A novel driving lane change intent prediction model based on image data mining approach and transformer
Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient fe...
Saved in:
Published in | ICT express Vol. 11; no. 3; pp. 467 - 472 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
Elsevier 한국통신학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead. |
---|---|
AbstractList | Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead. Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial role in enhancing road traffic safety and guiding autonomous vehicle planning. In this study, a Face-mesh model is used to extract salient features from complex driver behavior data. Subsequently, by using the Farneback optical flow algorithm in conjunction with the ResNet-50 neural network, important lane change cues were extracted from the vehicle surroundings. The Transformer model was optimized using the Teacher-forcing training strategy and the Scheduled-sampling method, fostering faster convergence and heightened prediction accuracy. Empirical tests had shown that this model had attained an impressive precision of 98.61%, recall of 98.24 %, and an F1 score of 98.42 % when forecasting lane change intentions 0.5 s ahead. KCI Citation Count: 0 |
Author | Gou, Xuanyuan He, Junbo Guan, Wei Zhang, Zhiqing |
Author_xml | – sequence: 1 givenname: Junbo surname: He fullname: He, Junbo organization: Guangxi Science and Technology Development Institute, Nanning, 530001, PR China – sequence: 2 givenname: Wei surname: Guan fullname: Guan, Wei organization: College of Mechanical Engineering, Guangxi University, Nanning, 530004, PR China – sequence: 3 givenname: Xuanyuan surname: Gou fullname: Gou, Xuanyuan email: 1600682615@qq.com organization: College of Mechanical Engineering, Guangxi University, Nanning, 530004, PR China – sequence: 4 givenname: Zhiqing surname: Zhang fullname: Zhang, Zhiqing email: zhangzhiqing@gxust.edu.cn organization: School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545000,PR China |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003219756$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU9rGzEQxUVIIWmaL9CTzgVvRlppdwW9mNA_hkChpGcxK402cmzJaBdDv31lu4SeehpJvN8bzbz37DrlRIx9FNAIEN3DtoluoUaC1A2IBkBdsVupQK-MNvr6n_MNu5_nLQAII4Uw_S2b1jzlI-24L_EY08R3mIi7F0wT8ZgWSgs_FPK1Q8yJ77Ov2hFn8rxe4x6rzOOCfB_TCcfDoWR0LxyT50vBNIdc9lQ-sHcBdzPd_6137NfXL8-P31dPP75tHtdPK9eabllpGNtBm14rkh6NV96NXXCGwuDHVgQKUg2uC6MMre6190gwqm4Moo4TyLR37NPFN5VgX120GeO5Ttm-Frv--byxAvoWJIgq3lzEPuPWHkodp_w-E-eHXCaLZYluRzagaNF03SCUUFrh4PpRDMHrdug9DVC95MXLlTzPhcKbnwB7islu7Skme4rJgrA1pgp9vkBUV3KMVOzsIiVX913ILfUb8X_4H4ASna8 |
Cites_doi | 10.1007/s13748-019-00177-z 10.1109/TITS.2020.3042504 10.1002/hfm.20173 10.1016/j.jsr.2014.02.014 10.1109/TITS.2019.2961928 10.1109/78.650093 10.1007/3-540-45103-X_50 10.1016/j.robot.2019.02.007 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.icte.2025.01.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2405-9595 |
EndPage | 472 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10730201 oai_doaj_org_article_fa13a9668141454a8c7b18fd5387de80 10_1016_j_icte_2025_01_004 S2405959525000049 |
GroupedDBID | 0R~ 457 5VS 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M~E O9- OK1 RIG ROL SSZ AAYXX CITATION ACYCR |
ID | FETCH-LOGICAL-c396t-50b3859754e2da9d4dcb6fc9ef8db31fef248c6fb2f3575ddae0b46bf1119fe93 |
IEDL.DBID | DOA |
ISSN | 2405-9595 |
IngestDate | Thu Jul 03 03:47:23 EDT 2025 Wed Aug 27 01:04:13 EDT 2025 Thu Jul 03 08:18:41 EDT 2025 Sat Jul 19 17:10:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Optical flow algorithm Image data mining Neural network Lane change intention prediction |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-50b3859754e2da9d4dcb6fc9ef8db31fef248c6fb2f3575ddae0b46bf1119fe93 |
OpenAccessLink | https://doaj.org/article/fa13a9668141454a8c7b18fd5387de80 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10730201 doaj_primary_oai_doaj_org_article_fa13a9668141454a8c7b18fd5387de80 crossref_primary_10_1016_j_icte_2025_01_004 elsevier_sciencedirect_doi_10_1016_j_icte_2025_01_004 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 2025-06 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | ICT express |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier 한국통신학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국통신학회 |
References | Lee, Khan, Husen (bib0004) 2021; 22 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (bib0009) 2017 He, Zhang, Ren, Sun (bib0007) 2016 Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Saxena A. Brain4Ca car knows before you do via sensory-fusion deep learning architecture. arXivorg. 2016. Y. Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, Grundmann M. Real-time Facial Surface Geometry from Monocul Vid Mobile GPUs. . arXivorg. 2019. Zequn, W, Xi (bib0016) 2020 Schmidt, Beggiato, Hoffmann, Krems (bib0003) 2014; 49 Zhanhong, Kaiming, Zheng, Bo, Kaizuka, Nakano (bib0019) 2019 Tonutti, Ruffaldi, Cattaneo, Avizzano (bib0002) 2019; 115 Reed, Yi, Yuting, Lee (bib0010) 2015 Simonyan, Zisserman (bib0014) 2014 Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J, Gustavsson, T (eds) Image Analysis SCIA 2003 Lecture Notes in Computer Science. 2003:363–70. Plavsic, Klinker, Bubb (bib0001) 2010; 20 Xing, Lv, Wang, Cao, Velenis (bib0015) 2020; 115 Howard, Sandler, Chu, Liang-Chieh, Bo, Mingxing (bib0013) 2019 Schuster, Paliwal (bib0020) 1997 Yu, Lin, Alazab, Tan, Gu (bib0005) 2021; 22 Bengio, Vinyals, Jaitly, N (bib0011) 2015 Tu, Hao, Yi, Wenjian, Zheng, Haifeng (bib0017) 2020 Gite, Agrawal, Kotecha (bib0018) 2019; 8 Yu (10.1016/j.icte.2025.01.004_bib0005) 2021; 22 10.1016/j.icte.2025.01.004_bib0008 Reed (10.1016/j.icte.2025.01.004_bib0010) 2015 Simonyan (10.1016/j.icte.2025.01.004_bib0014) 2014 10.1016/j.icte.2025.01.004_bib0006 Vaswani (10.1016/j.icte.2025.01.004_bib0009) 2017 Schmidt (10.1016/j.icte.2025.01.004_bib0003) 2014; 49 Zhanhong (10.1016/j.icte.2025.01.004_bib0019) 2019 Plavsic (10.1016/j.icte.2025.01.004_bib0001) 2010; 20 Bengio (10.1016/j.icte.2025.01.004_bib0011) 2015 Schuster (10.1016/j.icte.2025.01.004_bib0020) 1997 10.1016/j.icte.2025.01.004_bib0012 Tu (10.1016/j.icte.2025.01.004_bib0017) 2020 He (10.1016/j.icte.2025.01.004_bib0007) 2016 Tonutti (10.1016/j.icte.2025.01.004_bib0002) 2019; 115 Xing (10.1016/j.icte.2025.01.004_bib0015) 2020; 115 Zequn (10.1016/j.icte.2025.01.004_bib0016) 2020 Lee (10.1016/j.icte.2025.01.004_bib0004) 2021; 22 Howard (10.1016/j.icte.2025.01.004_bib0013) 2019 Gite (10.1016/j.icte.2025.01.004_bib0018) 2019; 8 |
References_xml | – year: 2015 ident: bib0011 article-title: Scheduled sampling for sequence prediction with recurrent Neural networks publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15) – reference: Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Saxena A. Brain4Ca car knows before you do via sensory-fusion deep learning architecture. arXivorg. 2016. – volume: 115 year: 2020 ident: bib0015 article-title: An ensemble deep learning approach for driver lane change intention inference publication-title: Transp Res. Part. C-Emer Technol – start-page: 276 year: 2020 end-page: 291 ident: bib0016 article-title: Ultra Fast Structure-Aware Deep Lane Detection publication-title: ComputVisi ECCV 2020 – volume: 20 start-page: 177 year: 2010 end-page: 191 ident: bib0001 article-title: Situation Awareness Assessment in Critical Driving Situations at Intersections by Task and Human Error Analysis publication-title: Human Fact Ergon Manufac Serv Indus – year: 2014 ident: bib0014 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – start-page: 770 year: 2016 end-page: 778 ident: bib0007 article-title: Deep Residual Learning for Image Recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2016 – start-page: 2673 year: 1997 end-page: 2681 ident: bib0020 article-title: Bidirectional Recurrent Neural Networks publication-title: IEEE Tran Signal Proc – volume: 115 start-page: 162 year: 2019 end-page: 173 ident: bib0002 article-title: Robust and subject-independent driving manoeuvre anticipation through Domain-Adversarial Recurrent Neural Networks publication-title: Rob. Auton. Syst. – reference: Y. Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, Grundmann M. Real-time Facial Surface Geometry from Monocul Vid Mobile GPUs. . arXivorg. 2019. – start-page: 6000 year: 2017 end-page: 6010 ident: bib0009 article-title: Attention is all you need publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17) – start-page: 1314 year: 2019 end-page: 1324 ident: bib0013 article-title: Searching for MobileNetV3 publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) – reference: Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J, Gustavsson, T (eds) Image Analysis SCIA 2003 Lecture Notes in Computer Science. 2003:363–70. – volume: 8 start-page: 293 year: 2019 end-page: 305 ident: bib0018 article-title: Early anticipation of driver's maneuver in semiautonomous vehicles using deep learning publication-title: Prog. Artif. Intell – start-page: 102 year: 2019 end-page: 107 ident: bib0019 article-title: Time to lane change and completion prediction based on Gated Recurrent Unit Network publication-title: 2019 IEEE Intelligent Vehicles Symposium (IV) – volume: 49 start-page: 85 year: 2014 end-page: 90 ident: bib0003 article-title: A mathematical model for predicting lane changes using the steering wheel angle publication-title: J. Safety. Res. – volume: 22 start-page: 1001 year: 2021 end-page: 1013 ident: bib0004 article-title: Continuous Car Driving Intent Detection Using Structural Pattern Recognition publication-title: IEEe trans. Intell. Transp. Syst. – volume: 22 start-page: 4337 year: 2021 end-page: 4347 ident: bib0005 article-title: Deep Learning-Based Traffic Safety Solution for a Mixture of Autonomous and Manual Vehicles in a 5G-Enabled Intelligent Transportation System publication-title: Ieee Trans. Intell. Transport. Syst – start-page: 3547 year: 2020 end-page: 3554 ident: bib0017 article-title: RESA: recurrent Feature-Shift Aggregator for Lane Detection publication-title: The Thirty-Fifth AAAI Conference on Artificial Intelligence – start-page: 1252 year: 2015 end-page: 1260 ident: bib0010 article-title: Deep visual analogy-making publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15) – volume: 8 start-page: 293 issue: 3 year: 2019 ident: 10.1016/j.icte.2025.01.004_bib0018 article-title: Early anticipation of driver's maneuver in semiautonomous vehicles using deep learning publication-title: Prog. Artif. Intell doi: 10.1007/s13748-019-00177-z – start-page: 3547 year: 2020 ident: 10.1016/j.icte.2025.01.004_bib0017 article-title: RESA: recurrent Feature-Shift Aggregator for Lane Detection – start-page: 102 year: 2019 ident: 10.1016/j.icte.2025.01.004_bib0019 article-title: Time to lane change and completion prediction based on Gated Recurrent Unit Network – volume: 22 start-page: 4337 issue: 7 year: 2021 ident: 10.1016/j.icte.2025.01.004_bib0005 article-title: Deep Learning-Based Traffic Safety Solution for a Mixture of Autonomous and Manual Vehicles in a 5G-Enabled Intelligent Transportation System publication-title: Ieee Trans. Intell. Transport. Syst doi: 10.1109/TITS.2020.3042504 – volume: 115 year: 2020 ident: 10.1016/j.icte.2025.01.004_bib0015 article-title: An ensemble deep learning approach for driver lane change intention inference publication-title: Transp Res. Part. C-Emer Technol – volume: 20 start-page: 177 issue: 3 year: 2010 ident: 10.1016/j.icte.2025.01.004_bib0001 article-title: Situation Awareness Assessment in Critical Driving Situations at Intersections by Task and Human Error Analysis publication-title: Human Fact Ergon Manufac Serv Indus doi: 10.1002/hfm.20173 – ident: 10.1016/j.icte.2025.01.004_bib0012 – volume: 49 start-page: 85 year: 2014 ident: 10.1016/j.icte.2025.01.004_bib0003 article-title: A mathematical model for predicting lane changes using the steering wheel angle publication-title: J. Safety. Res. doi: 10.1016/j.jsr.2014.02.014 – start-page: 6000 year: 2017 ident: 10.1016/j.icte.2025.01.004_bib0009 article-title: Attention is all you need – volume: 22 start-page: 1001 issue: 2 year: 2021 ident: 10.1016/j.icte.2025.01.004_bib0004 article-title: Continuous Car Driving Intent Detection Using Structural Pattern Recognition publication-title: IEEe trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2961928 – ident: 10.1016/j.icte.2025.01.004_bib0006 – year: 2015 ident: 10.1016/j.icte.2025.01.004_bib0011 article-title: Scheduled sampling for sequence prediction with recurrent Neural networks – start-page: 2673 year: 1997 ident: 10.1016/j.icte.2025.01.004_bib0020 article-title: Bidirectional Recurrent Neural Networks publication-title: IEEE Tran Signal Proc doi: 10.1109/78.650093 – ident: 10.1016/j.icte.2025.01.004_bib0008 doi: 10.1007/3-540-45103-X_50 – start-page: 1314 year: 2019 ident: 10.1016/j.icte.2025.01.004_bib0013 article-title: Searching for MobileNetV3 – year: 2014 ident: 10.1016/j.icte.2025.01.004_bib0014 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – start-page: 276 year: 2020 ident: 10.1016/j.icte.2025.01.004_bib0016 article-title: Ultra Fast Structure-Aware Deep Lane Detection publication-title: ComputVisi ECCV 2020 – volume: 115 start-page: 162 year: 2019 ident: 10.1016/j.icte.2025.01.004_bib0002 article-title: Robust and subject-independent driving manoeuvre anticipation through Domain-Adversarial Recurrent Neural Networks publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2019.02.007 – start-page: 770 year: 2016 ident: 10.1016/j.icte.2025.01.004_bib0007 article-title: Deep Residual Learning for Image Recognition – start-page: 1252 year: 2015 ident: 10.1016/j.icte.2025.01.004_bib0010 article-title: Deep visual analogy-making |
SSID | ssj0001921197 |
Score | 2.2927897 |
Snippet | Lane-changing represents not only a common driving behavior but also a potentially hazardous one. Accurately predicting lane change intentions plays a crucial... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 467 |
SubjectTerms | Image data mining Lane change intention prediction Neural network Optical flow algorithm 전자/정보통신공학 |
Title | A novel driving lane change intent prediction model based on image data mining approach and transformer |
URI | https://dx.doi.org/10.1016/j.icte.2025.01.004 https://doaj.org/article/fa13a9668141454a8c7b18fd5387de80 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003219756 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ICT Express , 2025, 11(3), , pp.467-472 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXAb1JcdOmbXpUUXygICh4C0mTkarblVL9_c40rawXvdhDS0vahJkm800y-YaxwzjLHSS5j0qVQSRN7iKbqiTKvVDeWCukoXnI27vs8lFeP6VPM6m-KCYs0AMHwR2DEYlBTK6EFDKVRpW5FQocdtTcedV562jzZpypl4BbaH2s3yUTArqqsuPFjANPZ5-ZbbBEHWH_D4M0XzcwY2ouVthyjxH5SWjbKpvz9RpbmmEOXGfPJ7yefvo37pqKpgQ4xazysIuXEwVE3fL3hhZhSPC8y3fDyWI5jrfVBEcRTsGhfNIliOADtTg3tePtAGZ9s8EeL84fzi6jPmdCVCZF1kbp2CYKnYRU-tiZwklX0naewoNyNhHgIZaqzMDGkCBSc874sZWZBRzzCvBFsskW6mnttxgHKEo8HEjAbp7nFrCciHFw90VqrByxo0F--j1QY-ghZuxFk7Q1SVuPhUZpj9gpifi7JNFadw9Q2bpXtv5L2SOWDgrSPUIIlh8_Vf1a-QFqU7-WVVcvXZ-n-rXR6DRc4Us4zCEQ2v6PJu6wRao4RJPtsoW2-fB7iFtau9_9oni-uVdfN_HtDg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+driving+lane+change+intent+prediction+model+based+on+image+data+mining+approach+and+transformer&rft.jtitle=ICT+express&rft.au=He%2C+Junbo&rft.au=Guan%2C+Wei&rft.au=Gou%2C+Xuanyuan&rft.au=Zhang%2C+Zhiqing&rft.date=2025-06-01&rft.issn=2405-9595&rft.eissn=2405-9595&rft.volume=11&rft.issue=3&rft.spage=467&rft.epage=472&rft_id=info:doi/10.1016%2Fj.icte.2025.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icte_2025_01_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-9595&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-9595&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-9595&client=summon |