Contour integration and aging: the effects of element spacing, orientation alignment and stimulus duration
The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of...
Saved in:
Published in | Frontiers in psychology Vol. 4; p. 356 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-1078 1664-1078 |
DOI | 10.3389/fpsyg.2013.00356 |
Cover
Abstract | The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of contour and distracter inter-element spacing, collinearity, and stimulus duration. Spiral-shaped contours composed of Gabors were embedded within a field of distracter Gabors of uniform density. In a four alternative forced-choice task, younger and older subjects were required to report the global orientation of the contour. In Experiment 1, the absolute contour element spacing varied from two to eight times the Gabor wavelength and contour element collinearity was disrupted with five levels of orientation jitter. Contour discrimination accuracy was lower in older subjects, but the effect of aging did not vary with contour spacing or orientation jitter. Experiment 2 found that decreasing stimulus durations from 0.8 to 0.04 s had a greater effect on older subjects' performance, but only for less salient contours. Experiment 3 examined the effect of the background on contour discrimination by varying the spacing and orientation of the distracter elements for contours with small and large absolute spacing. As in Experiment, the effect of aging did not vary with absolute contour spacing. Decreasing the distracter spacing, however, had a greater detrimental effect on accuracy in older subjects compared to younger subjects. Finally, both groups showed equally high accuracy when all distracters were iso-oriented. In sum, these findings suggest that aging does not affect the sensitivity of contour integration to proximity or collinearity. However, contour integration in older adults is slower and is especially vulnerable when distracters are denser than contour elements. |
---|---|
AbstractList | The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of contour and distracter inter-element spacing, collinearity, and stimulus duration. Spiral-shaped contours composed of Gabors were embedded within a field of distracter Gabors of uniform density. In a four alternative forced-choice task, younger and older subjects were required to report the global orientation of the contour. In Experiment 1, the absolute contour element spacing varied from two to eight times the Gabor wavelength and contour element collinearity was disrupted with five levels of orientation jitter. Contour discrimination accuracy was lower in older subjects, but the effect of aging did not vary with contour spacing or orientation jitter. Experiment 2 found that decreasing stimulus durations from 0.8 to 0.04 s had a greater effect on older subjects' performance, but only for less salient contours. Experiment 3 examined the effect of the background on contour discrimination by varying the spacing and orientation of the distracter elements for contours with small and large absolute spacing. As in Experiment, the effect of aging did not vary with absolute contour spacing. Decreasing the distracter spacing, however, had a greater detrimental effect on accuracy in older subjects compared to younger subjects. Finally, both groups showed equally high accuracy when all distracters were iso-oriented. In sum, these findings suggest that aging does not affect the sensitivity of contour integration to proximity or collinearity. However, contour integration in older adults is slower and is especially vulnerable when distracters are denser than contour elements. The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of contour and distracter inter-element spacing, collinearity, and stimulus duration. Spiral-shaped contours composed of Gabors were embedded within a field of distracter Gabors of uniform density. In a four alternative forced-choice task, younger and older subjects were required to report the global orientation of the contour. In Experiment 1, the absolute contour element spacing varied from two to eight times the Gabor wavelength and contour element collinearity was disrupted with five levels of orientation jitter. Contour discrimination accuracy was lower in older subjects, but the effect of aging did not vary with contour spacing or orientation jitter. Experiment 2 found that decreasing stimulus durations from 0.8 to 0.04 s had a greater effect on older subjects' performance, but only for less salient contours. Experiment 3 examined the effect of the background on contour discrimination by varying the spacing and orientation of the distracter elements for contours with small and large absolute spacing. As in Experiment, the effect of aging did not vary with absolute contour spacing. Decreasing the distracter spacing, however, had a greater detrimental effect on accuracy in older subjects compared to younger subjects. Finally, both groups showed equally high accuracy when all distracters were iso-oriented. In sum, these findings suggest that aging does not affect the sensitivity of contour integration to proximity or collinearity. However, contour integration in older adults is slower and is especially vulnerable when distracters are denser than contour elements.The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of contour and distracter inter-element spacing, collinearity, and stimulus duration. Spiral-shaped contours composed of Gabors were embedded within a field of distracter Gabors of uniform density. In a four alternative forced-choice task, younger and older subjects were required to report the global orientation of the contour. In Experiment 1, the absolute contour element spacing varied from two to eight times the Gabor wavelength and contour element collinearity was disrupted with five levels of orientation jitter. Contour discrimination accuracy was lower in older subjects, but the effect of aging did not vary with contour spacing or orientation jitter. Experiment 2 found that decreasing stimulus durations from 0.8 to 0.04 s had a greater effect on older subjects' performance, but only for less salient contours. Experiment 3 examined the effect of the background on contour discrimination by varying the spacing and orientation of the distracter elements for contours with small and large absolute spacing. As in Experiment, the effect of aging did not vary with absolute contour spacing. Decreasing the distracter spacing, however, had a greater detrimental effect on accuracy in older subjects compared to younger subjects. Finally, both groups showed equally high accuracy when all distracters were iso-oriented. In sum, these findings suggest that aging does not affect the sensitivity of contour integration to proximity or collinearity. However, contour integration in older adults is slower and is especially vulnerable when distracters are denser than contour elements. |
Author | Bennett, Patrick J. Roudaia, Eugenie Sekuler, Allison B. |
AuthorAffiliation | 1 Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada 2 Institute of Neuroscience, Multisensory Cognition Research Group, Trinity College Dublin Dublin, Ireland |
AuthorAffiliation_xml | – name: 2 Institute of Neuroscience, Multisensory Cognition Research Group, Trinity College Dublin Dublin, Ireland – name: 1 Vision and Cognitive Neuroscience Lab, Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada |
Author_xml | – sequence: 1 givenname: Eugenie surname: Roudaia fullname: Roudaia, Eugenie – sequence: 2 givenname: Patrick J. surname: Bennett fullname: Bennett, Patrick J. – sequence: 3 givenname: Allison B. surname: Sekuler fullname: Sekuler, Allison B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23801978$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1PAyEUJEbj992T4ejBVlhaoB5MTONXYuJFzwTh7YrZhQqsif9e-mWqiVzgMW9m4M0B2vbBA0InlAwZk5OLepa-mmFFKBsSwsZ8C-1TzkcDSoTc3jjvoeOU3klZI1IRUu2ivYpJQidC7qP3afA59BE7n6GJOrvgsfYW68b55hLnN8BQ12BywqHG0EIHPuM006bg5zhEV-oVrXWNX8BzgZRd17d9wrZfyh6hnVq3CY5X-yF6ub15nt4PHp_uHqbXjwPDJjwPOKPFjxtrOZNck1pIzkDIignKK1O_jsfl98IyW241SD1iYCkTxDLK6bhih-hqqTvrXzuwpjwo6lbNout0_FJBO_Ub8e5NNeFTMS4FHdEicLYSiOGjh5RV55KBttUeQp9UMauIEGWcpfV00-vHZD3g0sCXDSaGlCLUyrjluIq1axUlah6mWoSp5mGqRZiFSP4Q19r_Ur4BqtWlHw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0126449 crossref_primary_10_3758_s13414_022_02565_5 crossref_primary_10_1038_s41598_022_23139_3 crossref_primary_10_9778_cmajo_20210023 crossref_primary_10_1371_journal_pone_0310678 crossref_primary_10_1016_j_visres_2024_108394 crossref_primary_10_3389_fpsyg_2014_00348 crossref_primary_10_1016_j_acra_2018_07_024 crossref_primary_10_1080_13506285_2017_1352056 crossref_primary_10_1016_j_neurobiolaging_2017_03_004 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Roudaia, Bennett and Sekuler. 2013 |
Copyright_xml | – notice: Copyright © 2013 Roudaia, Bennett and Sekuler. 2013 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fpsyg.2013.00356 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1664-1078 |
ExternalDocumentID | PMC3687141 23801978 10_3389_fpsyg_2013_00356 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ACHQT ACXDI ADBBV ADRAZ AEGXH AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN F5P GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c396t-631ffe6cdd6386a0f7863e78237162cfb553897d3d3e7ae8a43ed1370d3161523 |
IEDL.DBID | M48 |
ISSN | 1664-1078 |
IngestDate | Thu Aug 21 14:07:32 EDT 2025 Fri Sep 05 14:17:52 EDT 2025 Thu Apr 03 07:01:55 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Tue Jul 01 01:44:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | distracters orientation suppression perceptual grouping aging contour integration collinearity |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-631ffe6cdd6386a0f7863e78237162cfb553897d3d3e7ae8a43ed1370d3161523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Frontiers in Perception Science, a specialty of Frontiers in Psychology. Edited by: Mark W. Greenlee, University of Regensburg, Germany Reviewed by: Jocelyn Faubert, Université de Montréal, Canada; Gregor Volberg, Universität Regensburg, Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyg.2013.00356 |
PMID | 23801978 |
PQID | 1372077040 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3687141 proquest_miscellaneous_1372077040 pubmed_primary_23801978 crossref_citationtrail_10_3389_fpsyg_2013_00356 crossref_primary_10_3389_fpsyg_2013_00356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-00-00 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in psychology |
PublicationTitleAlternate | Front Psychol |
PublicationYear | 2013 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | 17401551 - Exp Brain Res. 2007 Aug;181(3):427-34 8296455 - Vision Res. 1993 Dec;33(18):2589-609 19271895 - J Vis. 2009 Jan 21;9(1):25.1-15 17525231 - Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2940-6 19740414 - BMC Neurosci. 2009 Sep 09;10:114 10518600 - Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12204-9 2746337 - J Neurosci. 1989 Jul;9(7):2432-42 21330662 - Invest Ophthalmol Vis Sci. 2011 Jun 06;52(7):3955-61 17466355 - Vision Res. 2007 Jun;47(13):1769-80 8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46 17997655 - J Vis. 2007 Sep 28;7(12):13.1-9 6306066 - J Comp Neurol. 1983 May 20;216(3):303-18 9403687 - Nature. 1997 Dec 11;390(6660):602-4 23326575 - PLoS One. 2013;8(1):e54085 20462302 - J Vis. 2010 Feb 04;10(2):1.1-9 11069948 - J Neurosci. 2000 Nov 15;20(22):8410-6 12424317 - J Neurophysiol. 2002 Nov;88(5):2846-56 16405133 - Behav Res Methods. 2005 Aug;37(3):379-84 20149911 - Vision Res. 2010 Apr 7;50(8):772-8 18255036 - Neuron. 2008 Feb 7;57(3):442-51 15890381 - Vision Res. 2005 Sep;45(19):2511-22 10556091 - Curr Biol. 1999 Nov 4;9(21):1275-8 8447091 - Vision Res. 1993 Jan;33(2):173-93 11515956 - Perception. 2001;30(7):833-53 11035219 - Biol Psychol. 2000 Oct;54(1-3):35-54 19216819 - Vis Neurosci. 2009 Jan-Feb;26(1):109-21 18765818 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13122-6 10788637 - Vision Res. 2000;40(10-12):1217-26 1287983 - Vision Res. 1992 Oct;32(10):1845-64 9176953 - Spat Vis. 1997;10(4):437-42 11301076 - Vision Res. 2001 Apr;41(8):1023-37 9176952 - Spat Vis. 1997;10(4):433-6 20053109 - J Vis. 2009 Nov 23;9(12):18.1-8 18977381 - Vision Res. 2009 Jan;49(1):164-72 12546827 - Neuron. 2003 Jan 23;37(2):333-46 19271923 - J Vis. 2009 Feb 12;9(2):13.1-13 16772175 - Neuron. 2006 Jun 15;50(6):951-62 9612938 - J Opt Soc Am A Opt Image Sci Vis. 1998 Jun;15(6):1486-99 14766139 - J Physiol Paris. 2003 Mar-May;97(2-3):141-54 12678582 - J Vis. 2002;2(4):324-53 12271747 - Can J Exp Psychol. 2002 Sep;56(3):164-76 12441061 - Neuron. 2002 Nov 14;36(4):739-50 16046147 - Neuroimage. 2005 Nov 1;28(2):440-52 20055535 - J Vis. 2009 Dec 02;9(13):2.1-16 19146248 - J Vis. 2008 Jun 30;8(7):15.1-12 8248133 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10469-73 17286999 - Vision Res. 2007 Mar;47(6):818-27 18616566 - Eur J Neurosci. 2008 Jul;28(1):201-7 11369042 - Vision Res. 2001 Jun;41(14):1785-90 14766137 - J Physiol Paris. 2003 Mar-May;97(2-3):105-19 8356044 - Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7495-7 20510266 - Vision Res. 2010 Aug 6;50(17):1712-9 18831983 - Vision Res. 2008 Dec;48(28):2767-74 16945355 - Brain Res. 2006 Oct 9;1114(1):98-112 20932992 - Vision Res. 2011 Jan;51(1):65-73 16038960 - Vision Res. 2005 Oct;45(21):2728-39 17600525 - Annu Rev Neurosci. 2007;30:535-74 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 18484811 - J Vis. 2008 Mar 10;8(3):5.1-9 14664681 - Psychol Methods. 2003 Dec;8(4):434-47 16215743 - Psychol Res. 2007 Jul;71(4):427-37 21778251 - J Vis. 2011 Jul 21;11(8):12 15694323 - Neuron. 2005 Feb 3;45(3):361-6 10725929 - Nat Neurosci. 2000 Apr;3(4):384-90 12730605 - Science. 2003 May 2;300(5620):812-5 11248261 - Vision Res. 2001 Mar;41(6):711-24 17289106 - Vision Res. 2007 Mar;47(6):799-809 21949875 - PLoS One. 2011;6(9):e25151 20472034 - Neuroscience. 2010 Aug 25;169(2):874-81 10221428 - Spat Vis. 1999;12(2):211-25 23145218 - Iperception. 2010;1(3):121-42 20807055 - J Cogn Neurosci. 2011 Sep;23(9):2147-58 17449081 - Vision Res. 2007 Jun;47(12):1608-13 9021065 - Behav Brain Res. 1996 Dec;82(1):1-11 7576633 - Neuron. 1995 Oct;15(4):843-56 21345346 - Vision Res. 2011 May 11;51(9):1022-32 8506641 - Vision Res. 1993 May;33(7):993-9 19146256 - J Vis. 2008 Aug 13;8(7):23.1-19 3734925 - J Opt Soc Am A. 1986 Jun;3(6):864-7 17201362 - Psychon Bull Rev. 2006 Aug;13(4):626-35 11226793 - J Cataract Refract Surg. 2001 Feb;27(2):261-6 17209744 - J Vis. 2006 Dec 15;6(12):1412-20 2330208 - Ophthalmic Physiol Opt. 1990 Jan;10(1):21-4 10221425 - Spat Vis. 1999;12(2):143-62 10720665 - Vision Res. 2000;40(8):943-50 23622069 - Neuron. 2013 Apr 24;78(2):389-402 15607346 - Vision Res. 2005 Feb;45(3):291-300 11172054 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1935-40 11388138 - Acta Psychol (Amst). 2001 Apr;107(1-3):249-73 12593802 - Curr Biol. 2003 Feb 18;13(4):342-9 22429958 - Vision Res. 2012 May 1;60:1-6 12699083 - Vis Neurosci. 2003 Jan-Feb;20(1):51-64 |
References_xml | – reference: 3734925 - J Opt Soc Am A. 1986 Jun;3(6):864-7 – reference: 2746337 - J Neurosci. 1989 Jul;9(7):2432-42 – reference: 8248133 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10469-73 – reference: 6306066 - J Comp Neurol. 1983 May 20;216(3):303-18 – reference: 20053109 - J Vis. 2009 Nov 23;9(12):18.1-8 – reference: 19271895 - J Vis. 2009 Jan 21;9(1):25.1-15 – reference: 10221428 - Spat Vis. 1999;12(2):211-25 – reference: 2330208 - Ophthalmic Physiol Opt. 1990 Jan;10(1):21-4 – reference: 12593802 - Curr Biol. 2003 Feb 18;13(4):342-9 – reference: 20932992 - Vision Res. 2011 Jan;51(1):65-73 – reference: 20462302 - J Vis. 2010 Feb 04;10(2):1.1-9 – reference: 17401551 - Exp Brain Res. 2007 Aug;181(3):427-34 – reference: 15694323 - Neuron. 2005 Feb 3;45(3):361-6 – reference: 20149911 - Vision Res. 2010 Apr 7;50(8):772-8 – reference: 10518600 - Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12204-9 – reference: 8356044 - Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7495-7 – reference: 20807055 - J Cogn Neurosci. 2011 Sep;23(9):2147-58 – reference: 19740414 - BMC Neurosci. 2009 Sep 09;10:114 – reference: 16038960 - Vision Res. 2005 Oct;45(21):2728-39 – reference: 17466355 - Vision Res. 2007 Jun;47(13):1769-80 – reference: 12678582 - J Vis. 2002;2(4):324-53 – reference: 16046147 - Neuroimage. 2005 Nov 1;28(2):440-52 – reference: 20510266 - Vision Res. 2010 Aug 6;50(17):1712-9 – reference: 16215743 - Psychol Res. 2007 Jul;71(4):427-37 – reference: 11226793 - J Cataract Refract Surg. 2001 Feb;27(2):261-6 – reference: 17997655 - J Vis. 2007 Sep 28;7(12):13.1-9 – reference: 21949875 - PLoS One. 2011;6(9):e25151 – reference: 8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46 – reference: 11301076 - Vision Res. 2001 Apr;41(8):1023-37 – reference: 10720665 - Vision Res. 2000;40(8):943-50 – reference: 11035219 - Biol Psychol. 2000 Oct;54(1-3):35-54 – reference: 11248261 - Vision Res. 2001 Mar;41(6):711-24 – reference: 17209744 - J Vis. 2006 Dec 15;6(12):1412-20 – reference: 23145218 - Iperception. 2010;1(3):121-42 – reference: 10221425 - Spat Vis. 1999;12(2):143-62 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 15890381 - Vision Res. 2005 Sep;45(19):2511-22 – reference: 10556091 - Curr Biol. 1999 Nov 4;9(21):1275-8 – reference: 16772175 - Neuron. 2006 Jun 15;50(6):951-62 – reference: 7576633 - Neuron. 1995 Oct;15(4):843-56 – reference: 17289106 - Vision Res. 2007 Mar;47(6):799-809 – reference: 14766139 - J Physiol Paris. 2003 Mar-May;97(2-3):141-54 – reference: 11388138 - Acta Psychol (Amst). 2001 Apr;107(1-3):249-73 – reference: 12730605 - Science. 2003 May 2;300(5620):812-5 – reference: 8296455 - Vision Res. 1993 Dec;33(18):2589-609 – reference: 16405133 - Behav Res Methods. 2005 Aug;37(3):379-84 – reference: 1287983 - Vision Res. 1992 Oct;32(10):1845-64 – reference: 8447091 - Vision Res. 1993 Jan;33(2):173-93 – reference: 19146248 - J Vis. 2008 Jun 30;8(7):15.1-12 – reference: 21345346 - Vision Res. 2011 May 11;51(9):1022-32 – reference: 22429958 - Vision Res. 2012 May 1;60:1-6 – reference: 18831983 - Vision Res. 2008 Dec;48(28):2767-74 – reference: 11069948 - J Neurosci. 2000 Nov 15;20(22):8410-6 – reference: 9403687 - Nature. 1997 Dec 11;390(6660):602-4 – reference: 9176953 - Spat Vis. 1997;10(4):437-42 – reference: 12441061 - Neuron. 2002 Nov 14;36(4):739-50 – reference: 19146256 - J Vis. 2008 Aug 13;8(7):23.1-19 – reference: 12424317 - J Neurophysiol. 2002 Nov;88(5):2846-56 – reference: 18765818 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13122-6 – reference: 9612938 - J Opt Soc Am A Opt Image Sci Vis. 1998 Jun;15(6):1486-99 – reference: 18977381 - Vision Res. 2009 Jan;49(1):164-72 – reference: 11172054 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1935-40 – reference: 21330662 - Invest Ophthalmol Vis Sci. 2011 Jun 06;52(7):3955-61 – reference: 10788637 - Vision Res. 2000;40(10-12):1217-26 – reference: 14766137 - J Physiol Paris. 2003 Mar-May;97(2-3):105-19 – reference: 12699083 - Vis Neurosci. 2003 Jan-Feb;20(1):51-64 – reference: 18484811 - J Vis. 2008 Mar 10;8(3):5.1-9 – reference: 8506641 - Vision Res. 1993 May;33(7):993-9 – reference: 17286999 - Vision Res. 2007 Mar;47(6):818-27 – reference: 21778251 - J Vis. 2011 Jul 21;11(8):12 – reference: 9176952 - Spat Vis. 1997;10(4):433-6 – reference: 14664681 - Psychol Methods. 2003 Dec;8(4):434-47 – reference: 20472034 - Neuroscience. 2010 Aug 25;169(2):874-81 – reference: 12546827 - Neuron. 2003 Jan 23;37(2):333-46 – reference: 20055535 - J Vis. 2009 Dec 02;9(13):2.1-16 – reference: 17449081 - Vision Res. 2007 Jun;47(12):1608-13 – reference: 18616566 - Eur J Neurosci. 2008 Jul;28(1):201-7 – reference: 12271747 - Can J Exp Psychol. 2002 Sep;56(3):164-76 – reference: 11369042 - Vision Res. 2001 Jun;41(14):1785-90 – reference: 17525231 - Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2940-6 – reference: 19271923 - J Vis. 2009 Feb 12;9(2):13.1-13 – reference: 11515956 - Perception. 2001;30(7):833-53 – reference: 17600525 - Annu Rev Neurosci. 2007;30:535-74 – reference: 10725929 - Nat Neurosci. 2000 Apr;3(4):384-90 – reference: 23326575 - PLoS One. 2013;8(1):e54085 – reference: 18255036 - Neuron. 2008 Feb 7;57(3):442-51 – reference: 16945355 - Brain Res. 2006 Oct 9;1114(1):98-112 – reference: 23622069 - Neuron. 2013 Apr 24;78(2):389-402 – reference: 9021065 - Behav Brain Res. 1996 Dec;82(1):1-11 – reference: 17201362 - Psychon Bull Rev. 2006 Aug;13(4):626-35 – reference: 15607346 - Vision Res. 2005 Feb;45(3):291-300 – reference: 19216819 - Vis Neurosci. 2009 Jan-Feb;26(1):109-21 |
SSID | ssj0000402002 |
Score | 2.0544908 |
Snippet | The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 356 |
SubjectTerms | Psychology |
Title | Contour integration and aging: the effects of element spacing, orientation alignment and stimulus duration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23801978 https://www.proquest.com/docview/1372077040 https://pubmed.ncbi.nlm.nih.gov/PMC3687141 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-Ll7Et_VFBC-Cq83mtRVERBQR9GTB25JNslqpW227YP-9M9ltfXvdJHPIl0y-yU6-IWQvg6jKmsRHmZYyErnVkTHMRRKovbAiFjYPWb636qotru_l_cfz6HoCB7-GdlhPqt3vHr69jk5hw59gxAnn7VH-Mhg9YJYWipVyqabJLJxLCkOxm5rsB7-MoVKVhKiUAP-jk-q_5a9GUCWYg_sOBdg-H1k_eOj3dMpP59PlApmviSU9q1bCIpnyxRKZm_i30TJ5QiUq6EbHEhEACTWFo6FQ0TEFKkjr9A7ay6mvEsspuBwL7Qe01-_UD5VgWLfzEPIIggFwE89ltxxQV1ZmV0j78uLu_CqqSy1ElrfUMFKcgX1lnYP9qEwz14niXqOSDVOxzTMJjrGlHXfw1fjECO4d47rpOFLGmK-SmaJX-HVCgQc3TZLkTjotVCwyliWy5T3LlZFM6wY5Gs9mamsdciyH0U0hHkEo0gBFilCkAYoG2Z-MeKk0OP7puzsGKIWNgn8_TOF75SBlWI9Ha1gFDbJWATaxNka6QfQXKCcdUIT7a0vReQxi3FxByCnYxp82N8lcHEpo4LXNFpkZ9ku_DURmmO2EC4CdsErfAVYk8kY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour+integration+and+aging%3A+the+effects+of+element+spacing%2C+orientation+alignment+and+stimulus+duration&rft.jtitle=Frontiers+in+psychology&rft.au=Roudaia%2C+Eugenie&rft.au=Bennett%2C+Patrick+J&rft.au=Sekuler%2C+Allison+B&rft.date=2013&rft.issn=1664-1078&rft.eissn=1664-1078&rft.volume=4&rft.spage=356&rft_id=info:doi/10.3389%2Ffpsyg.2013.00356&rft_id=info%3Apmid%2F23801978&rft.externalDocID=23801978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-1078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-1078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-1078&client=summon |