Defining Longer-Term Outcomes in an Ovine Model of Moderate Perinatal Hypoxia-Ischemia
Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predic...
Saved in:
Published in | Developmental neuroscience Vol. 44; no. 4-5; pp. 277 - 294 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-5866 1421-9859 |
DOI | 10.1159/000525150 |
Cover
Loading…
Abstract | Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predictable outcomes, infants born with moderate HIE exhibit variable outcomes that are highly unpredictable. Here, we describe an umbilical cord occlusion (UCO) model of moderate HIE with a 6-day follow-up. Near-term lambs (n = 27) were resuscitated after the induction of 5 min of asystole. Following recovery, lambs were assessed to define neurodevelopmental outcomes. At the end of this period, lambs were euthanized, and brains were harvested for histological analysis. Compared with prior models that typically follow lambs for 3 days, the observation of neurobehavioral outcomes for 6 days enabled identification of animals that recover significant neurological function. Approximately 35% of lambs exhibited severe motor deficits throughout the entirety of the 6-day course and, in the most severely affected lambs, developed spastic diparesis similar to that observed in infants who survive severe neonatal HIE (severe, UCOs). Importantly, and similar to outcomes in human neonates, while initially developing significant acidosis and encephalopathy, the remainder of the lambs in this model recovered normal motor activity and exhibited normal neurodevelopmental outcomes by 6 days of life (improved, UCOi). The UCOs group exhibited gliosis and inflammation in both white and gray matters, oligodendrocyte loss, neuronal loss, and cellular death in the hippocampus and cingulate cortex. While the UCOi group exhibited more cellular death and gliosis in the parasagittal cortex, they demonstrated more preserved white matter markers, along with reduced markers of inflammation and lower cellular death and neuronal loss in Ca3 of the hippocampus compared with UCOs lambs. Our large animal model of moderate HIE with prolonged follow-up will help further define pathophysiologic drivers of brain injury while enabling identification of predictive biomarkers that correlate with disease outcomes and ultimately help support development of therapeutic approaches to this challenging clinical scenario. |
---|---|
AbstractList | Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predictable outcomes, infants born with moderate HIE exhibit variable outcomes that are highly unpredictable. Here, we describe an umbilical cord occlusion (UCO) model of moderate HIE with a 6-day follow-up. Near-term lambs (n = 27) were resuscitated after the induction of 5 min of asystole. Following recovery, lambs were assessed to define neurodevelopmental outcomes. At the end of this period, lambs were euthanized, and brains were harvested for histological analysis. Compared with prior models that typically follow lambs for 3 days, the observation of neurobehavioral outcomes for 6 days enabled identification of animals that recover significant neurological function. Approximately 35% of lambs exhibited severe motor deficits throughout the entirety of the 6-day course and, in the most severely affected lambs, developed spastic diparesis similar to that observed in infants who survive severe neonatal HIE (severe, UCOs). Importantly, and similar to outcomes in human neonates, while initially developing significant acidosis and encephalopathy, the remainder of the lambs in this model recovered normal motor activity and exhibited normal neurodevelopmental outcomes by 6 days of life (improved, UCOi). The UCOs group exhibited gliosis and inflammation in both white and gray matters, oligodendrocyte loss, neuronal loss, and cellular death in the hippocampus and cingulate cortex. While the UCOi group exhibited more cellular death and gliosis in the parasagittal cortex, they demonstrated more preserved white matter markers, along with reduced markers of inflammation and lower cellular death and neuronal loss in Ca3 of the hippocampus compared with UCOs lambs. Our large animal model of moderate HIE with prolonged follow-up will help further define pathophysiologic drivers of brain injury while enabling identification of predictive biomarkers that correlate with disease outcomes and ultimately help support development of therapeutic approaches to this challenging clinical scenario. |
Author | Goudy, Brian D. Arellano, Kimberly Ndjamen, Blaise Mike, Jana Krystofova Vento, Christian Ostrin, Samuel Gobburu, Jogarao V.S. Pathipati, Praneeti Windsor, Christine Fineman, Jeffrey R. Maltepe, Emin White, Yasmine Hutchings, Rachel S. Losser, Courtney Lakshminrusimha, Satyan Ferriero, Donna M. Vanhatalo, Oona Chen, Peggy Wu, Katherine Y. Vali, Payam Wu, Yvonne W. Long-Boyle, Janel Ha, Janica Alhassen, Ziad |
Author_xml | – sequence: 1 givenname: Jana Krystofova orcidid: 0000-0002-0938-216X surname: Mike fullname: Mike, Jana Krystofova email: *Jana Krystofova Mike, jana.mike@ucsf.edu – sequence: 2 givenname: Katherine Y. surname: Wu fullname: Wu, Katherine Y. – sequence: 3 givenname: Yasmine surname: White fullname: White, Yasmine – sequence: 4 givenname: Praneeti surname: Pathipati fullname: Pathipati, Praneeti – sequence: 5 givenname: Blaise orcidid: 0000-0002-6109-1132 surname: Ndjamen fullname: Ndjamen, Blaise – sequence: 6 givenname: Rachel S. surname: Hutchings fullname: Hutchings, Rachel S. – sequence: 7 givenname: Courtney surname: Losser fullname: Losser, Courtney – sequence: 8 givenname: Christian orcidid: 0000-0002-3131-7604 surname: Vento fullname: Vento, Christian – sequence: 9 givenname: Kimberly surname: Arellano fullname: Arellano, Kimberly – sequence: 10 givenname: Oona surname: Vanhatalo fullname: Vanhatalo, Oona – sequence: 11 givenname: Samuel surname: Ostrin fullname: Ostrin, Samuel – sequence: 12 givenname: Christine surname: Windsor fullname: Windsor, Christine – sequence: 13 givenname: Janica surname: Ha fullname: Ha, Janica – sequence: 14 givenname: Ziad surname: Alhassen fullname: Alhassen, Ziad – sequence: 15 givenname: Brian D. surname: Goudy fullname: Goudy, Brian D. – sequence: 16 givenname: Payam surname: Vali fullname: Vali, Payam – sequence: 17 givenname: Satyan orcidid: 0000-0001-6098-2155 surname: Lakshminrusimha fullname: Lakshminrusimha, Satyan – sequence: 18 givenname: Jogarao V.S. surname: Gobburu fullname: Gobburu, Jogarao V.S. – sequence: 19 givenname: Janel surname: Long-Boyle fullname: Long-Boyle, Janel – sequence: 20 givenname: Peggy surname: Chen fullname: Chen, Peggy – sequence: 21 givenname: Yvonne W. surname: Wu fullname: Wu, Yvonne W. – sequence: 22 givenname: Jeffrey R. surname: Fineman fullname: Fineman, Jeffrey R. – sequence: 23 givenname: Donna M. orcidid: 0000-0003-0560-9045 surname: Ferriero fullname: Ferriero, Donna M. – sequence: 24 givenname: Emin orcidid: 0000-0002-1271-7565 surname: Maltepe fullname: Maltepe, Emin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35588703$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kE1PAjEURRuDkQ9duDemf6D6Op1O26VBFBIMLtAt6bRvsMp0SGcw8u8loq7uXZzc5Nwh6cUmIiGXHG44l-YWAGQmuYQTMuB5xpnR0vTIAITSTOqi6JNh274D8MwIdUb6QkqtFYgBeb3HKsQQ13TexDUmtsRU08Wuc02NLQ2R2kgXnyEifWo8bmhT_ZRkO6TPmEK0nd3Q6X7bfAXLZq17wzrYc3Ja2U2LF785Ii8Pk-V4yuaLx9n4bs6cMEXHCiWqTFZS5xkgOnDSCoeaC-UNGOdt6cArB6USthRlrrWpvDbK6CxXPs_FiFwfd7e7ska_2qZQ27Rf_QkegKsj8GHTQe8fOP4lvgGRIlwT |
CitedBy_id | crossref_primary_10_3390_children10111728 crossref_primary_10_1161_STROKEAHA_123_043040 crossref_primary_10_1161_STROKEAHA_124_048264 crossref_primary_10_1038_s41390_024_03398_8 crossref_primary_10_3390_ani13132173 crossref_primary_10_3390_biomedicines10112810 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by S. Karger AG, Basel 2022 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2022 The Author(s). Published by S. Karger AG, Basel – notice: 2022 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- CGR CUY CVF ECM EIF NPM |
DOI | 10.1159/000525150 |
DatabaseName | Karger Open Journals (Free, activated by CARLI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: M-- name: Karger Open Journals (Free, activated by CARLI) url: https://www.karger.com/OpenAccess sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1421-9859 |
EndPage | 294 |
ExternalDocumentID | 35588703 525150 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD072929 – fundername: NICHD NIH HHS grantid: R03 HD096299 – fundername: NICHD NIH HHS grantid: K12 HD105250 – fundername: NINDS NIH HHS grantid: R35 NS097299 – fundername: NICHD NIH HHS grantid: R01 HD072455 – fundername: NIGMS NIH HHS grantid: T32 GM007546 |
GroupedDBID | --- .55 .GJ 0~5 0~B 29F 30W 325 34G 36B 39C 3O. 3V. 4.4 53G 5GY 5RE 7X7 88E 8AO 8FI 8FJ 8UI AAYIC ABIVO ABJNI ABPAZ ABUWG ACCCW ACGFO ACGFS ACIWK ACPRK ACPSR ADAGL ADBBV ADFRT ADGES ADOJD AENEX AEYAO AFFNX AFJJK AFKRA AFRAH AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC AZQEC BENPR BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP DU5 DWQXO E0A EBS EJD EMB EMOBN F5P FB. FYUFA GNUQQ HMCUK HZ~ IY7 KUZGX M-- M1P M2M N9A O1H O9- P2P PQQKQ PROAC PSQYO PSYQQ RIG RKO RXVBD SV3 TN5 UJ6 UKHRP X7M YYP ZGI ZXP ABBTS ABWCG ACQXL AFSIO AHDLI AHFRZ CGR CUY CVF ECM EIF NPM PHGZT |
ID | FETCH-LOGICAL-c396t-673f25f58420eec0c5a3ce8137d909cdabc0d7c0b73ab3b4889fd89798247d443 |
IEDL.DBID | M-- |
ISSN | 0378-5866 |
IngestDate | Wed Mar 05 08:08:20 EST 2025 Thu Aug 29 12:04:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4-5 |
Keywords | Neonates Brain hypoxia-ischemia Neurodevelopmental outcomes Ovine model |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. 2022 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-673f25f58420eec0c5a3ce8137d909cdabc0d7c0b73ab3b4889fd89798247d443 |
ORCID | 0000-0002-3131-7604 0000-0002-6109-1132 0000-0001-6098-2155 0000-0002-0938-216X 0000-0003-0560-9045 0000-0002-1271-7565 |
OpenAccessLink | https://karger.com/doi/10.1159/000525150 |
PMID | 35588703 |
PageCount | 18 |
ParticipantIDs | pubmed_primary_35588703 karger_primary_525150 |
PublicationCentury | 2000 |
PublicationDate | 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220101 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland |
PublicationTitle | Developmental neuroscience |
PublicationTitleAlternate | Dev Neurosci |
PublicationYear | 2022 |
References | McAdams RM, McPherson RJ, Kapur RP, Juul SE. Focal brain injury associated with a model of severe hypoxic-ischemic encephalopathy in nonhuman primates. Dev Neurosci. 2017;39(1–4):107. Mallard EC, Williams CE, Johnston BM, Gluckman PD. Increased vulnerability to neuronal damage after umbilical cord occlusion in fetal sheep with advancing gestation. Am J Obstet Gynecol. 1994 Jan;170(1):206. Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, . Detecting brain injury in neonatal hypoxic ischemic encephalopathy: closing the gap between experimental and clinical research. Exp Neurol. 2014 Nov;261:281–90. Ahearne CE, Boylan GB, Murray DM. Short and long term prognosis in perinatal asphyxia: an update. World J Clin Pediatr. 2016 Feb;5(1):67–74. Schmued LC, Albertson C, Slikker W. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997 Mar;751(1):37–46. Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab. 2018 Dec;38(12):2092. Yawno T, Castillo-Melendez M, Jenkin G, Wallace EM, Walker DW, Miller SL. Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia. Dev Neurosci. 2012;34(6):543. Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest. 1997 Jan;99(2):248–56. Mikrogeorgiou A, Xu D, Ferriero DM, Vannucci SJ. Assessing cerebral metabolism in the immature rodent: from extracts to real-time assessments, Dev Neurosci. 2018;40:463–74. Murden S, Borbélyová V, Laštůvka Z, Mysliveček J, Otáhal J, Riljak V. Gender differences involved in the pathophysiology of the perinatal hypoxic-ischemic damage. Physiol Res. 2019 Dec;68(Suppl 3):S207–17. Hutton JL, Pharoah PO. Life expectancy in severe cerebral palsy. Arch Dis Child. 2006 Mar;91(3):254. Dwyer CM, Lawrence AB, Brown HE, Simm G. Effect of ewe and lamb genotype on gestation length, lambing ease and neonatal behaviour of lambs. Reprod Fertil Dev. 1996;8(8):1123. Larpthaveesarp A, Pathipati P, Ostrin S, Rajah A, Ferriero D, Gonzalez FF. Enhanced mesenchymal stromal cells or erythropoietin provide long-term functional benefit after neonatal stroke. Stroke. 2021 Jan;52(1):284. Polglase GR, Schmölzer GM, Roberts CT, Blank DA, Badurdeen S, Crossley KJ, . Cardiopulmonary resuscitation of asystolic newborn lambs prior to umbilical cord clamping: the timing of cord clamping matters. Front Physiol. 2020;11:902. American College of Obstetricians and Gynecologists. Neonatal encephalopathy and cerebral palsy: executive summary. Obstet Gynecol. 2004 Apr;103(4):780–1. Derrick M, Drobyshevsky A, Ji X, Tan S. A model of cerebral palsy from fetal hypoxia-ischemia. Stroke. 2007 Feb;38(2):731. Mota-Rojas D, Villanueva-García D, Solimano A, Muns R, Ibarra-Ríos D, Mota-Reyes A. Pathophysiology of perinatal asphyxia in humans and animal models. Biomedicines. 2022 Feb;10(2):347. Wu T-W, Tamrazi B, Hsu K-H, Ho E, Reitman AJ, Borzage M, . Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front Neurol. 2018 May;9:293. Davidson JO, Yuill CA, Zhang FG, Wassink G, Bennet L, Gunn AJ. Extending the duration of hypothermia does not further improve white matter protection after ischemia in term-equivalent fetal sheep. Sci Rep. 2016 Apr;6(1):25178. Krishnan V, Kumar V, Shankaran S, Thayyil S. Rise and fall of therapeutic hypothermia in low-resource settings: lessons from the HELIX trial. Indian J Pediatr. 2021 Jul. Epub ahead of print. http://dx.doi.org/10.1007/s12098-021-03861-y. Thayyil S, Pant S, Montaldo P, Shukla D, Oliveira V, Ivain P, . Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob Health. 2021 Sep;9(9):e1273–85. Naureen I, Waheed KA, Rathore AW, Victor S, Mallucci C, Goodden JR, . Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss. Fluids Barriers CNS. 2013 Dec;10(1):34. Lawn JE, Manandhar A, Haws RA, Darmstadt GL. Reducing one million child deaths from birth asphyxia: a survey of health systems gaps and priorities. Health Res Policy Syst. 2007 Dec;5(1):4. Mercuri E, Guzzetta A, Haataja L, Cowan F, Rutherford M, Counsell S, . Neonatal neurological examination in infants with hypoxic ischaemic encephalopathy: correlation with MRI findings. Neuropediatrics. 1999 Apr;30(2):83–9. Chouthai NS, Sobczak H, Khan R, Subramanian D, Raman S, Rao R. Hyperglycemia is associated with poor outcome in newborn infants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J Neonatal Perinatal Med. 2015 Jul;8(2):125. Gunn AJ, Parer JT, Mallard EC, Williams CE, Gluckman PD. Cerebral histologic and electrocorticographic changes after asphyxia in fetal sheep. Pediatr Res. 1992 May;31(5):486–91. Lawn JE, Lee AC, Kinney M, Sibley L, Carlo WA, Paul VK, . Two million intrapartum-related stillbirths and neonatal deaths: where, why, and what can be done. Int J Gynecol Obstet. 2009 Oct;107 Suppl 1. Vannucci RC. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 1990 Apr;27(4):317–26. Allen KA, Brandon DH. Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs Rev. 2011 Sep;11(3):125–33. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, . Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ. 2010 Feb;340:c363. Mergenthaler P, Meisel A. Animal models: value and translational potency. Principles of translational science in medicine. Elsevier; 2021. p. 95–103. Castillo-Melendez M, Baburamani AA, Cabalag C, Yawno T, Witjaksono A, Miller SL, . Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure. PLoS One. 2013;8(11):e77377. Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current therapies for neonatal hypoxic-ischaemic and infection-sensitised hypoxic-ischaemic brain damage. Front Synaptic Neurosci. 2021 Aug;13:709301. Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review. J Pediatr Neurosci. 2017 Jan;12(1):1–6. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000 Aug;874(2):123–30. Basu SK, Salemi JL, Gunn AJ, Kaiser JR. Hyperglycaemia in infants with hypoxic-ischaemic encephalopathy is associated with improved outcomes after therapeutic hypothermia: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed. 2017 Jul;102(4):F299–306. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998 Mar;27(2):184–8. Vannucci RC, Vannucci SJ. Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol. 1978 Jul;4(1):73. Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME. Positron emmission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol. 1985 Mar;17(3):287–96. Bhatti A, Kumar P. Systemic effects of perinatal asphyxia. Indian J Pediatr. 2014 Mar;81(3):231. Proisy M, Mitra S, Uria-Avellana C, Sokolska M, Robertson NJ, Le Jeune F, . Brain perfusion imaging in neonates: an overview. Am J Neuroradiol. 2016 Oct;37(10):1766–73. Pinchefsky EF, Hahn CD, Kamino D, Chau V, Brant R, Moore AM, . Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study. J Pediatr. 2019 Jun;209:23–32. Johnson JI, Sudheimer KD, Davis KK, Kerndt GM, Winn BM. The sheep brain atlas. East Lansing, MI: Michigan State University; 2009. Available from: https//brains.anatomy.msu.edu/brains/sheep/index.html. Lee AC, Kozuki N, Blencowe H, Vos T, Bahalim A, Darmstadt GL, . Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013 Dec;74(Suppl 1):50–72. Al Shafouri N, Narvey M, Srinivasan G, Vallance J, Hansen G. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy. J Neonatal Perinatal Med. 2015 Jul;8(2):119. Michalski D, Keck AL, Grosche J, Martens H, Härtig W. Immunosignals of oligodendrocyte markers and myelin-associated proteins are critically affected after experimental stroke in wild-type and Alzheimer modeling mice of different ages. Front Cell Neurosci. 2018 Feb;12:23. Chavez-Valdez R, Emerson P, Goffigan-Holmes J, Kirkwood A, Martin LJ, Northington FJ. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model. Hippocampus. 2018 Aug;28(8):617. Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, . Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005 Apr;146(4):453–60. Roelfsema V, Bennet L, George S, Wu D, Guan J, Veerman M, . Window of opportunity of cerebral hypothermia for postischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab. 2004 Aug;24(8):877–86. da Silva S, Hennebert N, Denis R, Wayenberg JL. Clinical value of a single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr. 2000 Mar;89(3):320. Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, . Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs. J Pineal |
References_xml | – reference: Derrick M, Drobyshevsky A, Ji X, Tan S. A model of cerebral palsy from fetal hypoxia-ischemia. Stroke. 2007 Feb;38(2):731. – reference: Mercuri E, Guzzetta A, Haataja L, Cowan F, Rutherford M, Counsell S, . Neonatal neurological examination in infants with hypoxic ischaemic encephalopathy: correlation with MRI findings. Neuropediatrics. 1999 Apr;30(2):83–9. – reference: Castillo-Melendez M, Baburamani AA, Cabalag C, Yawno T, Witjaksono A, Miller SL, . Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure. PLoS One. 2013;8(11):e77377. – reference: Mallard EC, Williams CE, Johnston BM, Gluckman PD. Increased vulnerability to neuronal damage after umbilical cord occlusion in fetal sheep with advancing gestation. Am J Obstet Gynecol. 1994 Jan;170(1):206. – reference: Gunn AJ, Parer JT, Mallard EC, Williams CE, Gluckman PD. Cerebral histologic and electrocorticographic changes after asphyxia in fetal sheep. Pediatr Res. 1992 May;31(5):486–91. – reference: Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current therapies for neonatal hypoxic-ischaemic and infection-sensitised hypoxic-ischaemic brain damage. Front Synaptic Neurosci. 2021 Aug;13:709301. – reference: Davidson JO, Yuill CA, Zhang FG, Wassink G, Bennet L, Gunn AJ. Extending the duration of hypothermia does not further improve white matter protection after ischemia in term-equivalent fetal sheep. Sci Rep. 2016 Apr;6(1):25178. – reference: da Silva S, Hennebert N, Denis R, Wayenberg JL. Clinical value of a single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr. 2000 Mar;89(3):320. – reference: Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, . Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005 Apr;146(4):453–60. – reference: Mikrogeorgiou A, Xu D, Ferriero DM, Vannucci SJ. Assessing cerebral metabolism in the immature rodent: from extracts to real-time assessments, Dev Neurosci. 2018;40:463–74. – reference: Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest. 1997 Jan;99(2):248–56. – reference: Naureen I, Waheed KA, Rathore AW, Victor S, Mallucci C, Goodden JR, . Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss. Fluids Barriers CNS. 2013 Dec;10(1):34. – reference: Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013 Jan 31;2013(1):CD003311. – reference: Johnson JI, Sudheimer KD, Davis KK, Kerndt GM, Winn BM. The sheep brain atlas. East Lansing, MI: Michigan State University; 2009. Available from: https//brains.anatomy.msu.edu/brains/sheep/index.html. – reference: Mergenthaler P, Meisel A. Animal models: value and translational potency. Principles of translational science in medicine. Elsevier; 2021. p. 95–103. – reference: Murden S, Borbélyová V, Laštůvka Z, Mysliveček J, Otáhal J, Riljak V. Gender differences involved in the pathophysiology of the perinatal hypoxic-ischemic damage. Physiol Res. 2019 Dec;68(Suppl 3):S207–17. – reference: Polglase GR, Schmölzer GM, Roberts CT, Blank DA, Badurdeen S, Crossley KJ, . Cardiopulmonary resuscitation of asystolic newborn lambs prior to umbilical cord clamping: the timing of cord clamping matters. Front Physiol. 2020;11:902. – reference: Vannucci RC. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 1990 Apr;27(4):317–26. – reference: Bach AM, Fang AY, Bonifacio S, Rogers EE, Scheffler A, Partridge JC, . Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy. J Pediatr. 2021 Nov;238:94–101.e1. – reference: Larpthaveesarp A, Pathipati P, Ostrin S, Rajah A, Ferriero D, Gonzalez FF. Enhanced mesenchymal stromal cells or erythropoietin provide long-term functional benefit after neonatal stroke. Stroke. 2021 Jan;52(1):284. – reference: Vannucci RC, Vannucci SJ. Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol. 1978 Jul;4(1):73. – reference: Kapadia VS, Chalak LF, DuPont TL, Rollins NK, Brion LP, Wyckoff MH. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. J Pediatr. 2013 Oct;163(4):949. http://dx.doi.org/10.1016/j.jpeds.2013.04.043. – reference: Shah S, Tracy M, Smyth J. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol. 2004 Jan;24(1):16. – reference: Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976 Oct;33(10):696–705. – reference: Basu SK, Salemi JL, Gunn AJ, Kaiser JR. Hyperglycaemia in infants with hypoxic-ischaemic encephalopathy is associated with improved outcomes after therapeutic hypothermia: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed. 2017 Jul;102(4):F299–306. – reference: Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME. Positron emmission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol. 1985 Mar;17(3):287–96. – reference: Mallard EC, Gunn AJ, Williams CE, Johnston BM, Gluckman PD. Transient umbilical cord occlusion causes hippocampal damage in the fetal sheep. Am J Obstet Gynecol. 1992 Nov;167(5):1423–30. – reference: Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, . Detecting brain injury in neonatal hypoxic ischemic encephalopathy: closing the gap between experimental and clinical research. Exp Neurol. 2014 Nov;261:281–90. – reference: Guan J, Bennet L, George S, Wu D, Waldvogel HJ, Gluckman PD, . Insulin-like growth factor-1 reduces postischemic white matter injury in fetal sheep. J Cereb Blood Flow Metab. 2001 May;21(5):493–502. – reference: Draghi V, Wassink G, Zhou KQ, Bennet L, Gunn AJ, Davidson JO. Differential effects of slow rewarming after cerebral hypothermia on white matter recovery after global cerebral ischemia in near-term fetal sheep. Sci Rep. 2019 Dec;9(1):10142. – reference: Rosenkrantz TS, Hussain Z, Fitch RH. Sex differences in brain injury and repair in newborn infants: clinical evidence and biological mechanisms. Front Pediatr. 2019 Jun;7:211. – reference: Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab. 2018 Dec;38(12):2092. – reference: Thayyil S, Pant S, Montaldo P, Shukla D, Oliveira V, Ivain P, . Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob Health. 2021 Sep;9(9):e1273–85. – reference: Lawn JE, Lee AC, Kinney M, Sibley L, Carlo WA, Paul VK, . Two million intrapartum-related stillbirths and neonatal deaths: where, why, and what can be done. Int J Gynecol Obstet. 2009 Oct;107 Suppl 1. – reference: American College of Obstetricians and Gynecologists. Neonatal encephalopathy and cerebral palsy: executive summary. Obstet Gynecol. 2004 Apr;103(4):780–1. – reference: Michalski D, Keck AL, Grosche J, Martens H, Härtig W. Immunosignals of oligodendrocyte markers and myelin-associated proteins are critically affected after experimental stroke in wild-type and Alzheimer modeling mice of different ages. Front Cell Neurosci. 2018 Feb;12:23. – reference: Schmued LC, Albertson C, Slikker W. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997 Mar;751(1):37–46. – reference: McAdams RM, McPherson RJ, Kapur RP, Juul SE. Focal brain injury associated with a model of severe hypoxic-ischemic encephalopathy in nonhuman primates. Dev Neurosci. 2017;39(1–4):107. – reference: Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review. J Pediatr Neurosci. 2017 Jan;12(1):1–6. – reference: Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, . Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs. J Pineal Res. 2018 May;64(4):e12479. – reference: Nadeem M, Murray DM, Boylan GB, Dempsey EM, Ryan CA. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr. 2011 Dec;11(1):10. – reference: Lee AC, Kozuki N, Blencowe H, Vos T, Bahalim A, Darmstadt GL, . Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013 Dec;74(Suppl 1):50–72. – reference: Al Shafouri N, Narvey M, Srinivasan G, Vallance J, Hansen G. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy. J Neonatal Perinatal Med. 2015 Jul;8(2):119. – reference: Krishnan V, Kumar V, Shankaran S, Thayyil S. Rise and fall of therapeutic hypothermia in low-resource settings: lessons from the HELIX trial. Indian J Pediatr. 2021 Jul. Epub ahead of print. http://dx.doi.org/10.1007/s12098-021-03861-y. – reference: Mooney C, O’Boyle D, Finder M, Hallberg B, Walsh BH, Henshall DC, . Predictive modelling of hypoxic ischaemic encephalopathy risk following perinatal asphyxia. Heliyon. 2021 Jul;7(7):e07411. – reference: Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, . Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ. 2010 Feb;340:c363. – reference: Chouthai NS, Sobczak H, Khan R, Subramanian D, Raman S, Rao R. Hyperglycemia is associated with poor outcome in newborn infants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J Neonatal Perinatal Med. 2015 Jul;8(2):125. – reference: Allen KA, Brandon DH. Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs Rev. 2011 Sep;11(3):125–33. – reference: Björkman ST, Foster KA, O’driscoll SM, Healy GN, Lingwood BE, Burke C, . Hypoxic/ischemic models in newborn piglet: comparison of constant FiO2 versus variable FiO2 delivery. Brain Res. 2006 Jul;1100(1):110–7. – reference: Bhatti A, Kumar P. Systemic effects of perinatal asphyxia. Indian J Pediatr. 2014 Mar;81(3):231. – reference: Dwyer CM, Lawrence AB, Brown HE, Simm G. Effect of ewe and lamb genotype on gestation length, lambing ease and neonatal behaviour of lambs. Reprod Fertil Dev. 1996;8(8):1123. – reference: Roelfsema V, Bennet L, George S, Wu D, Guan J, Veerman M, . Window of opportunity of cerebral hypothermia for postischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab. 2004 Aug;24(8):877–86. – reference: Pinchefsky EF, Hahn CD, Kamino D, Chau V, Brant R, Moore AM, . Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study. J Pediatr. 2019 Jun;209:23–32. – reference: Proisy M, Mitra S, Uria-Avellana C, Sokolska M, Robertson NJ, Le Jeune F, . Brain perfusion imaging in neonates: an overview. Am J Neuroradiol. 2016 Oct;37(10):1766–73. – reference: Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000 Aug;874(2):123–30. – reference: Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998 Mar;27(2):184–8. – reference: Hutton JL, Pharoah PO. Life expectancy in severe cerebral palsy. Arch Dis Child. 2006 Mar;91(3):254. – reference: Yawno T, Castillo-Melendez M, Jenkin G, Wallace EM, Walker DW, Miller SL. Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia. Dev Neurosci. 2012;34(6):543. – reference: Mota-Rojas D, Villanueva-García D, Solimano A, Muns R, Ibarra-Ríos D, Mota-Reyes A. Pathophysiology of perinatal asphyxia in humans and animal models. Biomedicines. 2022 Feb;10(2):347. – reference: Wu T-W, Tamrazi B, Hsu K-H, Ho E, Reitman AJ, Borzage M, . Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front Neurol. 2018 May;9:293. – reference: Chavez-Valdez R, Emerson P, Goffigan-Holmes J, Kirkwood A, Martin LJ, Northington FJ. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model. Hippocampus. 2018 Aug;28(8):617. – reference: Ahearne CE, Boylan GB, Murray DM. Short and long term prognosis in perinatal asphyxia: an update. World J Clin Pediatr. 2016 Feb;5(1):67–74. – reference: Lawn JE, Manandhar A, Haws RA, Darmstadt GL. Reducing one million child deaths from birth asphyxia: a survey of health systems gaps and priorities. Health Res Policy Syst. 2007 Dec;5(1):4. |
SSID | ssj0012937 |
Score | 2.3471968 |
Snippet | Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each... |
SourceID | pubmed karger |
SourceType | Index Database Publisher |
StartPage | 277 |
SubjectTerms | Animals Biomarkers Brain - pathology Female Gliosis - pathology Humans Hypoxia-Ischemia, Brain - pathology Infant Inflammation - pathology Ischemia Models of Developmental Brain Injury and Therapy Pregnancy Sheep |
Title | Defining Longer-Term Outcomes in an Ovine Model of Moderate Perinatal Hypoxia-Ischemia |
URI | https://karger.com/doi/10.1159/000525150 https://www.ncbi.nlm.nih.gov/pubmed/35588703 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5SofQiPqrWFzl4DexusnkcRS1V7OPQSm8lTyjqbqlb0X9vkl0LCl6WZUnYZTLZb2Yy8w0A18ammfK6glKrc0QckYhjrJCxVOScSp2bmG0xooMZeZzn8ybeEWphXkL-c6RG3XILeMCNrec8EgfnfNf7UTho9BCh7XmBB61YGI1ZqCOitOEQ-jW1A9qBS9wrKPZwU7_ojzEZQaW_D_YaaxDe1Mt3AHZscQjaw-a8-wg831kXOzjApzKG36b-RwrHm8p_uX2HywLKAo4__FgYmpq9wtLFm8D_ACehsi9EZ-Dga1V-LiV68K6sfVvKLpj176e3A9R0QkAaC1qF_HyX5c4bC1lirU50LrG2PMXMiERoI5VODNOJYlgqrPymFM5wwQTPCDOE4GPQKsrCngKYSqYME6ki1BHNJU-dEYRioh1NuOU90K1Fs1jVdBeLWno9cFJLavv8R5hn_8w4B50s1ArEeMUFaFXrjb30CF6pq7h4_jqaDL8BUsWUgQ |
linkProvider | Karger AG |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1JSwMxFA5SofYiLlXrmoPXwMwkk-UoaqnaxUMrvZWsUNSZoq3ovzfJjAUFb8MwIcPL8r28vO97AFwam2bKzxWUWp0j4ohEHGOFjKUi51Tq3MRsiyHtTcj9NJ_W8Y7AhXkO-c9RGnWtLeABN5ae80gcDuebTFARahUMEFrfF3jQisRozAKPiNJaQ-hX0xZoBi1xP0Gxh5uqoz_OZASV7g7Yrr1BeFUN3y7YsMUeaA7q--598HRjXazgAPtlDL-N_UYKR6ul_3P7DucFlAUcffhvYShq9gJLFx-C_gN8DMy-EJ2Bva9F-TmX6M4fZe3rXLbBpHs7vu6huhIC0ljQZcjPd1nuvLOQJdbqROcSa8tTzIxIhDZS6cQwnSiGpcLKL0rhDBdM8IwwQwg-AI2iLOwRgKlkyjCRKkId0Vzy1BlBKCba0YRb3gHtyjSzRSV3Maus1wGHlaXW73-MefxPiwuw1RsP-rP-3fDhBLSywBuIsYtT0Fi-reyZR_OlOo8D-Q0CWpZt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+Longer-Term+Outcomes+in+an+Ovine+Model+of+Moderate+Perinatal+Hypoxia-Ischemia&rft.jtitle=Developmental+neuroscience&rft.au=Mike%2C+Jana+Krystofova&rft.au=Wu%2C+Katherine+Y.&rft.au=White%2C+Yasmine&rft.au=Pathipati%2C+Praneeti&rft.date=2022-01-01&rft.issn=0378-5866&rft.eissn=1421-9859&rft.volume=44&rft.issue=4-5&rft.spage=277&rft.epage=294&rft_id=info:doi/10.1159%2F000525150&rft_id=info%3Apmid%2F35588703&rft.externalDocID=525150 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5866&client=summon |