A novel driving lane change intent prediction model based on image data mining approach and transformer

Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient fe...

Full description

Saved in:
Bibliographic Details
Published inICT express Vol. 11; no. 3; pp. 467 - 472
Main Authors He, Junbo, Guan, Wei, Gou, Xuanyuan, Zhang, Zhiqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2025
Elsevier
한국통신학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead.
AbstractList Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead.
Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead. KCI Citation Count: 0
Author Gou, Xuanyuan
He, Junbo
Guan, Wei
Zhang, Zhiqing
Author_xml – sequence: 1
  givenname: Junbo
  surname: He
  fullname: He, Junbo
  organization: Guangxi Science and Technology Development Institute, Nanning, 530001, PR China
– sequence: 2
  givenname: Wei
  surname: Guan
  fullname: Guan, Wei
  organization: College of Mechanical Engineering, Guangxi University, Nanning, 530004, PR China
– sequence: 3
  givenname: Xuanyuan
  surname: Gou
  fullname: Gou, Xuanyuan
  email: 1600682615@qq.com
  organization: College of Mechanical Engineering, Guangxi University, Nanning, 530004, PR China
– sequence: 4
  givenname: Zhiqing
  surname: Zhang
  fullname: Zhang, Zhiqing
  email: zhangzhiqing@gxust.edu.cn
  organization: School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545000,PR China
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003219756$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9rGzEQxUVIIWmaL9CTzgVvRlppdwW9mNA_hkChpGcxK402cmzJaBdDv31lu4SeehpJvN8bzbz37DrlRIx9FNAIEN3DtoluoUaC1A2IBkBdsVupQK-MNvr6n_MNu5_nLQAII4Uw_S2b1jzlI-24L_EY08R3mIi7F0wT8ZgWSgs_FPK1Q8yJ77Ov2hFn8rxe4x6rzOOCfB_TCcfDoWR0LxyT50vBNIdc9lQ-sHcBdzPd_6137NfXL8-P31dPP75tHtdPK9eabllpGNtBm14rkh6NV96NXXCGwuDHVgQKUg2uC6MMre6190gwqm4Moo4TyLR37NPFN5VgX120GeO5Ttm-Frv--byxAvoWJIgq3lzEPuPWHkodp_w-E-eHXCaLZYluRzagaNF03SCUUFrh4PpRDMHrdug9DVC95MXLlTzPhcKbnwB7islu7Skme4rJgrA1pgp9vkBUV3KMVOzsIiVX913ILfUb8X_4H4ASna8
Cites_doi 10.1007/s13748-019-00177-z
10.1109/TITS.2020.3042504
10.1002/hfm.20173
10.1016/j.jsr.2014.02.014
10.1109/TITS.2019.2961928
10.1109/78.650093
10.1007/3-540-45103-X_50
10.1016/j.robot.2019.02.007
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.icte.2025.01.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2405-9595
EndPage 472
ExternalDocumentID oai_kci_go_kr_ARTI_10730201
oai_doaj_org_article_fa13a9668141454a8c7b18fd5387de80
10_1016_j_icte_2025_01_004
S2405959525000049
GroupedDBID 0R~
457
5VS
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ACYCR
ID FETCH-LOGICAL-c396t-50b3859754e2da9d4dcb6fc9ef8db31fef248c6fb2f3575ddae0b46bf1119fe93
IEDL.DBID DOA
ISSN 2405-9595
IngestDate Thu Jul 03 03:47:23 EDT 2025
Wed Aug 27 01:04:13 EDT 2025
Thu Jul 03 08:18:41 EDT 2025
Sat Jul 19 17:10:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optical flow algorithm
Image data mining
Neural network
Lane change intention prediction
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-50b3859754e2da9d4dcb6fc9ef8db31fef248c6fb2f3575ddae0b46bf1119fe93
OpenAccessLink https://doaj.org/article/fa13a9668141454a8c7b18fd5387de80
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10730201
doaj_primary_oai_doaj_org_article_fa13a9668141454a8c7b18fd5387de80
crossref_primary_10_1016_j_icte_2025_01_004
elsevier_sciencedirect_doi_10_1016_j_icte_2025_01_004
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
2025-06
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle ICT express
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
한국통신학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국통신학회
References Lee, Khan, Husen (bib0004) 2021; 22
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (bib0009) 2017
He, Zhang, Ren, Sun (bib0007) 2016
Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Saxena A. Brain4Ca car knows before you do via sensory-fusion deep learning architecture. arXivorg. 2016.
Y. Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, Grundmann M. Real-time Facial Surface Geometry from Monocul Vid Mobile GPUs. . arXivorg. 2019.
Zequn, W, Xi (bib0016) 2020
Schmidt, Beggiato, Hoffmann, Krems (bib0003) 2014; 49
Zhanhong, Kaiming, Zheng, Bo, Kaizuka, Nakano (bib0019) 2019
Tonutti, Ruffaldi, Cattaneo, Avizzano (bib0002) 2019; 115
Reed, Yi, Yuting, Lee (bib0010) 2015
Simonyan, Zisserman (bib0014) 2014
Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J, Gustavsson, T (eds) Image Analysis SCIA 2003 Lecture Notes in Computer Science. 2003:363–70.
Plavsic, Klinker, Bubb (bib0001) 2010; 20
Xing, Lv, Wang, Cao, Velenis (bib0015) 2020; 115
Howard, Sandler, Chu, Liang-Chieh, Bo, Mingxing (bib0013) 2019
Schuster, Paliwal (bib0020) 1997
Yu, Lin, Alazab, Tan, Gu (bib0005) 2021; 22
Bengio, Vinyals, Jaitly, N (bib0011) 2015
Tu, Hao, Yi, Wenjian, Zheng, Haifeng (bib0017) 2020
Gite, Agrawal, Kotecha (bib0018) 2019; 8
Yu (10.1016/j.icte.2025.01.004_bib0005) 2021; 22
10.1016/j.icte.2025.01.004_bib0008
Reed (10.1016/j.icte.2025.01.004_bib0010) 2015
Simonyan (10.1016/j.icte.2025.01.004_bib0014) 2014
10.1016/j.icte.2025.01.004_bib0006
Vaswani (10.1016/j.icte.2025.01.004_bib0009) 2017
Schmidt (10.1016/j.icte.2025.01.004_bib0003) 2014; 49
Zhanhong (10.1016/j.icte.2025.01.004_bib0019) 2019
Plavsic (10.1016/j.icte.2025.01.004_bib0001) 2010; 20
Bengio (10.1016/j.icte.2025.01.004_bib0011) 2015
Schuster (10.1016/j.icte.2025.01.004_bib0020) 1997
10.1016/j.icte.2025.01.004_bib0012
Tu (10.1016/j.icte.2025.01.004_bib0017) 2020
He (10.1016/j.icte.2025.01.004_bib0007) 2016
Tonutti (10.1016/j.icte.2025.01.004_bib0002) 2019; 115
Xing (10.1016/j.icte.2025.01.004_bib0015) 2020; 115
Zequn (10.1016/j.icte.2025.01.004_bib0016) 2020
Lee (10.1016/j.icte.2025.01.004_bib0004) 2021; 22
Howard (10.1016/j.icte.2025.01.004_bib0013) 2019
Gite (10.1016/j.icte.2025.01.004_bib0018) 2019; 8
References_xml – year: 2015
  ident: bib0011
  article-title: Scheduled sampling for sequence prediction with recurrent Neural networks
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15)
– reference: Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Saxena A. Brain4Ca car knows before you do via sensory-fusion deep learning architecture. arXivorg. 2016.
– volume: 115
  year: 2020
  ident: bib0015
  article-title: An ensemble deep learning approach for driver lane change intention inference
  publication-title: Transp Res. Part. C-Emer Technol
– start-page: 276
  year: 2020
  end-page: 291
  ident: bib0016
  article-title: Ultra Fast Structure-Aware Deep Lane Detection
  publication-title: ComputVisi ECCV 2020
– volume: 20
  start-page: 177
  year: 2010
  end-page: 191
  ident: bib0001
  article-title: Situation Awareness Assessment in Critical Driving Situations at Intersections by Task and Human Error Analysis
  publication-title: Human Fact Ergon Manufac Serv Indus
– year: 2014
  ident: bib0014
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0007
  article-title: Deep Residual Learning for Image Recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2016
– start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib0020
  article-title: Bidirectional Recurrent Neural Networks
  publication-title: IEEE Tran Signal Proc
– volume: 115
  start-page: 162
  year: 2019
  end-page: 173
  ident: bib0002
  article-title: Robust and subject-independent driving manoeuvre anticipation through Domain-Adversarial Recurrent Neural Networks
  publication-title: Rob. Auton. Syst.
– reference: Y. Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, Grundmann M. Real-time Facial Surface Geometry from Monocul Vid Mobile GPUs. . arXivorg. 2019.
– start-page: 6000
  year: 2017
  end-page: 6010
  ident: bib0009
  article-title: Attention is all you need
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17)
– start-page: 1314
  year: 2019
  end-page: 1324
  ident: bib0013
  article-title: Searching for MobileNetV3
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
– reference: Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J, Gustavsson, T (eds) Image Analysis SCIA 2003 Lecture Notes in Computer Science. 2003:363–70.
– volume: 8
  start-page: 293
  year: 2019
  end-page: 305
  ident: bib0018
  article-title: Early anticipation of driver's maneuver in semiautonomous vehicles using deep learning
  publication-title: Prog. Artif. Intell
– start-page: 102
  year: 2019
  end-page: 107
  ident: bib0019
  article-title: Time to lane change and completion prediction based on Gated Recurrent Unit Network
  publication-title: 2019 IEEE Intelligent Vehicles Symposium (IV)
– volume: 49
  start-page: 85
  year: 2014
  end-page: 90
  ident: bib0003
  article-title: A mathematical model for predicting lane changes using the steering wheel angle
  publication-title: J. Safety. Res.
– volume: 22
  start-page: 1001
  year: 2021
  end-page: 1013
  ident: bib0004
  article-title: Continuous Car Driving Intent Detection Using Structural Pattern Recognition
  publication-title: IEEe trans. Intell. Transp. Syst.
– volume: 22
  start-page: 4337
  year: 2021
  end-page: 4347
  ident: bib0005
  article-title: Deep Learning-Based Traffic Safety Solution for a Mixture of Autonomous and Manual Vehicles in a 5G-Enabled Intelligent Transportation System
  publication-title: Ieee Trans. Intell. Transport. Syst
– start-page: 3547
  year: 2020
  end-page: 3554
  ident: bib0017
  article-title: RESA: recurrent Feature-Shift Aggregator for Lane Detection
  publication-title: The Thirty-Fifth AAAI Conference on Artificial Intelligence
– start-page: 1252
  year: 2015
  end-page: 1260
  ident: bib0010
  article-title: Deep visual analogy-making
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15)
– volume: 8
  start-page: 293
  issue: 3
  year: 2019
  ident: 10.1016/j.icte.2025.01.004_bib0018
  article-title: Early anticipation of driver's maneuver in semiautonomous vehicles using deep learning
  publication-title: Prog. Artif. Intell
  doi: 10.1007/s13748-019-00177-z
– start-page: 3547
  year: 2020
  ident: 10.1016/j.icte.2025.01.004_bib0017
  article-title: RESA: recurrent Feature-Shift Aggregator for Lane Detection
– start-page: 102
  year: 2019
  ident: 10.1016/j.icte.2025.01.004_bib0019
  article-title: Time to lane change and completion prediction based on Gated Recurrent Unit Network
– volume: 22
  start-page: 4337
  issue: 7
  year: 2021
  ident: 10.1016/j.icte.2025.01.004_bib0005
  article-title: Deep Learning-Based Traffic Safety Solution for a Mixture of Autonomous and Manual Vehicles in a 5G-Enabled Intelligent Transportation System
  publication-title: Ieee Trans. Intell. Transport. Syst
  doi: 10.1109/TITS.2020.3042504
– volume: 115
  year: 2020
  ident: 10.1016/j.icte.2025.01.004_bib0015
  article-title: An ensemble deep learning approach for driver lane change intention inference
  publication-title: Transp Res. Part. C-Emer Technol
– volume: 20
  start-page: 177
  issue: 3
  year: 2010
  ident: 10.1016/j.icte.2025.01.004_bib0001
  article-title: Situation Awareness Assessment in Critical Driving Situations at Intersections by Task and Human Error Analysis
  publication-title: Human Fact Ergon Manufac Serv Indus
  doi: 10.1002/hfm.20173
– ident: 10.1016/j.icte.2025.01.004_bib0012
– volume: 49
  start-page: 85
  year: 2014
  ident: 10.1016/j.icte.2025.01.004_bib0003
  article-title: A mathematical model for predicting lane changes using the steering wheel angle
  publication-title: J. Safety. Res.
  doi: 10.1016/j.jsr.2014.02.014
– start-page: 6000
  year: 2017
  ident: 10.1016/j.icte.2025.01.004_bib0009
  article-title: Attention is all you need
– volume: 22
  start-page: 1001
  issue: 2
  year: 2021
  ident: 10.1016/j.icte.2025.01.004_bib0004
  article-title: Continuous Car Driving Intent Detection Using Structural Pattern Recognition
  publication-title: IEEe trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2961928
– ident: 10.1016/j.icte.2025.01.004_bib0006
– year: 2015
  ident: 10.1016/j.icte.2025.01.004_bib0011
  article-title: Scheduled sampling for sequence prediction with recurrent Neural networks
– start-page: 2673
  year: 1997
  ident: 10.1016/j.icte.2025.01.004_bib0020
  article-title: Bidirectional Recurrent Neural Networks
  publication-title: IEEE Tran Signal Proc
  doi: 10.1109/78.650093
– ident: 10.1016/j.icte.2025.01.004_bib0008
  doi: 10.1007/3-540-45103-X_50
– start-page: 1314
  year: 2019
  ident: 10.1016/j.icte.2025.01.004_bib0013
  article-title: Searching for MobileNetV3
– year: 2014
  ident: 10.1016/j.icte.2025.01.004_bib0014
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 276
  year: 2020
  ident: 10.1016/j.icte.2025.01.004_bib0016
  article-title: Ultra Fast Structure-Aware Deep Lane Detection
  publication-title: ComputVisi ECCV 2020
– volume: 115
  start-page: 162
  year: 2019
  ident: 10.1016/j.icte.2025.01.004_bib0002
  article-title: Robust and subject-independent driving manoeuvre anticipation through Domain-Adversarial Recurrent Neural Networks
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2019.02.007
– start-page: 770
  year: 2016
  ident: 10.1016/j.icte.2025.01.004_bib0007
  article-title: Deep Residual Learning for Image Recognition
– start-page: 1252
  year: 2015
  ident: 10.1016/j.icte.2025.01.004_bib0010
  article-title: Deep visual analogy-making
SSID ssj0001921197
Score 2.2927897
Snippet Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 467
SubjectTerms Image data mining
Lane change intention prediction
Neural network
Optical flow algorithm
전자/정보통신공학
Title A novel driving lane change intent prediction model based on image data mining approach and transformer
URI https://dx.doi.org/10.1016/j.icte.2025.01.004
https://doaj.org/article/fa13a9668141454a8c7b18fd5387de80
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003219756
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ICT Express , 2025, 11(3), , pp.467-472
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXAb1JcdOmbXpUUXygICh4C0mTkarblVL9_c40rawXvdhDS0vahJkm800y-YaxwzjLHSS5j0qVQSRN7iKbqiTKvVDeWCukoXnI27vs8lFeP6VPM6m-KCYs0AMHwR2DEYlBTK6EFDKVRpW5FQocdtTcedV562jzZpypl4BbaH2s3yUTArqqsuPFjANPZ5-ZbbBEHWH_D4M0XzcwY2ouVthyjxH5SWjbKpvz9RpbmmEOXGfPJ7yefvo37pqKpgQ4xazysIuXEwVE3fL3hhZhSPC8y3fDyWI5jrfVBEcRTsGhfNIliOADtTg3tePtAGZ9s8EeL84fzi6jPmdCVCZF1kbp2CYKnYRU-tiZwklX0naewoNyNhHgIZaqzMDGkCBSc874sZWZBRzzCvBFsskW6mnttxgHKEo8HEjAbp7nFrCciHFw90VqrByxo0F--j1QY-ghZuxFk7Q1SVuPhUZpj9gpifi7JNFadw9Q2bpXtv5L2SOWDgrSPUIIlh8_Vf1a-QFqU7-WVVcvXZ-n-rXR6DRc4Us4zCEQ2v6PJu6wRao4RJPtsoW2-fB7iFtau9_9oni-uVdfN_HtDg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+driving+lane+change+intent+prediction+model+based+on+image+data+mining+approach+and+transformer&rft.jtitle=ICT+express&rft.au=He%2C+Junbo&rft.au=Guan%2C+Wei&rft.au=Gou%2C+Xuanyuan&rft.au=Zhang%2C+Zhiqing&rft.date=2025-06-01&rft.issn=2405-9595&rft.eissn=2405-9595&rft.volume=11&rft.issue=3&rft.spage=467&rft.epage=472&rft_id=info:doi/10.1016%2Fj.icte.2025.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icte_2025_01_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-9595&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-9595&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-9595&client=summon