The Evaluation of Hyperferritinemia: An Updated Strategy Based on Advances in Detecting Genetic Abnormalities

The number of new genes implicated in iron metabolism has dramatically increased during the last few years. Alterations of these genes may cause hyperferritinemia associated or not with iron overload. Correct assignment of the specific disorder of iron metabolism requires the identification of the c...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of gastroenterology Vol. 100; no. 5; pp. 1185 - 1194
Main Authors AGUILAR-MARTINEZ, Patricia, SCHVED, Jean-Francois, BRISSOT, Pierre
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing 01.05.2005
Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The number of new genes implicated in iron metabolism has dramatically increased during the last few years. Alterations of these genes may cause hyperferritinemia associated or not with iron overload. Correct assignment of the specific disorder of iron metabolism requires the identification of the causative gene mutation. Here, we propose a rational strategy that allows targeting the gene(s) to be screened for a diagnostic purpose. This strategy relies on the age of onset of the disease, the type of clinical symptoms, the biochemical profile (elevated or normal serum transferrin saturation (TfSat)), the presence or not of visceral iron excess, and the mode of inheritance (autosomal recessive or dominant). Then, two main entities can be differentiated: genetic (adult or juvenile) hemochromatosis characterized by elevated TfSat, and hereditary hyperferritinemias where TfSat is normal (or only slightly modified). Adult genetic hemochromatosis (GH) is related mainly to mutations of the HFE gene, and exceptionally to mutations of the TFR2 gene. Juvenile GH is a rare condition related principally to mutations of the HJV gene coding for hemojuvelin, and rarely to mutations of the HAMP gene coding for hepcidin. Hereditary hyperferritinemias are linked to mutations of three genes: the L-ferritin gene responsible for the hereditary hyperferritinemia cataract syndrome (without iron overload), the ferroportin gene leading to a dominant form of iron overload, and the ceruloplasmin (CP) gene corresponding to an iron overload syndrome with neurological symptoms. The proposed strategic approach may change with the identification of other genes involved in iron metabolism.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0002-9270
1572-0241
DOI:10.1111/j.1572-0241.2005.40998.x