Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents

Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 49; no. 12; pp. 3726 - 3747
Main Authors Steinbrueck, Axel, Sedgwick, Adam C, Brewster, James T, Yan, Kai-Cheng, Shang, Ying, Knoll, Daniel M, Vargas-Zúñiga, Gabriela I, He, Xiao-Peng, Tian, He, Sessler, Jonathan L
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 22.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc. Transition metal chelators and ionophores have shown promise as alternative chemotherapeutic strategies by selectively altering the concentrations of iron, copper, and zinc in cancer cells.
AbstractList Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.
Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc. Transition metal chelators and ionophores have shown promise as alternative chemotherapeutic strategies by selectively altering the concentrations of iron, copper, and zinc in cancer cells.
Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.
Author Steinbrueck, Axel
Vargas-Zúñiga, Gabriela I
Sedgwick, Adam C
Sessler, Jonathan L
Brewster, James T
Tian, He
Knoll, Daniel M
Shang, Ying
Yan, Kai-Cheng
He, Xiao-Peng
AuthorAffiliation Department of Chemistry
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
School of Chemistry and Molecular Engineering
East China University of Science and Technology
The University of Texas at Austin
Feringa Nobel Prize Scientist Joint Research Center
AuthorAffiliation_xml – name: The University of Texas at Austin
– name: Department of Chemistry
– name: School of Chemistry and Molecular Engineering
– name: Feringa Nobel Prize Scientist Joint Research Center
– name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
– name: East China University of Science and Technology
Author_xml – sequence: 1
  givenname: Axel
  surname: Steinbrueck
  fullname: Steinbrueck, Axel
– sequence: 2
  givenname: Adam C
  surname: Sedgwick
  fullname: Sedgwick, Adam C
– sequence: 3
  givenname: James T
  surname: Brewster
  fullname: Brewster, James T
– sequence: 4
  givenname: Kai-Cheng
  surname: Yan
  fullname: Yan, Kai-Cheng
– sequence: 5
  givenname: Ying
  surname: Shang
  fullname: Shang, Ying
– sequence: 6
  givenname: Daniel M
  surname: Knoll
  fullname: Knoll, Daniel M
– sequence: 7
  givenname: Gabriela I
  surname: Vargas-Zúñiga
  fullname: Vargas-Zúñiga, Gabriela I
– sequence: 8
  givenname: Xiao-Peng
  surname: He
  fullname: He, Xiao-Peng
– sequence: 9
  givenname: He
  surname: Tian
  fullname: Tian, He
– sequence: 10
  givenname: Jonathan L
  surname: Sessler
  fullname: Sessler, Jonathan L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32525153$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktv1DAQAGALFbXblgt3KqNeECLgZ5wc0QooUiUOLWfL60zYrBw7tZ0D_x6n20JVofbil74Z2TM-Rgc-eEDoNSUfKeHtJ9vaRAhXfPsCraioSSWUEAdoRTipK0IoO0LHKe3KiqqaHaIjziSTVPIV2l1H49OQh-DxCNk4bLfgTA4xfcBTDNWDrfEdLi5M2xAhYZNwGo1zeAwO7OwAW-MtxCXDGPIWoplgzoPF5hf4nE7Ry964BK_u5hP08-uX6_VFdfnj2_f158vK8rbOlbBKbJjqyEZIsMqW04b2tQJu6q5nfV8GugEmOSG2FU1nelZT00AjRSNIz0_Qu33ecv2bGVLW45AsOGc8hDlpJpXgXArRPE8FZazUWJJCzx_RXZijLw9ZlORKKdIWdXan5s0InZ7iMJr4W98XvACyBzaGlCL02g7ZLOXP0QxOU6KXnup1u7667elFCXn_KOQ-63_x2z2Oyf51_z6InrqlQG-eMvwPEA62kw
CitedBy_id crossref_primary_10_3987_REV_22_SR_R_6
crossref_primary_10_1016_j_cbpa_2023_102321
crossref_primary_10_4103_NRR_NRR_D_24_00140
crossref_primary_10_1039_D0DT02584D
crossref_primary_10_1039_D0CS00384K
crossref_primary_10_1097_mm9_0000000000000004
crossref_primary_10_1007_s12094_023_03107_7
crossref_primary_10_1021_acs_nanolett_3c02414
crossref_primary_10_1039_D4MD00610K
crossref_primary_10_1002_ange_202213922
crossref_primary_10_3390_bios13121036
crossref_primary_10_1016_j_jbc_2024_107589
crossref_primary_10_1016_j_cbpa_2023_102315
crossref_primary_10_1139_cjc_2020_0279
crossref_primary_10_3390_ijms222413504
crossref_primary_10_1039_D3CC05834D
crossref_primary_10_3390_ph15040451
crossref_primary_10_3390_antiox12122031
crossref_primary_10_1016_j_ccr_2023_215395
crossref_primary_10_1039_D0CC08156F
crossref_primary_10_1039_D2OB01172G
crossref_primary_10_1007_s11426_024_2346_4
crossref_primary_10_1016_j_cej_2024_152111
crossref_primary_10_1016_j_molstruc_2024_141122
crossref_primary_10_1002_adhm_202300410
crossref_primary_10_22270_jddt_v14i8_6755
crossref_primary_10_1016_j_jphotochem_2024_115692
crossref_primary_10_1016_j_bioactmat_2021_12_011
crossref_primary_10_3390_genes13101725
crossref_primary_10_1016_j_cej_2023_144951
crossref_primary_10_1021_acs_jmedchem_4c01549
crossref_primary_10_1016_j_cej_2022_139444
crossref_primary_10_1002_ijc_34679
crossref_primary_10_1039_D4TB01413H
crossref_primary_10_1016_j_jhazmat_2023_131093
crossref_primary_10_1021_acs_chemrev_4c00577
crossref_primary_10_1002_anie_202201698
crossref_primary_10_1021_acsnano_3c07775
crossref_primary_10_1002_jgm_3486
crossref_primary_10_1021_acschembio_1c00122
crossref_primary_10_1016_j_scitotenv_2023_164057
crossref_primary_10_1126_sciadv_adl4018
crossref_primary_10_1021_jacs_0c11641
crossref_primary_10_1016_j_ccr_2021_214088
crossref_primary_10_1016_j_heliyon_2024_e38079
crossref_primary_10_3390_molecules27154708
crossref_primary_10_1016_j_inoche_2022_109208
crossref_primary_10_1016_j_bioorg_2023_106582
crossref_primary_10_1039_D3SC05300H
crossref_primary_10_1177_1934578X241271701
crossref_primary_10_1016_j_biomaterials_2025_123250
crossref_primary_10_1021_acs_jmedchem_3c02018
crossref_primary_10_1002_smll_202412462
crossref_primary_10_1021_acs_jmedchem_4c01273
crossref_primary_10_3390_chemosensors9040068
crossref_primary_10_1016_j_scib_2022_01_014
crossref_primary_10_1021_acs_chemrev_1c00767
crossref_primary_10_1016_j_snb_2024_135853
crossref_primary_10_1021_acsabm_1c00521
crossref_primary_10_2217_nnm_2021_0374
crossref_primary_10_1016_j_apmt_2023_101990
crossref_primary_10_3390_stresses1030011
crossref_primary_10_1002_smll_202406802
crossref_primary_10_2139_ssrn_4014910
crossref_primary_10_1016_j_ajps_2024_100948
crossref_primary_10_1016_j_jinorgbio_2021_111691
crossref_primary_10_1186_s12951_024_02343_5
crossref_primary_10_1186_s12645_023_00165_y
crossref_primary_10_1021_acs_inorgchem_2c03250
crossref_primary_10_1016_j_surfin_2025_106153
crossref_primary_10_1002_adhm_202101634
crossref_primary_10_1016_j_gce_2022_06_006
crossref_primary_10_1007_s12672_024_01023_y
crossref_primary_10_3389_fmed_2021_719800
crossref_primary_10_3389_fonc_2021_778492
crossref_primary_10_1186_s12964_024_01625_7
crossref_primary_10_1002_ange_202201698
crossref_primary_10_1002_anie_202203500
crossref_primary_10_1016_j_ica_2024_122122
crossref_primary_10_1002_ange_202309080
crossref_primary_10_1016_j_heliyon_2024_e40654
crossref_primary_10_1039_D3DT02166A
crossref_primary_10_1016_j_heliyon_2024_e27496
crossref_primary_10_1002_advs_202412225
crossref_primary_10_3390_ph16030366
crossref_primary_10_1016_j_ejmech_2021_114029
crossref_primary_10_1021_acsami_3c17357
crossref_primary_10_1016_j_mtchem_2020_100359
crossref_primary_10_1039_D1RA08624C
crossref_primary_10_1016_j_ejmech_2022_114743
crossref_primary_10_1016_j_jconrel_2024_05_014
crossref_primary_10_1021_acschembio_0c00900
crossref_primary_10_1002_ange_202203500
crossref_primary_10_1016_j_fbio_2021_101293
crossref_primary_10_1016_j_biopha_2021_111809
crossref_primary_10_3389_fimmu_2022_978909
crossref_primary_10_1002_cplu_202300624
crossref_primary_10_1039_D4CC01523A
crossref_primary_10_1016_j_compbiomed_2022_105924
crossref_primary_10_1039_D3CS00167A
crossref_primary_10_1002_adhm_202302564
crossref_primary_10_3390_biomedicines10040885
crossref_primary_10_1039_D3CE00119A
crossref_primary_10_1016_j_cinorg_2023_100011
crossref_primary_10_1002_adfm_202205013
crossref_primary_10_1039_D5NJ00043B
crossref_primary_10_1002_ctd2_166
crossref_primary_10_14233_ajchem_2023_27793
crossref_primary_10_1021_jacs_3c02033
crossref_primary_10_1038_s41598_022_25998_2
crossref_primary_10_1007_s13193_024_02171_x
crossref_primary_10_1016_j_ejmech_2022_114992
crossref_primary_10_1016_j_cej_2024_150523
crossref_primary_10_1002_cbdv_202402342
crossref_primary_10_1002_cmdc_202100172
crossref_primary_10_1021_acsnano_1c05451
crossref_primary_10_34133_bmr_0094
crossref_primary_10_1021_acsabm_0c01151
crossref_primary_10_3389_fonc_2024_1359778
crossref_primary_10_1002_anie_202309080
crossref_primary_10_1016_j_cej_2024_156732
crossref_primary_10_1021_acssensors_0c02343
crossref_primary_10_1016_j_cbpa_2021_01_016
crossref_primary_10_3390_cells13131083
crossref_primary_10_1016_j_jics_2022_100556
crossref_primary_10_1016_j_molstruc_2024_139954
crossref_primary_10_1093_mtomcs_mfab011
crossref_primary_10_1021_acs_analchem_1c03302
crossref_primary_10_1097_MD_0000000000035167
crossref_primary_10_1021_acsami_3c10025
crossref_primary_10_1002_anie_202213922
crossref_primary_10_1016_j_drup_2023_101018
crossref_primary_10_1039_D3DT00282A
Cites_doi 10.1016/j.canlet.2013.05.027
10.1021/bc200647q
10.1016/j.ica.2012.06.011
10.1038/ncomms4295
10.1039/C5DT00634A
10.1016/j.jinorgbio.2014.09.017
10.1124/mol.113.090605
10.1186/1471-2407-14-527
10.1021/cb400198p
10.1021/jm048974f
10.1021/cr400135x
10.1182/blood.V69.3.757.757
10.1016/j.ica.2019.03.006
10.1089/ars.2017.7487
10.1016/j.ejmech.2019.01.034
10.1016/j.jinorgbio.2017.12.016
10.1002/path.5104
10.1146/annurev-pathol-012615-044438
10.1002/anie.201807582
10.1073/pnas.0604979103
10.1016/S0169-409X(96)00423-1
10.1158/0008-5472.CAN-04-3577
10.1084/jem.20091488
10.1038/nrc3495
10.1038/bjc.2013.534
10.1021/acs.inorgchem.7b00542
10.1158/1078-0432.CCR-06-1954
10.1021/acs.accounts.6b00380
10.4172/2161-0495.S3-001
10.1039/C4MT00230J
10.1039/C9CC00375D
10.1016/j.cell.2009.06.034
10.1038/nchem.2778
10.4161/cbt.27633
10.1634/theoncologist.2016-0159
10.1039/C6RA26669J
10.3390/inorganics6040126
10.1158/0008-5472.CAN-08-0601
10.1021/acs.bioconjchem.8b00924
10.1021/ja109413c
10.1016/j.jinorgbio.2016.05.012
10.1016/j.ejmech.2016.05.007
10.1016/j.bioorg.2019.03.045
10.1055/s-0030-1258245
10.1021/cr60277a001
10.1038/srep38343
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c9cs00373h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE
AGRICOLA
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 3747
ExternalDocumentID 32525153
10_1039_C9CS00373H
c9cs00373h
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c396t-4c74b27d0b45ec7cc3981f67e3a6df2ffdf21be25300c948daf261a8e854840f3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 11:42:02 EDT 2025
Fri Jul 11 01:04:29 EDT 2025
Mon Jun 30 03:07:24 EDT 2025
Thu Apr 03 06:50:19 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 04:18:44 EDT 2025
Sat Jan 08 04:02:16 EST 2022
Wed Nov 11 00:26:55 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-4c74b27d0b45ec7cc3981f67e3a6df2ffdf21be25300c948daf261a8e854840f3
Notes Kai-Cheng Yan and Ying Shang contributed to this review from the East China University of Science and Technology (ECUST). Kai-Cheng received his BSc in Industrial Engineering (2017) from SHOU and he is currently pursuing his master's degree in Pharmaceutical Engineering with Prof. Xiao-Peng He at ECUST. Ying received her bachelor's in Chemistry (2017) from ECUST and is now currently studying for her PhD with Prof. Xiao-Peng He at the School of Chemistry and Molecular Engineering, ECUST.
Axel Steinbrueck, Adam C. Sedgwick and James T. Brewster II contributed to this review from The University of Texas at Austin. Axel obtained his MS in chemistry from Dresden University of Technology (DUT), Germany, and a Diplôme d'Ingénieur in chemical engineering from the European School of Chemistry, Polymers and Material Science, France. He is now pursuing his PhD studies under the guidance of Prof. Sessler at The University of Texas at Austin. Dr Sedgwick obtained his PhD in 2018 from the University of Bath. He is now a postdoctoral research fellow in the laboratory of Prof. Jonathan L. Sessler. Dr Brewster recently completed his PhD studies working under the supervision of Prof. Sessler. He has now begun his postdoctoral work with Prof. Andrew Myers at Harvard University.
Daniel M. Knoll and Gabriela I. Vargas-Zúñiga contributed to this review from The University of Texas at Austin. Dr Knoll obtained his BSc in Chemistry at the Karlsruhe Institute of Technology (KIT) in 2014. He finished his MSc in Chemistry in 2016, and his PhD thesis in 2019, both from KIT. Currently, he is a postdoctoral research fellow at the University of Texas at Austin working under the supervision of J. L. Sessler. Dr Vargas-Zúñiga received her BSc and MSc in Chemistry from the National Autonomous University of Mexico, Mexico City. She earned her PhD degree from The University of Texas at Austin in 2013 under the supervision of Prof. Sessler, where she is currently a research associate in the same group.
Prof. Xiao-Peng He and Prof. He Tian contributed to this review from the East China University of Science and Technology (ECUST). Prof. He received his PhD in Pharmaceutical Engineering (2011) from ECUST. He completed a co-tutored doctoral program at the ENS Cachan (France) from July 2008 to February 2009. Then he carried out postdoctoral research with Prof. Kaixian Chen (SIMM, CAS) at ECUST from 2011 to 2013. He is now a professor within the Feringa Nobel Prize Scientists Research Center, School of Chemistry and Molecular Engineering, ECUST. Prof. Tian was born in China in 1962. In 1999, he was appointed Cheung Kong Distinguished Professor by the Education Ministry of China. In 2011, he was selected as a member of the Chinese Academy of Science. In 2013, he became a fellow of the TWAS - the World Academy of Science - for the advancement of science in developing countries. He has been listed as a Thomson Reuters - Highly Cited Researcher in Chemistry (2014) and Materials Science (2014-2017).
Jonathan L. Sessler contributed to this review from The University of Texas at Austin. He received a BSc degree in chemistry in 1977 from the University of California, Berkeley. He obtained his PhD from Stanford University in 1982. After postdoctoral stays in Strasbourg and Kyoto, he accepted a position at the University of Texas at Austin, where he is currently a member of the Doherty-Welch Chair. He was also a WCU Professor at Yonsei University and from 2016 until 2020 held a part-time laboratory directorate at Shanghai University. He was a co-founder of Pharmacyclics, Inc. His latest technology is the basis for a new company, Oncotex, Inc.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8736-3511
0000-0002-4579-8074
0000-0002-3592-1366
0000-0001-6014-3204
0000-0002-3132-2913
0000-0003-0902-7958
0000-0003-3547-7485
0000-0002-9576-1325
PMID 32525153
PQID 2415377709
PQPubID 2047503
PageCount 22
ParticipantIDs crossref_primary_10_1039_C9CS00373H
proquest_miscellaneous_2574335448
crossref_citationtrail_10_1039_C9CS00373H
rsc_primary_c9cs00373h
proquest_journals_2415377709
proquest_miscellaneous_2412210350
pubmed_primary_32525153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200622
PublicationDateYYYYMMDD 2020-06-22
PublicationDate_xml – month: 6
  year: 2020
  text: 20200622
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Loza-Rosas (C9CS00373H-(cit16)/*[position()=1]) 2017; 56
Torti (C9CS00373H-(cit11)/*[position()=1]) 2013; 13
Bakthavatsalam (C9CS00373H-(cit49)/*[position()=1]) 2018; 57
Boesch (C9CS00373H-(cit2)/*[position()=1]) 2016; 21
Akam (C9CS00373H-(cit21)/*[position()=1]) 2018; 180
Santini (C9CS00373H-(cit33)/*[position()=1]) 2013; 114
Pramanik (C9CS00373H-(cit12)/*[position()=1]) 2019; 30
Tury (C9CS00373H-(cit17)/*[position()=1]) 2018; 246
Estrov (C9CS00373H-(cit5)/*[position()=1]) 1987; 69
Callens (C9CS00373H-(cit13)/*[position()=1]) 2010; 207
Yasumoto (C9CS00373H-(cit18)/*[position()=1]) 2004; 24
Zhang (C9CS00373H-(cit29)/*[position()=1]) 2014; 5
Oliveri (C9CS00373H-(cit48)/*[position()=1]) 2015; 142
Gaur (C9CS00373H-(cit4)/*[position()=1]) 2018; 6
Whitnall (C9CS00373H-(cit24)/*[position()=1]) 2006; 103
Antoszczak (C9CS00373H-(cit28)/*[position()=1]) 2019; 166
Schaefer-Ramadan (C9CS00373H-(cit43)/*[position()=1]) 2019; 87
Yu (C9CS00373H-(cit22)/*[position()=1]) 2012; 23
Tardito (C9CS00373H-(cit39)/*[position()=1]) 2011; 133
Abbaspour (C9CS00373H-(cit10)/*[position()=1]) 2014; 19
Theerasilp (C9CS00373H-(cit14)/*[position()=1]) 2017; 7
Gupta (C9CS00373H-(cit26)/*[position()=1]) 2009; 138
Bergeron (C9CS00373H-(cit20)/*[position()=1]) 2010
Nassar (C9CS00373H-(cit1)/*[position()=1]) 2016; 11
Cater (C9CS00373H-(cit37)/*[position()=1]) 2013; 8
Oliveri (C9CS00373H-(cit44)/*[position()=1]) 2016; 120
Heffeter (C9CS00373H-(cit23)/*[position()=1]) 2019; 30
Costello (C9CS00373H-(cit41)/*[position()=1]) 2014; 15
Yu (C9CS00373H-(cit34)/*[position()=1]) 2006; 12
Bergeron (C9CS00373H-(cit19)/*[position()=1]) 2005; 48
Kadakia (C9CS00373H-(cit38)/*[position()=1]) 2019; 55
Magda (C9CS00373H-(cit45)/*[position()=1]) 2008; 68
Oliveri (C9CS00373H-(cit8)/*[position()=1]) 2016; 162
Maret (C9CS00373H-(cit40)/*[position()=1]) 2015; 7
Fatfat (C9CS00373H-(cit42)/*[position()=1]) 2014; 14
Mai (C9CS00373H-(cit27)/*[position()=1]) 2017; 9
Fikes (C9CS00373H-(cit31)/*[position()=1]) 2019; 490
Kielar (C9CS00373H-(cit15)/*[position()=1]) 2012; 393
Fryknäs (C9CS00373H-(cit30)/*[position()=1]) 2016; 6
Trondl (C9CS00373H-(cit25)/*[position()=1]) 2014; 85
Wadhwa (C9CS00373H-(cit35)/*[position()=1]) 2013; 337
Müller (C9CS00373H-(cit36)/*[position()=1]) 2018; 13
Helsel (C9CS00373H-(cit6)/*[position()=1]) 2015; 44
Ding (C9CS00373H-(cit47)/*[position()=1]) 2005; 65
Williams (C9CS00373H-(cit3)/*[position()=1]) 1972; 72
Wang (C9CS00373H-(cit7)/*[position()=1]) 2016; 49
Lipinski (C9CS00373H-(cit9)/*[position()=1]) 1997; 23
Liu (C9CS00373H-(cit46)/*[position()=1]) 2013; 109
Osredkar (C9CS00373H-(cit32)/*[position()=1]) 2011; s3
References_xml – volume: 337
  start-page: 8
  year: 2013
  ident: C9CS00373H-(cit35)/*[position()=1]
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.05.027
– volume: 23
  start-page: 596
  year: 2012
  ident: C9CS00373H-(cit22)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc200647q
– volume: 393
  start-page: 294
  year: 2012
  ident: C9CS00373H-(cit15)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2012.06.011
– volume: 24
  start-page: 755
  year: 2004
  ident: C9CS00373H-(cit18)/*[position()=1]
  publication-title: Anticancer Res.
– volume: 5
  start-page: 3295
  year: 2014
  ident: C9CS00373H-(cit29)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4295
– volume: 44
  start-page: 8760
  year: 2015
  ident: C9CS00373H-(cit6)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT00634A
– volume: 142
  start-page: 101
  year: 2015
  ident: C9CS00373H-(cit48)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2014.09.017
– volume: 85
  start-page: 451
  year: 2014
  ident: C9CS00373H-(cit25)/*[position()=1]
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.113.090605
– volume: 14
  start-page: 527
  year: 2014
  ident: C9CS00373H-(cit42)/*[position()=1]
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-527
– volume: 8
  start-page: 1621
  year: 2013
  ident: C9CS00373H-(cit37)/*[position()=1]
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400198p
– volume: 48
  start-page: 4120
  year: 2005
  ident: C9CS00373H-(cit19)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm048974f
– volume: 114
  start-page: 815
  year: 2013
  ident: C9CS00373H-(cit33)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400135x
– volume: 69
  start-page: 757
  year: 1987
  ident: C9CS00373H-(cit5)/*[position()=1]
  publication-title: Blood
  doi: 10.1182/blood.V69.3.757.757
– volume: 490
  start-page: 139
  year: 2019
  ident: C9CS00373H-(cit31)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2019.03.006
– volume: 30
  start-page: 1062
  year: 2019
  ident: C9CS00373H-(cit23)/*[position()=1]
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2017.7487
– volume: 166
  start-page: 48
  year: 2019
  ident: C9CS00373H-(cit28)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.01.034
– volume: 180
  start-page: 186
  year: 2018
  ident: C9CS00373H-(cit21)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2017.12.016
– volume: 246
  start-page: 103
  year: 2018
  ident: C9CS00373H-(cit17)/*[position()=1]
  publication-title: J. Pathol.
  doi: 10.1002/path.5104
– volume: 11
  start-page: 47
  year: 2016
  ident: C9CS00373H-(cit1)/*[position()=1]
  publication-title: Annu. Rev. Pathol.: Mech. Dis.
  doi: 10.1146/annurev-pathol-012615-044438
– volume: 57
  start-page: 12780
  year: 2018
  ident: C9CS00373H-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807582
– volume: 103
  start-page: 14901
  year: 2006
  ident: C9CS00373H-(cit24)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0604979103
– volume: 13
  start-page: 1
  year: 2018
  ident: C9CS00373H-(cit36)/*[position()=1]
  publication-title: PLoS One
– volume: 23
  start-page: 3
  year: 1997
  ident: C9CS00373H-(cit9)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 65
  start-page: 3389
  year: 2005
  ident: C9CS00373H-(cit47)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3577
– volume: 207
  start-page: 731
  year: 2010
  ident: C9CS00373H-(cit13)/*[position()=1]
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091488
– volume: 13
  start-page: 342
  year: 2013
  ident: C9CS00373H-(cit11)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3495
– volume: 109
  start-page: 1876
  year: 2013
  ident: C9CS00373H-(cit46)/*[position()=1]
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.534
– volume: 56
  start-page: 7788
  year: 2017
  ident: C9CS00373H-(cit16)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00542
– volume: 12
  start-page: 6876
  year: 2006
  ident: C9CS00373H-(cit34)/*[position()=1]
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-1954
– volume: 49
  start-page: 2468
  year: 2016
  ident: C9CS00373H-(cit7)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00380
– volume: s3
  start-page: 1
  year: 2011
  ident: C9CS00373H-(cit32)/*[position()=1]
  publication-title: J. Clin. Toxicol.
  doi: 10.4172/2161-0495.S3-001
– volume: 7
  start-page: 202
  year: 2015
  ident: C9CS00373H-(cit40)/*[position()=1]
  publication-title: Metallomics
  doi: 10.1039/C4MT00230J
– volume: 55
  start-page: 8860
  year: 2019
  ident: C9CS00373H-(cit38)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00375D
– volume: 138
  start-page: 645
  year: 2009
  ident: C9CS00373H-(cit26)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.034
– volume: 9
  start-page: 1025
  year: 2017
  ident: C9CS00373H-(cit27)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2778
– volume: 15
  start-page: 353
  year: 2014
  ident: C9CS00373H-(cit41)/*[position()=1]
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.27633
– volume: 19
  start-page: 164
  year: 2014
  ident: C9CS00373H-(cit10)/*[position()=1]
  publication-title: J. Res. Med. Sci.
– volume: 21
  start-page: 1291
  year: 2016
  ident: C9CS00373H-(cit2)/*[position()=1]
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2016-0159
– volume: 7
  start-page: 11158
  year: 2017
  ident: C9CS00373H-(cit14)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26669J
– volume: 6
  start-page: 126
  year: 2018
  ident: C9CS00373H-(cit4)/*[position()=1]
  publication-title: Inorganics
  doi: 10.3390/inorganics6040126
– volume: 68
  start-page: 5318
  year: 2008
  ident: C9CS00373H-(cit45)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-0601
– volume: 30
  start-page: 841
  year: 2019
  ident: C9CS00373H-(cit12)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.8b00924
– volume: 133
  start-page: 6235
  year: 2011
  ident: C9CS00373H-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109413c
– volume: 162
  start-page: 31
  year: 2016
  ident: C9CS00373H-(cit8)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2016.05.012
– volume: 120
  start-page: 252
  year: 2016
  ident: C9CS00373H-(cit44)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2016.05.007
– volume: 87
  start-page: 366
  year: 2019
  ident: C9CS00373H-(cit43)/*[position()=1]
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2019.03.045
– start-page: 3631
  year: 2010
  ident: C9CS00373H-(cit20)/*[position()=1]
  publication-title: Synthesis
  doi: 10.1055/s-0030-1258245
– volume: 72
  start-page: 203
  year: 1972
  ident: C9CS00373H-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr60277a001
– volume: 6
  start-page: 1
  year: 2016
  ident: C9CS00373H-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep38343
SSID ssj0011762
Score 2.6421275
SecondaryResourceType review_article
Snippet Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3726
SubjectTerms Antineoplastic Agents - chemistry
Antineoplastic Agents - therapeutic use
Cancer
Chelating Agents - chemistry
Coordination Complexes - chemistry
Coordination Complexes - therapeutic use
Copper
cytotoxicity
death
drug resistance
drug therapy
Humans
ionophores
Ionophores - chemistry
Iron
neoplasms
Neoplasms - drug therapy
patients
quality of life
Selectivity
Side effects
Stem cells
Toxicity
Transition Elements - chemistry
Transition metals
Tumors
Zinc
Title Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents
URI https://www.ncbi.nlm.nih.gov/pubmed/32525153
https://www.proquest.com/docview/2415377709
https://www.proquest.com/docview/2412210350
https://www.proquest.com/docview/2574335448
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoAL4lVIKcgILogu3djeh48hShUglEMTqZxWXtvbgEg2ykNC_B3-KOO1vZvQqAIuVuS1HMvzeTxjj79B6BUXaZwKKQLwUKKA6bgbCJbTgKcKatMCMGPOOz6dx8MJ-3AZXbZav7ailjbr_K38ufddyf9IFepAruaV7D9Itu4UKuA3yBdKkDCUfydjs9FUMVcmE7Rh-pia2LbSpj0D3RjsVFT3BOW8XExLcLJNhpnVzNxMz2yK3CoCTOql6WW2_TDrjbjyjE81qYHnGfBRn47VtD6wMUk08-VGW23b-6HrSI4Lra58_vaeErPmnPbdEnpwiUKq6N0mgvuj-BrAf1rF9MUh2h1WEJPTJiCNa2uPRPzIqngTl9VuS-1Rc8YRuuBqbdUyi8OAJZYp0uttS3Xq8Um2tDBNSLy1o9PEknpe2y1CashWJZcrQ8NDp82e6OMAzj9nZ5PRKBsPLse30AEBX4S00UFvMH4_qi-ruknsLqvswD0LLuWnTd-7ds81ZwZMm6VPOVOZNuN76K7zSXDPAuw-aun5A3S7nrSH6FsDNFwBDde4OsE7MDvBADLcgAyLFa5Ahj3IsAUZ_hNk2ILsEZqcDcb9YeCSdASS8ngdMJmwnCQqzFmkZSKhNu0WcaKpiFVBigKKbq5JRMNQcgYqoACnXaQ6BV-ZhQU9RO15OddPEFaCKwZbkJDg5MahysG0T3NGQ8VjLlTaQa_9FGbSMdibRCrfsyqSgvKsz_sX1XQPO-hl3XZheVv2tjr2ksjcul5lxqalSZKEvINe1J9hxs1VmpjrclO1IaRrbuVvaBOBdU4jxmDgj62U66FQEoFjEdEOOgSx19UNXDroaP-HbKGKo5uH_RTdadbeMWqvYbU_A9N5nT930P0NUzrJLg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+metal+chelators%2C+pro-chelators%2C+and+ionophores+as+small+molecule+cancer+chemotherapeutic+agents&rft.jtitle=Chemical+Society+reviews&rft.au=Steinbrueck%2C+Axel&rft.au=Sedgwick%2C+Adam+C&rft.au=Brewster%2C+James+T&rft.au=Kai-Cheng%2C+Yan&rft.date=2020-06-22&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=49&rft.issue=12&rft.spage=3726&rft.epage=3747&rft_id=info:doi/10.1039%2Fc9cs00373h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon