Can local explanation techniques explain linear additive models?
Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popula...
Saved in:
Published in | Data mining and knowledge discovery Vol. 38; no. 1; pp. 237 - 280 |
---|---|
Main Authors | , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popular explanation techniques can accurately explain the decisions of linear additive models. We show that even though the explanations generated by these techniques are linear additives, they can fail to provide accurate explanations when explaining linear additive models. In the experiments, we measure the accuracy of additive explanations, as produced by, e.g., LIME and SHAP, along with the non-additive explanations of Local Permutation Importance (LPI) when explaining Linear and Logistic Regression and Gaussian naive Bayes models over 40 tabular datasets. We also investigate the degree to which different factors, such as the number of numerical or categorical or correlated features, the predictive performance of the black-box model, explanation sample size, similarity metric, and the pre-processing technique used on the dataset can directly affect the accuracy of local explanations. |
---|---|
AbstractList | Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popular explanation techniques can accurately explain the decisions of linear additive models. We show that even though the explanations generated by these techniques are linear additives, they can fail to provide accurate explanations when explaining linear additive models. In the experiments, we measure the accuracy of additive explanations, as produced by, e.g., LIME and SHAP, along with the non-additive explanations of Local Permutation Importance (LPI) when explaining Linear and Logistic Regression and Gaussian naive Bayes models over 40 tabular datasets. We also investigate the degree to which different factors, such as the number of numerical or categorical or correlated features, the predictive performance of the black-box model, explanation sample size, similarity metric, and the pre-processing technique used on the dataset can directly affect the accuracy of local explanations. |
Author | Geurts, Pierre Rahnama, Amir Hossein Akhavan Bütepage, Judith Boström, Henrik |
Author_xml | – sequence: 1 givenname: Amir Hossein Akhavan orcidid: 0000-0002-6846-5707 surname: Rahnama fullname: Rahnama, Amir Hossein Akhavan email: amiakh@kth.se organization: Department of Computer Science, KTH Royal Institute of Technology – sequence: 2 givenname: Judith surname: Bütepage fullname: Bütepage, Judith organization: Department of Computer Science, KTH Royal Institute of Technology – sequence: 3 givenname: Pierre surname: Geurts fullname: Geurts, Pierre organization: Department of Electrical Engineering and Computer Science, University of Liège – sequence: 4 givenname: Henrik surname: Boström fullname: Boström, Henrik organization: Department of Computer Science, KTH Royal Institute of Technology |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360215$$DView record from Swedish Publication Index |
BookMark | eNp9kU1PHDEMhqMKpPL1BziN1HNaJ5lMMieKtpRWQuICVW9WkskugSHZJrN8_HvCDoJbL7ZlP69l690nOzFFT8gxg68MQH0rDDqmKXBBAXrFqPhE9phUgirZ_d2ptdAtlZrBZ7Jfyi0ASC5gj3xfmNiMyZmx8U_r0UQzhRSbybubGP5tfJnboUIhepMbMwxhCg--uU-DH8vJIdldmrH4o7d8QK5_nl0tftGLy_Pfi9ML6kTfTVRxrbWVphN2qWw7KGbAdlpwZa11DoCZ3vVcCdcaMC0H2YPVVsNyYNL1WhwQOu8tj369sbjO4d7kZ0wm4I_w5xRTXuHddIOiA85k5cXMj8GvfJ3agA98i2_rzbhC49B65LzTKLiQilXVl1m1zun1-wlv0ybH-hjynkkNNbSV4jPlciol--X7NQzw1Q-c_cDqB279QPFxUKlwXPn8sfo_qhexgY5U |
Cites_doi | 10.1016/j.artint.2020.103404 10.7717/peerj-cs.479 10.1023/A:1010933404324 10.23915/distill.00022 10.1016/j.artint.2021.103502 10.1016/j.asoc.2021.108391 10.1145/2594473.2594475 10.1016/j.artint.2020.103428 10.1007/s10940-022-09545-w 10.1016/B978-0-12-804317-2.00031-X 10.1109/TNNLS.2016.2599820 10.1016/j.dsp.2017.10.011 10.1109/ICCV.2017.371 10.1007/978-3-031-04083-2_4 10.1609/aaai.v33i01.33013681 10.1145/3447548.3467283 10.1145/3411764.3445315 10.1007/978-3-030-10925-7_40 10.1145/2939672.2939778 10.1609/aaai.v32i1.11491 10.1007/978-3-319-33383-0_5 10.1007/978-3-319-10590-1_53 |
ContentType | Journal Article Web Resource |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U Q33 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1007/s10618-023-00971-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Université de Liège - Open Repository and Bibliography (ORBI) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 280 |
ExternalDocumentID | oai_DiVA_org_kth_360215 oai_orbi_ulg_ac_be_2268_323571 10_1007_s10618_023_00971_3 |
GrantInformation_xml | – fundername: Royal Institute of Technology |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U Q33 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c396t-72888b5a63bf7b4d71a0b68327bbbcc001a9c9273c4a0a420590b8b80fd15c983 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 1573-756X |
IngestDate | Thu Aug 21 06:41:15 EDT 2025 Fri Jul 18 15:14:23 EDT 2025 Sat Aug 23 14:33:15 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Fri Feb 21 02:41:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SHAP LIME Local model-agnostic explanations Explainable machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-72888b5a63bf7b4d71a0b68327bbbcc001a9c9273c4a0a420590b8b80fd15c983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85171464862 |
ORCID | 0000-0002-6846-5707 |
OpenAccessLink | https://link.springer.com/10.1007/s10618-023-00971-3 |
PQID | 2915809154 |
PQPubID | 43030 |
PageCount | 44 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_360215 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_323571 proquest_journals_2915809154 crossref_primary_10_1007_s10618_023_00971_3 springer_journals_10_1007_s10618_023_00971_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Wang, Han, Patel, Rudin (CR42) 2022; 39 CR19 CR18 CR39 CR15 CR37 CR14 CR35 CR12 CR34 CR11 CR33 CR10 CR32 Samek, Binder, Montavon, Lapuschkin, Müller (CR38) 2016; 28 CR31 Montavon, Samek, Müller (CR27) 2018; 73 CR30 Freitas (CR13) 2014; 15 Demšar (CR9) 2006; 7 Hakkoum, Abnane, Idri (CR17) 2022; 117 Sturmfels, Lundberg, Lee (CR40) 2020; 5 CR2 van der Waa, Nieuwburg, Cremers, Neerincx (CR41) 2021; 291 Agarwal, Krishna, Saxena, Pawelczyk, Johnson, Puri, Zitnik, Lakkaraju (CR3) 2022; 35 CR4 Breiman (CR7) 2001; 45 CR5 Amparore, Perotti, Bajardi (CR6) 2021; 7 Guidotti (CR16) 2021; 291 CR8 CR29 CR28 CR26 CR25 CR24 Aas, Jullum, Løland (CR1) 2021; 298 CR23 CR22 CR44 CR21 CR43 CR20 Ross (CR36) 2017 971_CR8 K Aas (971_CR1) 2021; 298 C Agarwal (971_CR3) 2022; 35 971_CR4 971_CR5 G Montavon (971_CR27) 2018; 73 P Sturmfels (971_CR40) 2020; 5 971_CR20 971_CR22 971_CR44 971_CR2 971_CR21 971_CR43 971_CR24 SM Ross (971_CR36) 2017 R Guidotti (971_CR16) 2021; 291 971_CR23 971_CR26 971_CR25 971_CR39 971_CR19 C Wang (971_CR42) 2022; 39 971_CR18 J van der Waa (971_CR41) 2021; 291 H Hakkoum (971_CR17) 2022; 117 W Samek (971_CR38) 2016; 28 971_CR31 971_CR30 971_CR11 971_CR33 971_CR10 971_CR32 971_CR35 971_CR12 971_CR34 971_CR15 971_CR37 971_CR14 L Breiman (971_CR7) 2001; 45 971_CR28 AA Freitas (971_CR13) 2014; 15 J Demšar (971_CR9) 2006; 7 971_CR29 E Amparore (971_CR6) 2021; 7 |
References_xml | – ident: CR22 – ident: CR18 – ident: CR43 – volume: 291 start-page: 103404 year: 2021 ident: CR41 article-title: Evaluating xai: a comparison of rule-based and example-based explanations publication-title: Artif Intell doi: 10.1016/j.artint.2020.103404 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR2 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 7 start-page: 479 year: 2021 ident: CR6 article-title: To trust or not to trust an explanation: using leaf to evaluate local linear XAI methods publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.479 – ident: CR10 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR7 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR33 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR25 – ident: CR23 – volume: 5 start-page: 22 issue: 1 year: 2020 ident: CR40 article-title: Visualizing the impact of feature attribution baselines publication-title: Distill doi: 10.23915/distill.00022 – ident: CR21 – volume: 298 start-page: 103502 year: 2021 ident: CR1 article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values publication-title: Artif Intell doi: 10.1016/j.artint.2021.103502 – volume: 117 start-page: 108391 year: 2022 ident: CR17 article-title: Interpretability in the medical field: a systematic mapping and review study publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108391 – ident: CR19 – ident: CR44 – volume: 15 start-page: 1 issue: 1 year: 2014 end-page: 10 ident: CR13 article-title: Comprehensible classification models: a position paper publication-title: ACM SIGKDD Explorat Newsl doi: 10.1145/2594473.2594475 – volume: 291 start-page: 103428 year: 2021 ident: CR16 article-title: Evaluating local explanation methods on ground truth publication-title: Artif Intell doi: 10.1016/j.artint.2020.103428 – volume: 39 start-page: 519 issue: 2 year: 2022 end-page: 581 ident: CR42 article-title: In pursuit of interpretable, fair and accurate machine learning for criminal recidivism prediction publication-title: J Quantit Criminol doi: 10.1007/s10940-022-09545-w – ident: CR15 – ident: CR31 – volume: 35 start-page: 15784 year: 2022 end-page: 15799 ident: CR3 article-title: Openxai: towards a transparent evaluation of model explanations publication-title: Adva Neur Inform Process Syst – year: 2017 ident: CR36 publication-title: Introductory statistics doi: 10.1016/B978-0-12-804317-2.00031-X – ident: CR11 – volume: 28 start-page: 2660 issue: 11 year: 2016 end-page: 2673 ident: CR38 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2599820 – ident: CR32 – ident: CR34 – ident: CR5 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR9 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: CR28 – ident: CR26 – ident: CR24 – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: CR27 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – ident: CR20 – ident: 971_CR12 doi: 10.1109/ICCV.2017.371 – ident: 971_CR28 – ident: 971_CR26 doi: 10.1007/978-3-031-04083-2_4 – volume: 35 start-page: 15784 year: 2022 ident: 971_CR3 publication-title: Adva Neur Inform Process Syst – ident: 971_CR14 doi: 10.1609/aaai.v33i01.33013681 – ident: 971_CR32 – ident: 971_CR18 – ident: 971_CR34 – ident: 971_CR30 – ident: 971_CR11 doi: 10.1145/3447548.3467283 – ident: 971_CR31 doi: 10.1145/3411764.3445315 – volume-title: Introductory statistics year: 2017 ident: 971_CR36 doi: 10.1016/B978-0-12-804317-2.00031-X – ident: 971_CR8 doi: 10.1007/978-3-030-10925-7_40 – volume: 39 start-page: 519 issue: 2 year: 2022 ident: 971_CR42 publication-title: J Quantit Criminol doi: 10.1007/s10940-022-09545-w – ident: 971_CR5 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 971_CR7 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 971_CR43 – volume: 73 start-page: 1 year: 2018 ident: 971_CR27 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – volume: 291 start-page: 103404 year: 2021 ident: 971_CR41 publication-title: Artif Intell doi: 10.1016/j.artint.2020.103404 – ident: 971_CR24 – volume: 28 start-page: 2660 issue: 11 year: 2016 ident: 971_CR38 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2599820 – ident: 971_CR22 – ident: 971_CR25 – ident: 971_CR19 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 971_CR13 publication-title: ACM SIGKDD Explorat Newsl doi: 10.1145/2594473.2594475 – ident: 971_CR33 doi: 10.1145/2939672.2939778 – ident: 971_CR10 – ident: 971_CR15 – ident: 971_CR4 – volume: 117 start-page: 108391 year: 2022 ident: 971_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108391 – ident: 971_CR2 – ident: 971_CR39 – ident: 971_CR35 doi: 10.1609/aaai.v32i1.11491 – ident: 971_CR37 – ident: 971_CR20 doi: 10.1007/978-3-319-33383-0_5 – volume: 7 start-page: 1 year: 2006 ident: 971_CR9 publication-title: J Mach Learn Res – ident: 971_CR44 doi: 10.1007/978-3-319-10590-1_53 – ident: 971_CR29 – ident: 971_CR23 – volume: 5 start-page: 22 issue: 1 year: 2020 ident: 971_CR40 publication-title: Distill doi: 10.23915/distill.00022 – volume: 7 start-page: 479 year: 2021 ident: 971_CR6 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.479 – volume: 298 start-page: 103502 year: 2021 ident: 971_CR1 publication-title: Artif Intell doi: 10.1016/j.artint.2021.103502 – volume: 291 start-page: 103428 year: 2021 ident: 971_CR16 publication-title: Artif Intell doi: 10.1016/j.artint.2020.103428 – ident: 971_CR21 |
RestrictionsOnAccess | open access |
SSID | ssj0005230 |
Score | 2.409436 |
Snippet | Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions... |
SourceID | swepub liege proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 237 |
SubjectTerms | Accuracy Additive models Additives Artificial Intelligence Black box modelling Black boxes Chemistry and Earth Sciences Computer Networks and Communications Computer Science Computer Science Applications Data Mining and Knowledge Discovery Datalogi Datasets Engineering, computing & technology Explainable machine learning Information Storage and Retrieval Information Systems Ingénierie, informatique & technologie LIME Local model Local model-agnostic explanation Local model-agnostic explanations Local permutations Logistics regressions Machine-learning Mathematical models Non-additive Performance prediction Permutations Physics S.I. : ECML PKDD 2023 Sciences informatiques SHAP Statistics for Engineering |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66Ifjij6k4ndIH8UUDbZO06ZOOqYigT058C7ms1eHoZK3in-8lbTcVEXwrbZqEuyT3XXL3hZAjnRlj4kxTLn2gnBlNgaOXEgBHcAqJhtAmON_eRddDfvMoHuuksKKJdm-OJN1K_SXZLQokRRtDHfERZcukLazvjqN4GPa_BHawKjdYcipk4NepMr_X8c0ctSf2oPob1pwfj_6gEnXm52qDrNW40etXit4kS2neIevNnQxePUU7ZMWFdJpii5wPdO45U-WlH68TXW37eXPS1qJ6PcZCiDT1zLOhRXbx89ztOMXZNhleXd4Prml9XwI1LIlKGofozoLQEYMsBj6KA-1DhFM2BgBj0CDpxCSIVwzXvkaNiMQHCdLPRoEwiWQ7pJVP83SXeL7I5MgwnqUjwTVLUH8GfwMmU4saTJecNGJTrxUthloQIFshKxSyckJWrEtOnWTVdAZj9R4qy2ntnt8mT0obBalCGCgVs-Q7QZf0GgWoekYVKkwCIRHcCI61NUpZfP6r8eNKcfOO2tYvxg997MKTeimfFYss8tn7X737ZBUHH6-2Y3qkVc7e0gMEKCUcuvH4CZR_2zw priority: 102 providerName: Springer Nature |
Title | Can local explanation techniques explain linear additive models? |
URI | https://link.springer.com/article/10.1007/s10618-023-00971-3 https://www.proquest.com/docview/2915809154 http://orbi.ulg.ac.be/handle/2268/323571 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360215 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9YWXMb60slHlAfECFnFsJ87TVkq7iWkTQhSNJ8vnJKOiaru2m_bnc06clvGwlyhyPmzd2Xc_f9zvAN7ZyjmXVZZJHSOTwlmGkmYpHCWBU8wtJj7A-eIyPRvLr1fqKiy4rcKxytYm1oa6mDu_Rv4pybnS5NyUPF7cMJ81yu-uhhQaO9AhE6xp8tX5PLz89v2fQx6iiRPWkinN4xA2E4LnUq4Z-SxWEykx8cA1daZ-0_oB7txslf5HK1q7otE-7AUMGfUbpT-HJ-XsBTxr8zNEYbi-hJOBnUW1s4rK-8XUNgt_0Ya2ddUUT-glwpp2GfnDRd78RXV-nNXxKxiPhj8GZyxkTGBO5OmaZQlNaFHZVGCVoSwybmNMadBmiOgcuSSbu5wQi5M2tqQTlceoUcdVwZXLtXgNu7P5rDyAKFaVLpyQVVkoaUVOGnT0GQpdetzguvChFZZZNMQYZkuB7EVrSLSmFq0RXfhYy9PMlzgxd4nxrNb1_e302lhnsDQEBLURnn6Hd-GoFbsJY2pltj2A_taqYvv4scrfN-raNNTX_mXys09NuDZ_1r-NSD32efN4tYfwNPHBDzFnPDmC3fXytnxLkGSNPdjRo9MedPqnv86HvdALqXSQDug6Tvp_AdXE4QY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9swEN6hcGgvfXdIC60OhQvV1LYkWz50KAOkoTxO0OGmamWbZppJ0iT08af4jV3JdgIcuHHz-CHtfFrvfnrsLsB7WznnsspyqSPkUjjLUdIsJUZJ5BRzi4kPcD4-SXtn8uu5Ol-CqzYWxh-rbG1iMNTFyPk18o9JHitNzk3J7fEv7qtG-d3VtoRGrRaH5b8_NGWbfjrYo_HdSJLu_ulujzdVBbgTeTrjWUKTPlQ2FVhlKIssthGmpNgZIjpHZtvmLiev7qSNLMmt8gg16qgqYuVyLajdB7AiBbXmI9O7X64dKRF1VLKWXOk4aoJ0mlC9NNacPCQPaZu4uOEIVwZ-i_wGy51vzN5KYhocX_cpPG4YK9upVewZLJXD5_CkrQbBGuPwAj7v2iELrpGVf8cDWy8zsnmS2Gl9u08vEbO1E-aPMnljy0I1nun2Szi7FyRfwfJwNCxXgUWq0oUTsioLJa3ISV8cfYZCl56luA5stWCZcZ2GwywSLntoDUFrArRGdOBDwNOMJtg3vxPjc2iH68vBhbHOYGmIdmojfLKfuANrLeym-YOnZqFv1Fo7FIvHd3W-WQ_XXFDf-17_2w6JcGF-zn4YkXqm9frubt_Bw97p8ZE5Ojg5fAOPEiJT9dLPGizPJpflOpGhGb4NGsjg-32r_H-E3hel |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RRKp6gT5FWtr60PbSWuyu7V3voQJKiKC0EapKxc14vLs0apSEJPTx1_rrGO8jAQ7cuK32Ze_425lvbM8MwBtbOOeSwnKpA-RSOMtRkpcSoiRyiqnFyAc4f-3H-8fy84k6WYH_TSyM31bZ6MRSUWdj5-fIN6M0VJqMm5KbRb0t4qjb25qcc19Byq-0NuU0Kogc5v_-kPs2-3jQpbF-G0W9ve-7-7yuMMCdSOM5TyJyAFHZWGCRoMyS0AYYE8gTRHSOVLhNXUoW3kkbWPoGlQaoUQdFFiqXakHvvQfthLyioAXtT3v9o29XNpiIKkZZS650GNQhO3XgXhxqTvaSl0mcuLhmFttDv2B-jfMulmlvpDQtzWDvIazW_JXtVIB7BCv56DGsNbUhWK0qnsD2rh2x0lCy_O9kaKtJR7ZIGTurTg_oJuK5dsr8xiavellZm2e29RSO70SWz6A1Go_ydWCBKnTmhCzyTEkrUkKPo8dQ6NxzFteB942wzKRKymGW6Ze9aA2J1pSiNaIDH0p5mvEUB-Z3ZHxG7fL4YnhmrDOYGyKh2gif-ifswEYjdlP_zzOzRB-9rRmK5eXbGn9XDdeio7717uDHDnXhzPya_zQi9rzr-e3Nvob7BHfz5aB_-AIeRMSsqnmgDWjNpxf5S2JGc3xVQ5DB6V2j_hJlvh03 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+local+explanation+techniques+explain+linear+additive+models%3F&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Akhavan+Rahnama%2C+Amir+Hossein&rft.au=B%C3%BCtepage%2C+Judith&rft.au=Geurts%2C+Pierre&rft.au=Bostr%C3%B6m%2C+Henrik&rft.date=2024&rft.issn=1384-5810&rft.volume=38&rft.issue=1&rft.spage=237&rft_id=info:doi/10.1007%2Fs10618-023-00971-3&rft.externalDocID=oai_DiVA_org_kth_360215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |