1521-4125(199901)22:1<11::AID-CEAT11>3.0.CO;2-6 – volume: 42 start-page: 145 year: 2003 ident: 1052_CR22 publication-title: Chem Eng Process doi: 10.1016/S0255-2701(02)00085-5 – ident: 1052_CR28 – volume: 40 start-page: 141 year: 2006 ident: 1052_CR32 publication-title: Top Catal doi: 10.1007/s11244-006-0116-4 – volume-title: Advanced distillation technologies—design, control and applications year: 2013 ident: 1052_CR1 doi: 10.1002/9781118543702 – volume-title: Reactive distillation: Status and future directions year: 2003 ident: 1052_CR21 – volume: 57 start-page: 1491 year: 2002 ident: 1052_CR23 publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(02)00020-9 – volume: 128 start-page: 263 year: 2018 ident: 1052_CR7 publication-title: Chem Eng Process doi: 10.1016/j.cep.2018.04.001 – volume: 51 start-page: 16444 year: 2012 ident: 1052_CR25 publication-title: Ind Eng Chem Res doi: 10.1021/ie301934w – volume: 37 start-page: 5325 year: 2003 ident: 1052_CR16 publication-title: Environ Sci Technol doi: 10.1021/es034467w – volume: 60 start-page: 55 year: 2012 ident: 1052_CR6 publication-title: Chem Eng Process doi: 10.1016/j.cep.2012.05.007 – volume: 33 start-page: 743 year: 2009 ident: 1052_CR36 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2008.09.020 – volume: 213 start-page: 175 year: 2012 ident: 1052_CR30 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.10.003 – volume: 55 start-page: 5183 year: 2000 ident: 1052_CR10 publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(00)00120-2 – volume: 42 start-page: 137 year: 2003 ident: 1052_CR18 publication-title: Chem Eng Process doi: 10.1016/S0255-2701(02)00084-3 – volume: 68 start-page: 184 year: 2012 ident: 1052_CR29 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.09.027 – volume: 46 start-page: 774 year: 2007 ident: 1052_CR3 publication-title: Chem Eng Process doi: 10.1016/j.cep.2007.06.005 – volume: 42 start-page: 157 year: 2003 ident: 1052_CR11 publication-title: Chem Eng Process doi: 10.1016/S0255-2701(02)00086-7 – volume: 42 start-page: 3612 year: 2003 ident: 1052_CR34 publication-title: Ind Eng Chem Res doi: 10.1021/ie020925i – volume-title: Reactive distillation design and control year: 2008 ident: 1052_CR13 doi: 10.1002/9780470377741 – ident: 1052_CR43 – volume: 28 start-page: 1997 year: 2004 ident: 1052_CR9 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2004.03.014 – volume: 43 start-page: 383 year: 2004 ident: 1052_CR15 publication-title: Chem Eng Process doi: 10.1016/S0255-2701(03)00121-1 – volume: 90 start-page: 992 year: 2015 ident: 1052_CR44 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.4683 – volume-title: Conceptual design of distillation systems year: 2001 ident: 1052_CR8 – volume-title: Process intensification technologies for biodiesel production—reactive separation processes year: 2014 ident: 1052_CR31 doi: 10.1007/978-3-319-03554-3 – volume: 89 start-page: 479 year: 2014 ident: 1052_CR2 publication-title: J Chem Technol Biot doi: 10.1002/jctb.4262 – ident: 1052_CR24 – volume: 52 start-page: 193 year: 2013 ident: 1052_CR27 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.01.008 – volume: 87 start-page: 861 year: 2012 ident: 1052_CR33 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.3785 – volume: 82 start-page: 150 year: 2014 ident: 1052_CR38 publication-title: Chem Eng Process doi: 10.1016/j.cep.2014.06.007 – volume: 81 start-page: 1 year: 2014 ident: 1052_CR42 publication-title: Chem Eng Process doi: 10.1016/j.cep.2014.04.006 – volume: 102 start-page: 490 year: 2011 ident: 1052_CR35 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.08.066 – volume: 69 start-page: 201 year: 2001 ident: 1052_CR41 publication-title: Catal Today doi: 10.1016/S0920-5861(01)00370-4 – volume: 105 start-page: 142 year: 2017 ident: 1052_CR40 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2017.01.004 – volume: 43 start-page: 435 year: 2004 ident: 1052_CR14 publication-title: Chem Eng Process doi: 10.1016/S0255-2701(03)00128-4 |
SSID | ssj0021799 |
Score | 2.4666245 |
Snippet | Reactive distillation (RD) is a great process intensification concept taking advantage of the synergy created when combining (catalyzed) reaction and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1132 |
SubjectTerms | Acrylic resins Catalysis Characterization and Evaluation of Materials Chemical industry Chemical process industries Chemistry Chemistry and Materials Science Distillation Energy consumption Energy costs Esters Ethers Gravitational fields Industrial Chemistry/Chemical Engineering Organic chemistry Original Paper Pharmacy Physical Chemistry Polyester resins Process intensification Selectivity Sustainability Thermal cycling |
Title | Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry |
URI | https://link.springer.com/article/10.1007/s11244-018-1052-9 https://www.proquest.com/docview/2318812037 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAHeCCeIrxmHLgBKpUmqZNjlvZQCB2ACbBqWoS9zRtiA0k_j1O16wCARKnHmL74CT25zq2AU7RCl5iioERiEHMy4tApSIOCNpGITexFVVt1d0wuR7FN0_iqa7jnvnX7j4lWVnqptjNuSIKfV07UhEFahVagkJ3d6xHUXcZZbkWZ1WK00VZIpI-lfmTiK_OqEGY35Kila8ZbMFmDRJZd7Gr27CCkx1Yz_xstl14GE7fccwy9-_lg4jYPRaV4WKX7s6OFw_cWF0FgDNG0JQV7KGplmK-UwCrh3d87MFo0H_MroN6PEJguErmQZoUqZFpnCBXkhecrJa2FwZDG1pdWFMmaHVMIUuK5INkKHSpRKQp3rCJJEa-D2uT6QQPgJXEnhrNS8l1bJVW0kbIQyVJamwKbEPo9ZSbune4G2Exzpuux061Oak2d6rNVRvOliwvi8YZfxEfe-Xn9R2a5YQ8JcGPkKdtOPcb0iz_KuzwX9RHsEEYSC3KC49hbf76hieEM-a6A63uoNcbuu_V822_A6tZknWq0_YJ2vLMmw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4t7QEu7APQlseuD5xAQSG2E_uIurBdWnpYigSnKLYnl63KaluQ4NczTmIi0ILUc2wrGdsz32RmvgHYRyd5iRlGViJGgpfHkc6kiAjaJjG3wsmqtupinA6uxPm1vG7quOch2z2EJCtN3Ra7eVNErq-nI5VJpFegK8gFlx3onvy8GZ4--1me5KwKcno_SyYqBDP_t8hLc9RizFdh0cranH2ESXjPOsnkz9HdwhzZx1cUjkt-yCdYb9AnO6mPy2f4gLMvsNoPTd824HJ8e49T1vc_dR5oEPuNRaUR2Q-vDKZ15hxrygtwzgjzsoJdtmVYLFAQsKYryMMmXJ2dTvqDqOm7EFmu00WUpUVmVSZS5FrxgpM6NO7YYuxiZwpnyxSdEeQLZUjGTcXSlFomhhwZlyqayLegM7ud4VdgJU3PrOGl4kY4bbRyCfJYK1pV2AJ7EAfx57YhJfe9MaZ5S6fspZWTtHIvrVz34OB5yt-akeO9wbthT_Pmcs5zgrSKcE3Msx4chi1qH7-52PZSo7_D6mByMcpHv8bDHVgjoKXrGsZd6Cz-3eEegZmF-dYc3icwh-he |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSMAF8RSDATlwAlXrmqZNjqhjGq8JMSbtVjWJe5q6iQ2k_XucPlaBAIlzHR-cJv4c258JuQTDWQohOJoDOD5LO44Mue8gtPVcpn3D896qp0HQH_n3Yz4u55zOq2r3KiVZ9DRYlqZs0Z6ZtF03vlm3hGGwpSblniPXyQYGKh1b0xcF0SrisnRnebrTRlzcE1Va8ycVXx1TjTa_JUhzv9PbJTslYKQ3xQ7vkTXI9slWVM1pOyDDwfQDJjSy7zBLFKIvkOSXGO3a8zspit1o2REAc4owlSZ0WHdO0Yo1gJaDPJaHZNS7fY36TjkqwdFMBgsnDJJQi9APgEnBEoY3mDIdDa5xjUqMTgMwysfwJQT0R8LlKpXcUxh7mEDgQnZEGtk0g2NCU1weasVSwZRvpJLCeMBcKVCrrxNoEreyU6xLHnE7zmIS1wzI1rQxmja2po1lk1ytlswKEo2_hFuV8ePyPM1jRKECoYjLwia5rjak_vyrspN_SV-QzeduL368Gzyckm2ERrLoOmyRxuLtHc4QfizUef6LfQL6_s_H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Catalytic+Reactive+Distillation+Processes+for+a+Sustainable+Chemical+Industry&rft.jtitle=Topics+in+catalysis&rft.au=Kiss%2C+Anton+A.&rft.date=2019-11-01&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=62&rft.issue=17-20&rft.spage=1132&rft.epage=1148&rft_id=info:doi/10.1007%2Fs11244-018-1052-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11244_018_1052_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |