Can local explanation techniques explain linear additive models?

Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popula...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 1; pp. 237 - 280
Main Authors Rahnama, Amir Hossein Akhavan, Bütepage, Judith, Geurts, Pierre, Boström, Henrik
Format Journal Article Web Resource
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popular explanation techniques can accurately explain the decisions of linear additive models. We show that even though the explanations generated by these techniques are linear additives, they can fail to provide accurate explanations when explaining linear additive models. In the experiments, we measure the accuracy of additive explanations, as produced by, e.g., LIME and SHAP, along with the non-additive explanations of Local Permutation Importance (LPI) when explaining Linear and Logistic Regression and Gaussian naive Bayes models over 40 tabular datasets. We also investigate the degree to which different factors, such as the number of numerical or categorical or correlated features, the predictive performance of the black-box model, explanation sample size, similarity metric, and the pre-processing technique used on the dataset can directly affect the accuracy of local explanations.
AbstractList Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions have been raised about the accuracy of the produced local additive explanations. We investigate this by studying whether some of the most popular explanation techniques can accurately explain the decisions of linear additive models. We show that even though the explanations generated by these techniques are linear additives, they can fail to provide accurate explanations when explaining linear additive models. In the experiments, we measure the accuracy of additive explanations, as produced by, e.g., LIME and SHAP, along with the non-additive explanations of Local Permutation Importance (LPI) when explaining Linear and Logistic Regression and Gaussian naive Bayes models over 40 tabular datasets. We also investigate the degree to which different factors, such as the number of numerical or categorical or correlated features, the predictive performance of the black-box model, explanation sample size, similarity metric, and the pre-processing technique used on the dataset can directly affect the accuracy of local explanations.
Author Geurts, Pierre
Rahnama, Amir Hossein Akhavan
Bütepage, Judith
Boström, Henrik
Author_xml – sequence: 1
  givenname: Amir Hossein Akhavan
  orcidid: 0000-0002-6846-5707
  surname: Rahnama
  fullname: Rahnama, Amir Hossein Akhavan
  email: amiakh@kth.se
  organization: Department of Computer Science, KTH Royal Institute of Technology
– sequence: 2
  givenname: Judith
  surname: Bütepage
  fullname: Bütepage, Judith
  organization: Department of Computer Science, KTH Royal Institute of Technology
– sequence: 3
  givenname: Pierre
  surname: Geurts
  fullname: Geurts, Pierre
  organization: Department of Electrical Engineering and Computer Science, University of Liège
– sequence: 4
  givenname: Henrik
  surname: Boström
  fullname: Boström, Henrik
  organization: Department of Computer Science, KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360215$$DView record from Swedish Publication Index
BookMark eNp9kU1PHDEMhqMKpPL1BziN1HNaJ5lMMieKtpRWQuICVW9WkskugSHZJrN8_HvCDoJbL7ZlP69l690nOzFFT8gxg68MQH0rDDqmKXBBAXrFqPhE9phUgirZ_d2ptdAtlZrBZ7Jfyi0ASC5gj3xfmNiMyZmx8U_r0UQzhRSbybubGP5tfJnboUIhepMbMwxhCg--uU-DH8vJIdldmrH4o7d8QK5_nl0tftGLy_Pfi9ML6kTfTVRxrbWVphN2qWw7KGbAdlpwZa11DoCZ3vVcCdcaMC0H2YPVVsNyYNL1WhwQOu8tj369sbjO4d7kZ0wm4I_w5xRTXuHddIOiA85k5cXMj8GvfJ3agA98i2_rzbhC49B65LzTKLiQilXVl1m1zun1-wlv0ybH-hjynkkNNbSV4jPlciol--X7NQzw1Q-c_cDqB279QPFxUKlwXPn8sfo_qhexgY5U
Cites_doi 10.1016/j.artint.2020.103404
10.7717/peerj-cs.479
10.1023/A:1010933404324
10.23915/distill.00022
10.1016/j.artint.2021.103502
10.1016/j.asoc.2021.108391
10.1145/2594473.2594475
10.1016/j.artint.2020.103428
10.1007/s10940-022-09545-w
10.1016/B978-0-12-804317-2.00031-X
10.1109/TNNLS.2016.2599820
10.1016/j.dsp.2017.10.011
10.1109/ICCV.2017.371
10.1007/978-3-031-04083-2_4
10.1609/aaai.v33i01.33013681
10.1145/3447548.3467283
10.1145/3411764.3445315
10.1007/978-3-030-10925-7_40
10.1145/2939672.2939778
10.1609/aaai.v32i1.11491
10.1007/978-3-319-33383-0_5
10.1007/978-3-319-10590-1_53
ContentType Journal Article
Web Resource
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
Q33
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1007/s10618-023-00971-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (ProQuest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Université de Liège - Open Repository and Bibliography (ORBI)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 280
ExternalDocumentID oai_DiVA_org_kth_360215
oai_orbi_ulg_ac_be_2268_323571
10_1007_s10618_023_00971_3
GrantInformation_xml – fundername: Royal Institute of Technology
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
Q33
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c396t-72888b5a63bf7b4d71a0b68327bbbcc001a9c9273c4a0a420590b8b80fd15c983
IEDL.DBID BENPR
ISSN 1384-5810
1573-756X
IngestDate Thu Aug 21 06:41:15 EDT 2025
Fri Jul 18 15:14:23 EDT 2025
Sat Aug 23 14:33:15 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Fri Feb 21 02:41:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SHAP
LIME
Local model-agnostic explanations
Explainable machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-72888b5a63bf7b4d71a0b68327bbbcc001a9c9273c4a0a420590b8b80fd15c983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85171464862
ORCID 0000-0002-6846-5707
OpenAccessLink https://link.springer.com/10.1007/s10618-023-00971-3
PQID 2915809154
PQPubID 43030
PageCount 44
ParticipantIDs swepub_primary_oai_DiVA_org_kth_360215
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_323571
proquest_journals_2915809154
crossref_primary_10_1007_s10618_023_00971_3
springer_journals_10_1007_s10618_023_00971_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Wang, Han, Patel, Rudin (CR42) 2022; 39
CR19
CR18
CR39
CR15
CR37
CR14
CR35
CR12
CR34
CR11
CR33
CR10
CR32
Samek, Binder, Montavon, Lapuschkin, Müller (CR38) 2016; 28
CR31
Montavon, Samek, Müller (CR27) 2018; 73
CR30
Freitas (CR13) 2014; 15
Demšar (CR9) 2006; 7
Hakkoum, Abnane, Idri (CR17) 2022; 117
Sturmfels, Lundberg, Lee (CR40) 2020; 5
CR2
van der Waa, Nieuwburg, Cremers, Neerincx (CR41) 2021; 291
Agarwal, Krishna, Saxena, Pawelczyk, Johnson, Puri, Zitnik, Lakkaraju (CR3) 2022; 35
CR4
Breiman (CR7) 2001; 45
CR5
Amparore, Perotti, Bajardi (CR6) 2021; 7
Guidotti (CR16) 2021; 291
CR8
CR29
CR28
CR26
CR25
CR24
Aas, Jullum, Løland (CR1) 2021; 298
CR23
CR22
CR44
CR21
CR43
CR20
Ross (CR36) 2017
971_CR8
K Aas (971_CR1) 2021; 298
C Agarwal (971_CR3) 2022; 35
971_CR4
971_CR5
G Montavon (971_CR27) 2018; 73
P Sturmfels (971_CR40) 2020; 5
971_CR20
971_CR22
971_CR44
971_CR2
971_CR21
971_CR43
971_CR24
SM Ross (971_CR36) 2017
R Guidotti (971_CR16) 2021; 291
971_CR23
971_CR26
971_CR25
971_CR39
971_CR19
C Wang (971_CR42) 2022; 39
971_CR18
J van der Waa (971_CR41) 2021; 291
H Hakkoum (971_CR17) 2022; 117
W Samek (971_CR38) 2016; 28
971_CR31
971_CR30
971_CR11
971_CR33
971_CR10
971_CR32
971_CR35
971_CR12
971_CR34
971_CR15
971_CR37
971_CR14
L Breiman (971_CR7) 2001; 45
971_CR28
AA Freitas (971_CR13) 2014; 15
J Demšar (971_CR9) 2006; 7
971_CR29
E Amparore (971_CR6) 2021; 7
References_xml – ident: CR22
– ident: CR18
– ident: CR43
– volume: 291
  start-page: 103404
  year: 2021
  ident: CR41
  article-title: Evaluating xai: a comparison of rule-based and example-based explanations
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2020.103404
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 7
  start-page: 479
  year: 2021
  ident: CR6
  article-title: To trust or not to trust an explanation: using leaf to evaluate local linear XAI methods
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.479
– ident: CR10
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR7
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: CR33
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR25
– ident: CR23
– volume: 5
  start-page: 22
  issue: 1
  year: 2020
  ident: CR40
  article-title: Visualizing the impact of feature attribution baselines
  publication-title: Distill
  doi: 10.23915/distill.00022
– ident: CR21
– volume: 298
  start-page: 103502
  year: 2021
  ident: CR1
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2021.103502
– volume: 117
  start-page: 108391
  year: 2022
  ident: CR17
  article-title: Interpretability in the medical field: a systematic mapping and review study
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108391
– ident: CR19
– ident: CR44
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  end-page: 10
  ident: CR13
  article-title: Comprehensible classification models: a position paper
  publication-title: ACM SIGKDD Explorat Newsl
  doi: 10.1145/2594473.2594475
– volume: 291
  start-page: 103428
  year: 2021
  ident: CR16
  article-title: Evaluating local explanation methods on ground truth
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2020.103428
– volume: 39
  start-page: 519
  issue: 2
  year: 2022
  end-page: 581
  ident: CR42
  article-title: In pursuit of interpretable, fair and accurate machine learning for criminal recidivism prediction
  publication-title: J Quantit Criminol
  doi: 10.1007/s10940-022-09545-w
– ident: CR15
– ident: CR31
– volume: 35
  start-page: 15784
  year: 2022
  end-page: 15799
  ident: CR3
  article-title: Openxai: towards a transparent evaluation of model explanations
  publication-title: Adva Neur Inform Process Syst
– year: 2017
  ident: CR36
  publication-title: Introductory statistics
  doi: 10.1016/B978-0-12-804317-2.00031-X
– ident: CR11
– volume: 28
  start-page: 2660
  issue: 11
  year: 2016
  end-page: 2673
  ident: CR38
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2599820
– ident: CR32
– ident: CR34
– ident: CR5
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR9
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR27
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.011
– ident: CR20
– ident: 971_CR12
  doi: 10.1109/ICCV.2017.371
– ident: 971_CR28
– ident: 971_CR26
  doi: 10.1007/978-3-031-04083-2_4
– volume: 35
  start-page: 15784
  year: 2022
  ident: 971_CR3
  publication-title: Adva Neur Inform Process Syst
– ident: 971_CR14
  doi: 10.1609/aaai.v33i01.33013681
– ident: 971_CR32
– ident: 971_CR18
– ident: 971_CR34
– ident: 971_CR30
– ident: 971_CR11
  doi: 10.1145/3447548.3467283
– ident: 971_CR31
  doi: 10.1145/3411764.3445315
– volume-title: Introductory statistics
  year: 2017
  ident: 971_CR36
  doi: 10.1016/B978-0-12-804317-2.00031-X
– ident: 971_CR8
  doi: 10.1007/978-3-030-10925-7_40
– volume: 39
  start-page: 519
  issue: 2
  year: 2022
  ident: 971_CR42
  publication-title: J Quantit Criminol
  doi: 10.1007/s10940-022-09545-w
– ident: 971_CR5
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 971_CR7
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 971_CR43
– volume: 73
  start-page: 1
  year: 2018
  ident: 971_CR27
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.011
– volume: 291
  start-page: 103404
  year: 2021
  ident: 971_CR41
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2020.103404
– ident: 971_CR24
– volume: 28
  start-page: 2660
  issue: 11
  year: 2016
  ident: 971_CR38
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2599820
– ident: 971_CR22
– ident: 971_CR25
– ident: 971_CR19
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 971_CR13
  publication-title: ACM SIGKDD Explorat Newsl
  doi: 10.1145/2594473.2594475
– ident: 971_CR33
  doi: 10.1145/2939672.2939778
– ident: 971_CR10
– ident: 971_CR15
– ident: 971_CR4
– volume: 117
  start-page: 108391
  year: 2022
  ident: 971_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108391
– ident: 971_CR2
– ident: 971_CR39
– ident: 971_CR35
  doi: 10.1609/aaai.v32i1.11491
– ident: 971_CR37
– ident: 971_CR20
  doi: 10.1007/978-3-319-33383-0_5
– volume: 7
  start-page: 1
  year: 2006
  ident: 971_CR9
  publication-title: J Mach Learn Res
– ident: 971_CR44
  doi: 10.1007/978-3-319-10590-1_53
– ident: 971_CR29
– ident: 971_CR23
– volume: 5
  start-page: 22
  issue: 1
  year: 2020
  ident: 971_CR40
  publication-title: Distill
  doi: 10.23915/distill.00022
– volume: 7
  start-page: 479
  year: 2021
  ident: 971_CR6
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.479
– volume: 298
  start-page: 103502
  year: 2021
  ident: 971_CR1
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2021.103502
– volume: 291
  start-page: 103428
  year: 2021
  ident: 971_CR16
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2020.103428
– ident: 971_CR21
RestrictionsOnAccess open access
SSID ssj0005230
Score 2.409436
Snippet Local model-agnostic additive explanation techniques decompose the predicted output of a black-box model into additive feature importance scores. Questions...
SourceID swepub
liege
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 237
SubjectTerms Accuracy
Additive models
Additives
Artificial Intelligence
Black box modelling
Black boxes
Chemistry and Earth Sciences
Computer Networks and Communications
Computer Science
Computer Science Applications
Data Mining and Knowledge Discovery
Datalogi
Datasets
Engineering, computing & technology
Explainable machine learning
Information Storage and Retrieval
Information Systems
Ingénierie, informatique & technologie
LIME
Local model
Local model-agnostic explanation
Local model-agnostic explanations
Local permutations
Logistics regressions
Machine-learning
Mathematical models
Non-additive
Performance prediction
Permutations
Physics
S.I. : ECML PKDD 2023
Sciences informatiques
SHAP
Statistics for Engineering
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66Ifjij6k4ndIH8UUDbZO06ZOOqYigT058C7ms1eHoZK3in-8lbTcVEXwrbZqEuyT3XXL3hZAjnRlj4kxTLn2gnBlNgaOXEgBHcAqJhtAmON_eRddDfvMoHuuksKKJdm-OJN1K_SXZLQokRRtDHfERZcukLazvjqN4GPa_BHawKjdYcipk4NepMr_X8c0ctSf2oPob1pwfj_6gEnXm52qDrNW40etXit4kS2neIevNnQxePUU7ZMWFdJpii5wPdO45U-WlH68TXW37eXPS1qJ6PcZCiDT1zLOhRXbx89ztOMXZNhleXd4Prml9XwI1LIlKGofozoLQEYMsBj6KA-1DhFM2BgBj0CDpxCSIVwzXvkaNiMQHCdLPRoEwiWQ7pJVP83SXeL7I5MgwnqUjwTVLUH8GfwMmU4saTJecNGJTrxUthloQIFshKxSyckJWrEtOnWTVdAZj9R4qy2ntnt8mT0obBalCGCgVs-Q7QZf0GgWoekYVKkwCIRHcCI61NUpZfP6r8eNKcfOO2tYvxg997MKTeimfFYss8tn7X737ZBUHH6-2Y3qkVc7e0gMEKCUcuvH4CZR_2zw
  priority: 102
  providerName: Springer Nature
Title Can local explanation techniques explain linear additive models?
URI https://link.springer.com/article/10.1007/s10618-023-00971-3
https://www.proquest.com/docview/2915809154
http://orbi.ulg.ac.be/handle/2268/323571
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360215
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9YWXMb60slHlAfECFnFsJ87TVkq7iWkTQhSNJ8vnJKOiaru2m_bnc06clvGwlyhyPmzd2Xc_f9zvAN7ZyjmXVZZJHSOTwlmGkmYpHCWBU8wtJj7A-eIyPRvLr1fqKiy4rcKxytYm1oa6mDu_Rv4pybnS5NyUPF7cMJ81yu-uhhQaO9AhE6xp8tX5PLz89v2fQx6iiRPWkinN4xA2E4LnUq4Z-SxWEykx8cA1daZ-0_oB7txslf5HK1q7otE-7AUMGfUbpT-HJ-XsBTxr8zNEYbi-hJOBnUW1s4rK-8XUNgt_0Ya2ddUUT-glwpp2GfnDRd78RXV-nNXxKxiPhj8GZyxkTGBO5OmaZQlNaFHZVGCVoSwybmNMadBmiOgcuSSbu5wQi5M2tqQTlceoUcdVwZXLtXgNu7P5rDyAKFaVLpyQVVkoaUVOGnT0GQpdetzguvChFZZZNMQYZkuB7EVrSLSmFq0RXfhYy9PMlzgxd4nxrNb1_e302lhnsDQEBLURnn6Hd-GoFbsJY2pltj2A_taqYvv4scrfN-raNNTX_mXys09NuDZ_1r-NSD32efN4tYfwNPHBDzFnPDmC3fXytnxLkGSNPdjRo9MedPqnv86HvdALqXSQDug6Tvp_AdXE4QY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9swEN6hcGgvfXdIC60OhQvV1LYkWz50KAOkoTxO0OGmamWbZppJ0iT08af4jV3JdgIcuHHz-CHtfFrvfnrsLsB7WznnsspyqSPkUjjLUdIsJUZJ5BRzi4kPcD4-SXtn8uu5Ol-CqzYWxh-rbG1iMNTFyPk18o9JHitNzk3J7fEv7qtG-d3VtoRGrRaH5b8_NGWbfjrYo_HdSJLu_ulujzdVBbgTeTrjWUKTPlQ2FVhlKIssthGmpNgZIjpHZtvmLiev7qSNLMmt8gg16qgqYuVyLajdB7AiBbXmI9O7X64dKRF1VLKWXOk4aoJ0mlC9NNacPCQPaZu4uOEIVwZ-i_wGy51vzN5KYhocX_cpPG4YK9upVewZLJXD5_CkrQbBGuPwAj7v2iELrpGVf8cDWy8zsnmS2Gl9u08vEbO1E-aPMnljy0I1nun2Szi7FyRfwfJwNCxXgUWq0oUTsioLJa3ISV8cfYZCl56luA5stWCZcZ2GwywSLntoDUFrArRGdOBDwNOMJtg3vxPjc2iH68vBhbHOYGmIdmojfLKfuANrLeym-YOnZqFv1Fo7FIvHd3W-WQ_XXFDf-17_2w6JcGF-zn4YkXqm9frubt_Bw97p8ZE5Ojg5fAOPEiJT9dLPGizPJpflOpGhGb4NGsjg-32r_H-E3hel
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RRKp6gT5FWtr60PbSWuyu7V3voQJKiKC0EapKxc14vLs0apSEJPTx1_rrGO8jAQ7cuK32Ze_425lvbM8MwBtbOOeSwnKpA-RSOMtRkpcSoiRyiqnFyAc4f-3H-8fy84k6WYH_TSyM31bZ6MRSUWdj5-fIN6M0VJqMm5KbRb0t4qjb25qcc19Byq-0NuU0Kogc5v_-kPs2-3jQpbF-G0W9ve-7-7yuMMCdSOM5TyJyAFHZWGCRoMyS0AYYE8gTRHSOVLhNXUoW3kkbWPoGlQaoUQdFFiqXakHvvQfthLyioAXtT3v9o29XNpiIKkZZS650GNQhO3XgXhxqTvaSl0mcuLhmFttDv2B-jfMulmlvpDQtzWDvIazW_JXtVIB7BCv56DGsNbUhWK0qnsD2rh2x0lCy_O9kaKtJR7ZIGTurTg_oJuK5dsr8xiavellZm2e29RSO70SWz6A1Go_ydWCBKnTmhCzyTEkrUkKPo8dQ6NxzFteB942wzKRKymGW6Ze9aA2J1pSiNaIDH0p5mvEUB-Z3ZHxG7fL4YnhmrDOYGyKh2gif-ifswEYjdlP_zzOzRB-9rRmK5eXbGn9XDdeio7717uDHDnXhzPya_zQi9rzr-e3Nvob7BHfz5aB_-AIeRMSsqnmgDWjNpxf5S2JGc3xVQ5DB6V2j_hJlvh03
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+local+explanation+techniques+explain+linear+additive+models%3F&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Akhavan+Rahnama%2C+Amir+Hossein&rft.au=B%C3%BCtepage%2C+Judith&rft.au=Geurts%2C+Pierre&rft.au=Bostr%C3%B6m%2C+Henrik&rft.date=2024&rft.issn=1384-5810&rft.volume=38&rft.issue=1&rft.spage=237&rft_id=info:doi/10.1007%2Fs10618-023-00971-3&rft.externalDocID=oai_DiVA_org_kth_360215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon