Water/AOT/IPM/alcohol reverse microemulsions: Influence of salts and nonionic surfactants on structure and percolation behavior

•Hydrogen bond interactions cause NaSal assist the percolation.•Brij-56 (TX-100) makes Peff decrease and droplets diameter increase, promoting the percolation.•Spans have little effect on percolation due mainly to their small headgroup.•Alcohol can decrease evidently the activation energy by enhanci...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical thermodynamics Vol. 72; pp. 1 - 8
Main Authors Liu, Jiexiang, Zhang, Xiaoguang, Zhang, Haijiao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Hydrogen bond interactions cause NaSal assist the percolation.•Brij-56 (TX-100) makes Peff decrease and droplets diameter increase, promoting the percolation.•Spans have little effect on percolation due mainly to their small headgroup.•Alcohol can decrease evidently the activation energy by enhancing the interfacial flexibility. Influence of salts (sodium chloride, sodium salicylate and sodium cholate) and nonionic surfactants (Brij-56, TX-100, Span-20, Span-40 and Span-60) on structure and percolation behavior of water/AOT/IPM/propanol (butanol) systems were systematically investigated using conductivity and dynamic light scattering. Percolation behavior had a distinct change with different types of salts and nonionic surfactants. Addition of sodium chloride delayed the conductivity percolation, while sodium salicylate and sodium cholate assisted the percolation. Addition of Brij-56 and TX-100 promoted evidently the conductivity percolation, whereas Spans had little effect. Conductivity behavior was further discussed from the structural properties of nonionic surfactants and salts, and the surfactant packing parameter (P). Droplets sizes were measured using dynamic light scattering to underline the effect of nonionic surfactants on P. Furthermore, lnσ had a linear correlation with temperature in the range of (278.15 to 313.15)K. No percolation threshold induced by temperature was detected among all the studied systems. Moreover, the activation energy for conductivity was also estimated and discussed according to the Arrhenius-type equation.
AbstractList •Hydrogen bond interactions cause NaSal assist the percolation.•Brij-56 (TX-100) makes Peff decrease and droplets diameter increase, promoting the percolation.•Spans have little effect on percolation due mainly to their small headgroup.•Alcohol can decrease evidently the activation energy by enhancing the interfacial flexibility. Influence of salts (sodium chloride, sodium salicylate and sodium cholate) and nonionic surfactants (Brij-56, TX-100, Span-20, Span-40 and Span-60) on structure and percolation behavior of water/AOT/IPM/propanol (butanol) systems were systematically investigated using conductivity and dynamic light scattering. Percolation behavior had a distinct change with different types of salts and nonionic surfactants. Addition of sodium chloride delayed the conductivity percolation, while sodium salicylate and sodium cholate assisted the percolation. Addition of Brij-56 and TX-100 promoted evidently the conductivity percolation, whereas Spans had little effect. Conductivity behavior was further discussed from the structural properties of nonionic surfactants and salts, and the surfactant packing parameter (P). Droplets sizes were measured using dynamic light scattering to underline the effect of nonionic surfactants on P. Furthermore, lnσ had a linear correlation with temperature in the range of (278.15 to 313.15)K. No percolation threshold induced by temperature was detected among all the studied systems. Moreover, the activation energy for conductivity was also estimated and discussed according to the Arrhenius-type equation.
Influence of salts (sodium chloride, sodium salicylate and sodium cholate) and nonionic surfactants (Brij-56, TX-100, Span-20, Span-40 and Span-60) on structure and percolation behavior of water/AOT/IPM/propanol (butanol) systems were systematically investigated using conductivity and dynamic light scattering. Percolation behavior had a distinct change with different types of salts and nonionic surfactants. Addition of sodium chloride delayed the conductivity percolation, while sodium salicylate and sodium cholate assisted the percolation. Addition of Brij-56 and TX-100 promoted evidently the conductivity percolation, whereas Spans had little effect. Conductivity behavior was further discussed from the structural properties of nonionic surfactants and salts, and the surfactant packing parameter (P). Droplets sizes were measured using dynamic light scattering to underline the effect of nonionic surfactants on P. Furthermore, ln sigma had a linear correlation with temperature in the range of (278.15 to 313.15) K. No percolation threshold induced by temperature was detected among all the studied systems. Moreover, the activation energy for conductivity was also estimated and discussed according to the Arrhenius-type equation.
Author Zhang, Haijiao
Zhang, Xiaoguang
Liu, Jiexiang
Author_xml – sequence: 1
  givenname: Jiexiang
  surname: Liu
  fullname: Liu, Jiexiang
  organization: School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
– sequence: 2
  givenname: Xiaoguang
  surname: Zhang
  fullname: Zhang, Xiaoguang
  email: xgzhang@nankai.edu.cn
  organization: College of Chemistry, Nankai University, Tianjin 300071, China
– sequence: 3
  givenname: Haijiao
  surname: Zhang
  fullname: Zhang, Haijiao
  organization: School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
BookMark eNp9kDFvGyEUgFGVSnXS_oBujF3u_OAMPtopitrGUqp0SNURYe6hYGFwgbOUqX-9OM7UIRPD-z703ndJLmKKSMhHBj0DJpe7fmdrz4ENPeM9cPmGLBgo2Q2SywuyAOCsU5Kt3pHLUnYAoAYFC_L3t6mYl9f3D8vNzx9LE2x6TIFmPGIuSPfe5oT7ORSfYvlMN9GFGaNFmhwtJtRCTZxoW6bNvaVlzs7YamIbpEhLzbOtc8Zn6oDZpmBqQ-kWH83Rp_yevHUmFPzw8l6RX9--Ptzcdnf33zc313edHZSsnbBcojKT2IK03A1sVHIUTIIRMCojHIC1K8dAIBtACDNthVhZB06ttzCOwxX5dP73kNOfGUvVe18shmAiprloNgKs-HqEoaHrM9pOLyWj09bX561rNj5oBvqUXO90S65PyTXjuiVvJvvPPGS_N_npVefL2cF2_dFj1sX6U-HJZ2zslPwr9j_qQ517
CitedBy_id crossref_primary_10_1021_acs_langmuir_6b00826
crossref_primary_10_1007_s10967_017_5685_0
crossref_primary_10_1016_j_molliq_2017_08_074
crossref_primary_10_1246_cl_161127
crossref_primary_10_1016_j_colsurfa_2024_135271
crossref_primary_10_1080_01496395_2018_1445108
crossref_primary_10_1039_D0OB02371J
crossref_primary_10_1016_j_arabjc_2018_08_002
crossref_primary_10_1002_adma_201800345
crossref_primary_10_1007_s10953_017_0632_9
crossref_primary_10_1080_15685551_2022_2063011
crossref_primary_10_3139_113_110340
crossref_primary_10_1007_s11743_015_1753_z
crossref_primary_10_1021_acs_jced_6b00956
crossref_primary_10_3390_polym13091378
Cites_doi 10.1016/j.colsurfa.2005.08.013
10.1016/j.colsurfa.2004.10.003
10.1006/jcis.2001.8190
10.1021/la971248d
10.1016/j.jcis.2004.09.015
10.1016/j.colsurfa.2012.10.044
10.1016/j.jcis.2009.06.048
10.1016/j.molliq.2009.10.007
10.1021/la960687u
10.1021/j100338a004
10.1016/S0927-7757(98)00772-9
10.1016/j.ijpharm.2012.04.070
10.1039/f29817700601
10.1016/j.colsurfa.2010.02.026
10.1006/jcis.1995.1292
10.1021/jp020510a
10.1016/j.jcis.2005.02.088
10.1021/j100274a005
10.1039/ft9969203145
10.1016/S0927-7757(97)00239-2
10.1016/j.jcis.2005.12.061
10.1021/je200291v
10.1021/jp990360c
10.1016/j.jcis.2009.12.008
10.1006/jcis.1996.0512
10.1016/0927-7757(95)03413-7
10.1016/j.molliq.2006.09.003
10.1021/jp0105084
10.1021/la950818b
10.1021/j100376a024
10.1021/la011504t
10.1016/j.jcis.2012.02.062
10.1016/0166-6622(88)80128-8
10.1016/j.ijpharm.2011.09.014
10.1016/j.colsurfa.2013.05.009
10.1016/j.jct.2013.04.005
10.3866/PKU.WHXB20060105
10.1021/jp002812n
10.1021/jp210902r
10.1016/j.jcis.2004.11.054
10.1021/la7035554
10.1016/j.jcis.2005.07.072
10.1016/0021-9797(70)90024-X
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.jct.2013.12.026
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-3626
EndPage 8
ExternalDocumentID 10_1016_j_jct_2013_12_026
S0021961413004916
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
9M8
A6W
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LG5
M35
M41
MAGPM
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
UPT
VOH
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZU3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c396t-5c26e9ad5b06c2f3189685160a5089a5f00cc4f105e13055adb554cf0f97b0883
IEDL.DBID .~1
ISSN 0021-9614
IngestDate Thu Jul 10 23:21:09 EDT 2025
Tue Jul 01 01:07:18 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Fri Feb 23 02:12:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonionic surfactants
Percolation
Salts
Activation energy
AOT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-5c26e9ad5b06c2f3189685160a5089a5f00cc4f105e13055adb554cf0f97b0883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800427803
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1800427803
crossref_citationtrail_10_1016_j_jct_2013_12_026
crossref_primary_10_1016_j_jct_2013_12_026
elsevier_sciencedirect_doi_10_1016_j_jct_2013_12_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
2014-05-00
20140501
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationTitle The Journal of chemical thermodynamics
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fanun (b0020) 2010; 343
Ray, Paul, Moulik (b0040) 1996; 183
Jiang, Wang, Deng, Wang, Huang (b0160) 2008; 24
von Corswant, Söderman (b0125) 1998; 14
Nazário, Hatton, Crespo (b0045) 1996; 12
Li, He, Zheng, Xiao (b0220) 2010; 360
Paul, Mitra (b0070) 2006; 295
Mitchell, Ninham (b0175) 1981; 2
Liu, Ma, Cheng, Zhao (b0185) 1998; 135
Hait, Moulik (b0135) 2002; 18
Djekic, Primorac, Filipic, Agbaba (b0065) 2012; 433
Fanun (b0120) 2007; 135
Paul, Mitra (b0080) 2005; 288
Wines, Somasundaran (b0170) 2002; 256
Mitra, Paul (b0225) 2005; 283
Meier (b0165) 1996; 12
Ekwall, Mandell, Fontell (b0105) 1970; 33
Velazquez, Valero, Ortega (b0205) 2001; 105
Evans, Ninham (b0180) 1986; 90
Appel, Spehr, Wipf, Stühn (b0010) 2012; 376
El-Dossoki (b0150) 2010; 151
Fu, Pan, Hu, Ma (b0195) 1996; 110
Attwood (b0055) 1994
Paul, Mitra (b0085) 2006; 273
Bera, Mandal, Ojha, Kumar (b0005) 2011; 56
Zhang, Chen, Liu, Zhao, Zhang (b0140) 2012; 116
Zhang, Dong, Zhang, Disper (b0110) 2009; 30
Kundu, Paul (b0095) 2013; 63
Mathew, Patanjali, Nabi, Maitra (b0200) 1988; 30
Maitra, Mathew, Varshney (b0025) 1990; 94
Mitra, Paul (b0075) 2005; 252
Zhang, Dong, Zhang, Hong, Li (b0115) 2005; 285
Hayes, Alkhatib, del Rio, Urban (b0035) 2013; 417
Ray, Moulik (b0100) 1995; 173
Kundu, Paul (b0090) 2013; 433
Jada, Lang, Zana (b0030) 1989; 93
Liu, Ma, Cheng, Zhao (b0190) 1999; 148
Zhang, Michniak-Kohn (b0060) 2011; 421
Zhang, Dong, Zhang, Zhou, Hong (b0210) 2006; 22
Chatterjee, Mitra, Paul, Bhattacharya (b0050) 2006; 298
Kataoka, Eguchi, Masui, Miyakubo, Nakayama, Nakamura (b0155) 2003; 107
Moulik, De, Bhowmik, Panda (b0145) 1999; 103
Mays, Ilgenfritz (b0215) 1996; 92
Hait, Moulik, Rodgers, Burke, Palepu (b0015) 2001; 105
Mehta, Kaur, Mutneja, Bhasin (b0130) 2009; 338
Maitra (10.1016/j.jct.2013.12.026_b0025) 1990; 94
Hait (10.1016/j.jct.2013.12.026_b0015) 2001; 105
Attwood (10.1016/j.jct.2013.12.026_b0055) 1994
Mehta (10.1016/j.jct.2013.12.026_b0130) 2009; 338
Mitra (10.1016/j.jct.2013.12.026_b0075) 2005; 252
Hayes (10.1016/j.jct.2013.12.026_b0035) 2013; 417
Paul (10.1016/j.jct.2013.12.026_b0070) 2006; 295
Jiang (10.1016/j.jct.2013.12.026_b0160) 2008; 24
Ray (10.1016/j.jct.2013.12.026_b0040) 1996; 183
Ray (10.1016/j.jct.2013.12.026_b0100) 1995; 173
Paul (10.1016/j.jct.2013.12.026_b0080) 2005; 288
Liu (10.1016/j.jct.2013.12.026_b0185) 1998; 135
Zhang (10.1016/j.jct.2013.12.026_b0115) 2005; 285
Velazquez (10.1016/j.jct.2013.12.026_b0205) 2001; 105
Nazário (10.1016/j.jct.2013.12.026_b0045) 1996; 12
Paul (10.1016/j.jct.2013.12.026_b0085) 2006; 273
Fu (10.1016/j.jct.2013.12.026_b0195) 1996; 110
von Corswant (10.1016/j.jct.2013.12.026_b0125) 1998; 14
Evans (10.1016/j.jct.2013.12.026_b0180) 1986; 90
Djekic (10.1016/j.jct.2013.12.026_b0065) 2012; 433
Hait (10.1016/j.jct.2013.12.026_b0135) 2002; 18
Moulik (10.1016/j.jct.2013.12.026_b0145) 1999; 103
Mathew (10.1016/j.jct.2013.12.026_b0200) 1988; 30
Ekwall (10.1016/j.jct.2013.12.026_b0105) 1970; 33
Kundu (10.1016/j.jct.2013.12.026_b0095) 2013; 63
Mays (10.1016/j.jct.2013.12.026_b0215) 1996; 92
Kundu (10.1016/j.jct.2013.12.026_b0090) 2013; 433
Bera (10.1016/j.jct.2013.12.026_b0005) 2011; 56
Mitchell (10.1016/j.jct.2013.12.026_b0175) 1981; 2
Fanun (10.1016/j.jct.2013.12.026_b0020) 2010; 343
El-Dossoki (10.1016/j.jct.2013.12.026_b0150) 2010; 151
Jada (10.1016/j.jct.2013.12.026_b0030) 1989; 93
Zhang (10.1016/j.jct.2013.12.026_b0140) 2012; 116
Liu (10.1016/j.jct.2013.12.026_b0190) 1999; 148
Wines (10.1016/j.jct.2013.12.026_b0170) 2002; 256
Meier (10.1016/j.jct.2013.12.026_b0165) 1996; 12
Li (10.1016/j.jct.2013.12.026_b0220) 2010; 360
Chatterjee (10.1016/j.jct.2013.12.026_b0050) 2006; 298
Kataoka (10.1016/j.jct.2013.12.026_b0155) 2003; 107
Zhang (10.1016/j.jct.2013.12.026_b0060) 2011; 421
Fanun (10.1016/j.jct.2013.12.026_b0120) 2007; 135
Mitra (10.1016/j.jct.2013.12.026_b0225) 2005; 283
Zhang (10.1016/j.jct.2013.12.026_b0210) 2006; 22
Appel (10.1016/j.jct.2013.12.026_b0010) 2012; 376
Zhang (10.1016/j.jct.2013.12.026_b0110) 2009; 30
References_xml – volume: 22
  start-page: 22
  year: 2006
  end-page: 27
  ident: b0210
  publication-title: Acta Phys. Chim. Sin.
– volume: 14
  start-page: 3506
  year: 1998
  end-page: 3511
  ident: b0125
  publication-title: Langmuir
– volume: 360
  start-page: 150
  year: 2010
  end-page: 158
  ident: b0220
  publication-title: Colloids Surf. A
– volume: 433
  start-page: 25
  year: 2012
  end-page: 33
  ident: b0065
  publication-title: Int. J. Pharm.
– volume: 12
  start-page: 1188
  year: 1996
  end-page: 1192
  ident: b0165
  publication-title: Langmuir
– volume: 105
  start-page: 7145
  year: 2001
  end-page: 7154
  ident: b0015
  publication-title: J. Phys. Chem. B
– volume: 295
  start-page: 230
  year: 2006
  end-page: 242
  ident: b0070
  publication-title: J. Colloid Interface Sci.
– volume: 283
  start-page: 565
  year: 2005
  end-page: 577
  ident: b0225
  publication-title: J. Colloid Interface Sci.
– volume: 93
  start-page: 10
  year: 1989
  end-page: 12
  ident: b0030
  publication-title: J. Phys. Chem.
– volume: 183
  start-page: 6
  year: 1996
  end-page: 12
  ident: b0040
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 601
  year: 1981
  end-page: 629
  ident: b0175
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 12
  start-page: 6326
  year: 1996
  end-page: 6335
  ident: b0045
  publication-title: Langmuir
– volume: 343
  start-page: 496
  year: 2010
  end-page: 503
  ident: b0020
  publication-title: J. Colloid Interface Sci.
– volume: 252
  start-page: 243
  year: 2005
  end-page: 259
  ident: b0075
  publication-title: Colloids Surf. A
– volume: 92
  start-page: 3145
  year: 1996
  end-page: 3150
  ident: b0215
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 30
  start-page: 592
  year: 2009
  end-page: 596
  ident: b0110
  publication-title: Sci. Technol.
– volume: 90
  start-page: 226
  year: 1986
  end-page: 234
  ident: b0180
  publication-title: J. Phys. Chem.
– start-page: 31
  year: 1994
  ident: b0055
  publication-title: Colloid Drug Delivery System
– volume: 376
  start-page: 140
  year: 2012
  end-page: 145
  ident: b0010
  publication-title: J. Colloid Interface Sci.
– volume: 24
  start-page: 4600
  year: 2008
  end-page: 4606
  ident: b0160
  publication-title: Langmuir
– volume: 110
  start-page: 55
  year: 1996
  end-page: 61
  ident: b0195
  publication-title: Colloids Surf. A
– volume: 417
  start-page: 99
  year: 2013
  end-page: 103
  ident: b0035
  publication-title: Colloids Surf. A
– volume: 298
  start-page: 935
  year: 2006
  end-page: 941
  ident: b0050
  publication-title: J. Colloid Interface Sci.
– volume: 151
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0150
  publication-title: J. Mol. Liq.
– volume: 30
  start-page: 253
  year: 1988
  end-page: 263
  ident: b0200
  publication-title: Colloids Surf.
– volume: 338
  start-page: 542
  year: 2009
  end-page: 549
  ident: b0130
  publication-title: J. Colloid Interface Sci.
– volume: 116
  start-page: 3723
  year: 2012
  end-page: 3734
  ident: b0140
  publication-title: J. Phys. Chem. B
– volume: 63
  start-page: 148
  year: 2013
  end-page: 163
  ident: b0095
  publication-title: J. Chem. Thermodyn.
– volume: 433
  start-page: 154
  year: 2013
  end-page: 165
  ident: b0090
  publication-title: Colloids Surf. A
– volume: 105
  start-page: 10163
  year: 2001
  end-page: 10168
  ident: b0205
  publication-title: J. Phys. Chem. B
– volume: 135
  start-page: 157
  year: 1998
  end-page: 164
  ident: b0185
  publication-title: Colloids Surf. A
– volume: 148
  start-page: 291
  year: 1999
  end-page: 298
  ident: b0190
  publication-title: Colloids Surf. A
– volume: 285
  start-page: 336
  year: 2005
  end-page: 341
  ident: b0115
  publication-title: J. Colloid Interface Sci.
– volume: 107
  start-page: 12542
  year: 2003
  end-page: 12548
  ident: b0155
  publication-title: J. Phys. Chem. B
– volume: 273
  start-page: 129
  year: 2006
  end-page: 140
  ident: b0085
  publication-title: Colloids Surf. A
– volume: 256
  start-page: 183
  year: 2002
  end-page: 189
  ident: b0170
  publication-title: J. Colloid Interface Sci.
– volume: 421
  start-page: 34
  year: 2011
  end-page: 44
  ident: b0060
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 6736
  year: 2002
  end-page: 6744
  ident: b0135
  publication-title: Langmuir
– volume: 94
  start-page: 5290
  year: 1990
  end-page: 5292
  ident: b0025
  publication-title: J. Phys. Chem.
– volume: 173
  start-page: 28
  year: 1995
  end-page: 33
  ident: b0100
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 215
  year: 1970
  end-page: 235
  ident: b0105
  publication-title: J. Colloid Interface Sci.
– volume: 288
  start-page: 261
  year: 2005
  end-page: 279
  ident: b0080
  publication-title: J. Colloid Interface Sci.
– volume: 135
  start-page: 5
  year: 2007
  end-page: 13
  ident: b0120
  publication-title: J. Mol. Liq.
– volume: 103
  start-page: 7122
  year: 1999
  end-page: 7129
  ident: b0145
  publication-title: J. Phys. Chem. B
– volume: 56
  start-page: 4422
  year: 2011
  end-page: 4429
  ident: b0005
  publication-title: J. Chem. Eng. Data
– volume: 273
  start-page: 129
  year: 2006
  ident: 10.1016/j.jct.2013.12.026_b0085
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2005.08.013
– volume: 252
  start-page: 243
  year: 2005
  ident: 10.1016/j.jct.2013.12.026_b0075
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.10.003
– volume: 256
  start-page: 183
  year: 2002
  ident: 10.1016/j.jct.2013.12.026_b0170
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.8190
– volume: 14
  start-page: 3506
  year: 1998
  ident: 10.1016/j.jct.2013.12.026_b0125
  publication-title: Langmuir
  doi: 10.1021/la971248d
– volume: 283
  start-page: 565
  year: 2005
  ident: 10.1016/j.jct.2013.12.026_b0225
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.09.015
– volume: 417
  start-page: 99
  year: 2013
  ident: 10.1016/j.jct.2013.12.026_b0035
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2012.10.044
– volume: 338
  start-page: 542
  year: 2009
  ident: 10.1016/j.jct.2013.12.026_b0130
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.06.048
– volume: 151
  start-page: 1
  year: 2010
  ident: 10.1016/j.jct.2013.12.026_b0150
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2009.10.007
– volume: 12
  start-page: 6326
  year: 1996
  ident: 10.1016/j.jct.2013.12.026_b0045
  publication-title: Langmuir
  doi: 10.1021/la960687u
– volume: 93
  start-page: 10
  year: 1989
  ident: 10.1016/j.jct.2013.12.026_b0030
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100338a004
– volume: 148
  start-page: 291
  year: 1999
  ident: 10.1016/j.jct.2013.12.026_b0190
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00772-9
– volume: 433
  start-page: 25
  year: 2012
  ident: 10.1016/j.jct.2013.12.026_b0065
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2012.04.070
– volume: 2
  start-page: 601
  issue: 77
  year: 1981
  ident: 10.1016/j.jct.2013.12.026_b0175
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/f29817700601
– volume: 360
  start-page: 150
  year: 2010
  ident: 10.1016/j.jct.2013.12.026_b0220
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.02.026
– volume: 173
  start-page: 28
  year: 1995
  ident: 10.1016/j.jct.2013.12.026_b0100
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1292
– volume: 107
  start-page: 12542
  year: 2003
  ident: 10.1016/j.jct.2013.12.026_b0155
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020510a
– volume: 288
  start-page: 261
  year: 2005
  ident: 10.1016/j.jct.2013.12.026_b0080
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.02.088
– volume: 90
  start-page: 226
  year: 1986
  ident: 10.1016/j.jct.2013.12.026_b0180
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100274a005
– volume: 30
  start-page: 592
  year: 2009
  ident: 10.1016/j.jct.2013.12.026_b0110
  publication-title: Sci. Technol.
– volume: 92
  start-page: 3145
  year: 1996
  ident: 10.1016/j.jct.2013.12.026_b0215
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9969203145
– volume: 135
  start-page: 157
  year: 1998
  ident: 10.1016/j.jct.2013.12.026_b0185
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(97)00239-2
– volume: 298
  start-page: 935
  year: 2006
  ident: 10.1016/j.jct.2013.12.026_b0050
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.12.061
– volume: 56
  start-page: 4422
  year: 2011
  ident: 10.1016/j.jct.2013.12.026_b0005
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je200291v
– volume: 103
  start-page: 7122
  year: 1999
  ident: 10.1016/j.jct.2013.12.026_b0145
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990360c
– volume: 343
  start-page: 496
  year: 2010
  ident: 10.1016/j.jct.2013.12.026_b0020
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.12.008
– volume: 183
  start-page: 6
  year: 1996
  ident: 10.1016/j.jct.2013.12.026_b0040
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0512
– volume: 110
  start-page: 55
  year: 1996
  ident: 10.1016/j.jct.2013.12.026_b0195
  publication-title: Colloids Surf. A
  doi: 10.1016/0927-7757(95)03413-7
– volume: 135
  start-page: 5
  year: 2007
  ident: 10.1016/j.jct.2013.12.026_b0120
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2006.09.003
– volume: 105
  start-page: 7145
  year: 2001
  ident: 10.1016/j.jct.2013.12.026_b0015
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0105084
– volume: 12
  start-page: 1188
  year: 1996
  ident: 10.1016/j.jct.2013.12.026_b0165
  publication-title: Langmuir
  doi: 10.1021/la950818b
– volume: 94
  start-page: 5290
  year: 1990
  ident: 10.1016/j.jct.2013.12.026_b0025
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100376a024
– volume: 18
  start-page: 6736
  year: 2002
  ident: 10.1016/j.jct.2013.12.026_b0135
  publication-title: Langmuir
  doi: 10.1021/la011504t
– volume: 376
  start-page: 140
  year: 2012
  ident: 10.1016/j.jct.2013.12.026_b0010
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.02.062
– start-page: 31
  year: 1994
  ident: 10.1016/j.jct.2013.12.026_b0055
– volume: 30
  start-page: 253
  year: 1988
  ident: 10.1016/j.jct.2013.12.026_b0200
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(88)80128-8
– volume: 421
  start-page: 34
  year: 2011
  ident: 10.1016/j.jct.2013.12.026_b0060
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.09.014
– volume: 433
  start-page: 154
  year: 2013
  ident: 10.1016/j.jct.2013.12.026_b0090
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2013.05.009
– volume: 63
  start-page: 148
  year: 2013
  ident: 10.1016/j.jct.2013.12.026_b0095
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2013.04.005
– volume: 22
  start-page: 22
  issue: 1
  year: 2006
  ident: 10.1016/j.jct.2013.12.026_b0210
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB20060105
– volume: 105
  start-page: 10163
  year: 2001
  ident: 10.1016/j.jct.2013.12.026_b0205
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002812n
– volume: 116
  start-page: 3723
  year: 2012
  ident: 10.1016/j.jct.2013.12.026_b0140
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp210902r
– volume: 285
  start-page: 336
  year: 2005
  ident: 10.1016/j.jct.2013.12.026_b0115
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.11.054
– volume: 24
  start-page: 4600
  year: 2008
  ident: 10.1016/j.jct.2013.12.026_b0160
  publication-title: Langmuir
  doi: 10.1021/la7035554
– volume: 295
  start-page: 230
  year: 2006
  ident: 10.1016/j.jct.2013.12.026_b0070
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.07.072
– volume: 33
  start-page: 215
  year: 1970
  ident: 10.1016/j.jct.2013.12.026_b0105
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(70)90024-X
SSID ssj0009390
Score 2.142577
Snippet •Hydrogen bond interactions cause NaSal assist the percolation.•Brij-56 (TX-100) makes Peff decrease and droplets diameter increase, promoting the...
Influence of salts (sodium chloride, sodium salicylate and sodium cholate) and nonionic surfactants (Brij-56, TX-100, Span-20, Span-40 and Span-60) on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Activation energy
AOT
Droplets
Dynamical systems
Dynamics
Microemulsions
Nonionic
Nonionic surfactants
Percolation
Salts
Sodium
Sodium chloride
Surfactants
Title Water/AOT/IPM/alcohol reverse microemulsions: Influence of salts and nonionic surfactants on structure and percolation behavior
URI https://dx.doi.org/10.1016/j.jct.2013.12.026
https://www.proquest.com/docview/1800427803
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQO7DLBGPTugHyJE6TQn7Y-WFuVbWqZQJ2aEVvluPaElVJq6S5wr_Oe07MtGniwC2J7Cjys9_7Yn_ve4ScC2Y40zELtM10wJWOggICYZAXwoo0ZRBBnNrnTTaZ86tFutgjI58Lg7TK3vd3Pt156_5J2I9muL2_xxxfWG0QXfBAhgPKwQx2nuMsv3j8Q_MQrNtncVQEaO1PNh3Ha6WRThkztyOI-gr_j03_eGkXesaH5EOPGemw-6wjsmeqj-Rg5Eu1HZOnO0CMdTi8nYXT39eh6sreUlRnqhtDH5B0Zx7aNe6MNZd06guT0I2ljVrvGqqqJa1geaNQLm3aGvMdkCFDNxXtJGbb2rhWW1PD3HH2pD7H_xOZj3_ORpOgr6wQaCayXZDqJDNCLdMyynRiYV2LDKBXFinAa0KlNoq05hawl4lREkwtS4Ad2kZW5CX4JfaZ7MNHmS-EqsImJo81SwvLi8SqEgCVyjVcMAX_UgMS-TGVupcdx-oXa-n5ZSsJZpBoBhknEswwID9eumw7zY3XGnNvKPnXxJEQE17r9t0bVYKx8JREVWbTNjIuuvojEfv6tld_I-_hjnesyBOyD0Yyp4BcduWZm5pn5N1w-mty8wz7N-4N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROGwvFa-qUNq6ElyQ0jzsZONKPSAo2i2w9LCo3FzHa0u7WrKrZFeIS_uj-gc7dmJQq4pDJW5RYlvRzHhmbH_-BmCfU82oimmgTKYCJlUU5BgIg27ODU9TihHEsX0Ost4V-3KdXq_AL38XxsIqW9_f-HTnrds3YSvNcD4e2zu-ONswutgDGYZZTousPNN3t7huqz_1T1DJB0ly-nl43Ava0gKBojxbBKlKMs3lKC2iTCUGDZtnmHtkkcSEhcvURJFSzGDyoWPLiSVHBcZdZSLDuwVOTIrjPoM1hu7Clk348OMBV8Jps7HjsA_4e_4o1YHKJsriN2PqtiAtocO_g-FfYcHFutN1eNEmqeSokcMGrOhyEzrHvjbcFvz8hilqFR5dDsP-14tQNnV2iaWDqmpNbizKT98sp3Yrrv5I-r4SCpkZUsvpoiayHJES_Yll5iX1srIXLCwkh8xK0nDaLivtWs11hcbqDIh4UoFtuHoSeb-EVfwp_QqIzE2iu7GiaW5YnhhZYAYnuwofqMTF2w5EXqZCtTznttzGVHhA20SgGoRVg4gTgWrYgcP7LvOG5OOxxswrSvxhqQKD0GPd3nulClSWPZaRpZ4taxHnTcGTiO7-39DvoNMbXpyL8_7g7DU8xy-sgWTuwSoqTL_BtGlRvHVmSuD7U8-L3_wqKFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water%2FAOT%2FIPM%2Falcohol+reverse+microemulsions%3A+Influence+of+salts+and+nonionic+surfactants+on+structure+and+percolation+behavior&rft.jtitle=The+Journal+of+chemical+thermodynamics&rft.au=Liu%2C+Jiexiang&rft.au=Zhang%2C+Xiaoguang&rft.au=Zhang%2C+Haijiao&rft.date=2014-05-01&rft.issn=0021-9614&rft.volume=72&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.jct.2013.12.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jct_2013_12_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9614&client=summon