Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents
Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug...
Saved in:
Published in | Chemical Society reviews Vol. 49; no. 12; pp. 3726 - 3747 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
22.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.
Transition metal chelators and ionophores have shown promise as alternative chemotherapeutic strategies by selectively altering the concentrations of iron, copper, and zinc in cancer cells. |
---|---|
AbstractList | Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc. Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc. Transition metal chelators and ionophores have shown promise as alternative chemotherapeutic strategies by selectively altering the concentrations of iron, copper, and zinc in cancer cells. Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc. |
Author | Steinbrueck, Axel Vargas-Zúñiga, Gabriela I Sedgwick, Adam C Sessler, Jonathan L Brewster, James T Tian, He Knoll, Daniel M Shang, Ying Yan, Kai-Cheng He, Xiao-Peng |
AuthorAffiliation | Department of Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering School of Chemistry and Molecular Engineering East China University of Science and Technology The University of Texas at Austin Feringa Nobel Prize Scientist Joint Research Center |
AuthorAffiliation_xml | – name: The University of Texas at Austin – name: Department of Chemistry – name: School of Chemistry and Molecular Engineering – name: Feringa Nobel Prize Scientist Joint Research Center – name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering – name: East China University of Science and Technology |
Author_xml | – sequence: 1 givenname: Axel surname: Steinbrueck fullname: Steinbrueck, Axel – sequence: 2 givenname: Adam C surname: Sedgwick fullname: Sedgwick, Adam C – sequence: 3 givenname: James T surname: Brewster fullname: Brewster, James T – sequence: 4 givenname: Kai-Cheng surname: Yan fullname: Yan, Kai-Cheng – sequence: 5 givenname: Ying surname: Shang fullname: Shang, Ying – sequence: 6 givenname: Daniel M surname: Knoll fullname: Knoll, Daniel M – sequence: 7 givenname: Gabriela I surname: Vargas-Zúñiga fullname: Vargas-Zúñiga, Gabriela I – sequence: 8 givenname: Xiao-Peng surname: He fullname: He, Xiao-Peng – sequence: 9 givenname: He surname: Tian fullname: Tian, He – sequence: 10 givenname: Jonathan L surname: Sessler fullname: Sessler, Jonathan L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32525153$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ktv1DAQAGALFbXblgt3KqNeECLgZ5wc0QooUiUOLWfL60zYrBw7tZ0D_x6n20JVofbil74Z2TM-Rgc-eEDoNSUfKeHtJ9vaRAhXfPsCraioSSWUEAdoRTipK0IoO0LHKe3KiqqaHaIjziSTVPIV2l1H49OQh-DxCNk4bLfgTA4xfcBTDNWDrfEdLi5M2xAhYZNwGo1zeAwO7OwAW-MtxCXDGPIWoplgzoPF5hf4nE7Ry964BK_u5hP08-uX6_VFdfnj2_f158vK8rbOlbBKbJjqyEZIsMqW04b2tQJu6q5nfV8GugEmOSG2FU1nelZT00AjRSNIz0_Qu33ecv2bGVLW45AsOGc8hDlpJpXgXArRPE8FZazUWJJCzx_RXZijLw9ZlORKKdIWdXan5s0InZ7iMJr4W98XvACyBzaGlCL02g7ZLOXP0QxOU6KXnup1u7667elFCXn_KOQ-63_x2z2Oyf51_z6InrqlQG-eMvwPEA62kw |
CitedBy_id | crossref_primary_10_3987_REV_22_SR_R_6 crossref_primary_10_1016_j_cbpa_2023_102321 crossref_primary_10_4103_NRR_NRR_D_24_00140 crossref_primary_10_1039_D0DT02584D crossref_primary_10_1039_D0CS00384K crossref_primary_10_1097_mm9_0000000000000004 crossref_primary_10_1007_s12094_023_03107_7 crossref_primary_10_1021_acs_nanolett_3c02414 crossref_primary_10_1039_D4MD00610K crossref_primary_10_1002_ange_202213922 crossref_primary_10_3390_bios13121036 crossref_primary_10_1016_j_jbc_2024_107589 crossref_primary_10_1016_j_cbpa_2023_102315 crossref_primary_10_1139_cjc_2020_0279 crossref_primary_10_3390_ijms222413504 crossref_primary_10_1039_D3CC05834D crossref_primary_10_3390_ph15040451 crossref_primary_10_3390_antiox12122031 crossref_primary_10_1016_j_ccr_2023_215395 crossref_primary_10_1039_D0CC08156F crossref_primary_10_1039_D2OB01172G crossref_primary_10_1007_s11426_024_2346_4 crossref_primary_10_1016_j_cej_2024_152111 crossref_primary_10_1016_j_molstruc_2024_141122 crossref_primary_10_1002_adhm_202300410 crossref_primary_10_22270_jddt_v14i8_6755 crossref_primary_10_1016_j_jphotochem_2024_115692 crossref_primary_10_1016_j_bioactmat_2021_12_011 crossref_primary_10_3390_genes13101725 crossref_primary_10_1016_j_cej_2023_144951 crossref_primary_10_1021_acs_jmedchem_4c01549 crossref_primary_10_1016_j_cej_2022_139444 crossref_primary_10_1002_ijc_34679 crossref_primary_10_1039_D4TB01413H crossref_primary_10_1016_j_jhazmat_2023_131093 crossref_primary_10_1021_acs_chemrev_4c00577 crossref_primary_10_1002_anie_202201698 crossref_primary_10_1021_acsnano_3c07775 crossref_primary_10_1002_jgm_3486 crossref_primary_10_1021_acschembio_1c00122 crossref_primary_10_1016_j_scitotenv_2023_164057 crossref_primary_10_1126_sciadv_adl4018 crossref_primary_10_1021_jacs_0c11641 crossref_primary_10_1016_j_ccr_2021_214088 crossref_primary_10_1016_j_heliyon_2024_e38079 crossref_primary_10_3390_molecules27154708 crossref_primary_10_1016_j_inoche_2022_109208 crossref_primary_10_1016_j_bioorg_2023_106582 crossref_primary_10_1039_D3SC05300H crossref_primary_10_1177_1934578X241271701 crossref_primary_10_1016_j_biomaterials_2025_123250 crossref_primary_10_1021_acs_jmedchem_3c02018 crossref_primary_10_1002_smll_202412462 crossref_primary_10_1021_acs_jmedchem_4c01273 crossref_primary_10_3390_chemosensors9040068 crossref_primary_10_1016_j_scib_2022_01_014 crossref_primary_10_1021_acs_chemrev_1c00767 crossref_primary_10_1016_j_snb_2024_135853 crossref_primary_10_1021_acsabm_1c00521 crossref_primary_10_2217_nnm_2021_0374 crossref_primary_10_1016_j_apmt_2023_101990 crossref_primary_10_3390_stresses1030011 crossref_primary_10_1002_smll_202406802 crossref_primary_10_2139_ssrn_4014910 crossref_primary_10_1016_j_ajps_2024_100948 crossref_primary_10_1016_j_jinorgbio_2021_111691 crossref_primary_10_1186_s12951_024_02343_5 crossref_primary_10_1186_s12645_023_00165_y crossref_primary_10_1021_acs_inorgchem_2c03250 crossref_primary_10_1016_j_surfin_2025_106153 crossref_primary_10_1002_adhm_202101634 crossref_primary_10_1016_j_gce_2022_06_006 crossref_primary_10_1007_s12672_024_01023_y crossref_primary_10_3389_fmed_2021_719800 crossref_primary_10_3389_fonc_2021_778492 crossref_primary_10_1186_s12964_024_01625_7 crossref_primary_10_1002_ange_202201698 crossref_primary_10_1002_anie_202203500 crossref_primary_10_1016_j_ica_2024_122122 crossref_primary_10_1002_ange_202309080 crossref_primary_10_1016_j_heliyon_2024_e40654 crossref_primary_10_1039_D3DT02166A crossref_primary_10_1016_j_heliyon_2024_e27496 crossref_primary_10_1002_advs_202412225 crossref_primary_10_3390_ph16030366 crossref_primary_10_1016_j_ejmech_2021_114029 crossref_primary_10_1021_acsami_3c17357 crossref_primary_10_1016_j_mtchem_2020_100359 crossref_primary_10_1039_D1RA08624C crossref_primary_10_1016_j_ejmech_2022_114743 crossref_primary_10_1016_j_jconrel_2024_05_014 crossref_primary_10_1021_acschembio_0c00900 crossref_primary_10_1002_ange_202203500 crossref_primary_10_1016_j_fbio_2021_101293 crossref_primary_10_1016_j_biopha_2021_111809 crossref_primary_10_3389_fimmu_2022_978909 crossref_primary_10_1002_cplu_202300624 crossref_primary_10_1039_D4CC01523A crossref_primary_10_1016_j_compbiomed_2022_105924 crossref_primary_10_1039_D3CS00167A crossref_primary_10_1002_adhm_202302564 crossref_primary_10_3390_biomedicines10040885 crossref_primary_10_1039_D3CE00119A crossref_primary_10_1016_j_cinorg_2023_100011 crossref_primary_10_1002_adfm_202205013 crossref_primary_10_1039_D5NJ00043B crossref_primary_10_1002_ctd2_166 crossref_primary_10_14233_ajchem_2023_27793 crossref_primary_10_1021_jacs_3c02033 crossref_primary_10_1038_s41598_022_25998_2 crossref_primary_10_1007_s13193_024_02171_x crossref_primary_10_1016_j_ejmech_2022_114992 crossref_primary_10_1016_j_cej_2024_150523 crossref_primary_10_1002_cbdv_202402342 crossref_primary_10_1002_cmdc_202100172 crossref_primary_10_1021_acsnano_1c05451 crossref_primary_10_34133_bmr_0094 crossref_primary_10_1021_acsabm_0c01151 crossref_primary_10_3389_fonc_2024_1359778 crossref_primary_10_1002_anie_202309080 crossref_primary_10_1016_j_cej_2024_156732 crossref_primary_10_1021_acssensors_0c02343 crossref_primary_10_1016_j_cbpa_2021_01_016 crossref_primary_10_3390_cells13131083 crossref_primary_10_1016_j_jics_2022_100556 crossref_primary_10_1016_j_molstruc_2024_139954 crossref_primary_10_1093_mtomcs_mfab011 crossref_primary_10_1021_acs_analchem_1c03302 crossref_primary_10_1097_MD_0000000000035167 crossref_primary_10_1021_acsami_3c10025 crossref_primary_10_1002_anie_202213922 crossref_primary_10_1016_j_drup_2023_101018 crossref_primary_10_1039_D3DT00282A |
Cites_doi | 10.1016/j.canlet.2013.05.027 10.1021/bc200647q 10.1016/j.ica.2012.06.011 10.1038/ncomms4295 10.1039/C5DT00634A 10.1016/j.jinorgbio.2014.09.017 10.1124/mol.113.090605 10.1186/1471-2407-14-527 10.1021/cb400198p 10.1021/jm048974f 10.1021/cr400135x 10.1182/blood.V69.3.757.757 10.1016/j.ica.2019.03.006 10.1089/ars.2017.7487 10.1016/j.ejmech.2019.01.034 10.1016/j.jinorgbio.2017.12.016 10.1002/path.5104 10.1146/annurev-pathol-012615-044438 10.1002/anie.201807582 10.1073/pnas.0604979103 10.1016/S0169-409X(96)00423-1 10.1158/0008-5472.CAN-04-3577 10.1084/jem.20091488 10.1038/nrc3495 10.1038/bjc.2013.534 10.1021/acs.inorgchem.7b00542 10.1158/1078-0432.CCR-06-1954 10.1021/acs.accounts.6b00380 10.4172/2161-0495.S3-001 10.1039/C4MT00230J 10.1039/C9CC00375D 10.1016/j.cell.2009.06.034 10.1038/nchem.2778 10.4161/cbt.27633 10.1634/theoncologist.2016-0159 10.1039/C6RA26669J 10.3390/inorganics6040126 10.1158/0008-5472.CAN-08-0601 10.1021/acs.bioconjchem.8b00924 10.1021/ja109413c 10.1016/j.jinorgbio.2016.05.012 10.1016/j.ejmech.2016.05.007 10.1016/j.bioorg.2019.03.045 10.1055/s-0030-1258245 10.1021/cr60277a001 10.1038/srep38343 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c9cs00373h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE AGRICOLA Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 3747 |
ExternalDocumentID | 32525153 10_1039_C9CS00373H c9cs00373h |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-4c74b27d0b45ec7cc3981f67e3a6df2ffdf21be25300c948daf261a8e854840f3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 11:42:02 EDT 2025 Fri Jul 11 01:04:29 EDT 2025 Mon Jun 30 03:07:24 EDT 2025 Thu Apr 03 06:50:19 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 04:18:44 EDT 2025 Sat Jan 08 04:02:16 EST 2022 Wed Nov 11 00:26:55 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-4c74b27d0b45ec7cc3981f67e3a6df2ffdf21be25300c948daf261a8e854840f3 |
Notes | Kai-Cheng Yan and Ying Shang contributed to this review from the East China University of Science and Technology (ECUST). Kai-Cheng received his BSc in Industrial Engineering (2017) from SHOU and he is currently pursuing his master's degree in Pharmaceutical Engineering with Prof. Xiao-Peng He at ECUST. Ying received her bachelor's in Chemistry (2017) from ECUST and is now currently studying for her PhD with Prof. Xiao-Peng He at the School of Chemistry and Molecular Engineering, ECUST. Axel Steinbrueck, Adam C. Sedgwick and James T. Brewster II contributed to this review from The University of Texas at Austin. Axel obtained his MS in chemistry from Dresden University of Technology (DUT), Germany, and a Diplôme d'Ingénieur in chemical engineering from the European School of Chemistry, Polymers and Material Science, France. He is now pursuing his PhD studies under the guidance of Prof. Sessler at The University of Texas at Austin. Dr Sedgwick obtained his PhD in 2018 from the University of Bath. He is now a postdoctoral research fellow in the laboratory of Prof. Jonathan L. Sessler. Dr Brewster recently completed his PhD studies working under the supervision of Prof. Sessler. He has now begun his postdoctoral work with Prof. Andrew Myers at Harvard University. Daniel M. Knoll and Gabriela I. Vargas-Zúñiga contributed to this review from The University of Texas at Austin. Dr Knoll obtained his BSc in Chemistry at the Karlsruhe Institute of Technology (KIT) in 2014. He finished his MSc in Chemistry in 2016, and his PhD thesis in 2019, both from KIT. Currently, he is a postdoctoral research fellow at the University of Texas at Austin working under the supervision of J. L. Sessler. Dr Vargas-Zúñiga received her BSc and MSc in Chemistry from the National Autonomous University of Mexico, Mexico City. She earned her PhD degree from The University of Texas at Austin in 2013 under the supervision of Prof. Sessler, where she is currently a research associate in the same group. Prof. Xiao-Peng He and Prof. He Tian contributed to this review from the East China University of Science and Technology (ECUST). Prof. He received his PhD in Pharmaceutical Engineering (2011) from ECUST. He completed a co-tutored doctoral program at the ENS Cachan (France) from July 2008 to February 2009. Then he carried out postdoctoral research with Prof. Kaixian Chen (SIMM, CAS) at ECUST from 2011 to 2013. He is now a professor within the Feringa Nobel Prize Scientists Research Center, School of Chemistry and Molecular Engineering, ECUST. Prof. Tian was born in China in 1962. In 1999, he was appointed Cheung Kong Distinguished Professor by the Education Ministry of China. In 2011, he was selected as a member of the Chinese Academy of Science. In 2013, he became a fellow of the TWAS - the World Academy of Science - for the advancement of science in developing countries. He has been listed as a Thomson Reuters - Highly Cited Researcher in Chemistry (2014) and Materials Science (2014-2017). Jonathan L. Sessler contributed to this review from The University of Texas at Austin. He received a BSc degree in chemistry in 1977 from the University of California, Berkeley. He obtained his PhD from Stanford University in 1982. After postdoctoral stays in Strasbourg and Kyoto, he accepted a position at the University of Texas at Austin, where he is currently a member of the Doherty-Welch Chair. He was also a WCU Professor at Yonsei University and from 2016 until 2020 held a part-time laboratory directorate at Shanghai University. He was a co-founder of Pharmacyclics, Inc. His latest technology is the basis for a new company, Oncotex, Inc. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8736-3511 0000-0002-4579-8074 0000-0002-3592-1366 0000-0001-6014-3204 0000-0002-3132-2913 0000-0003-0902-7958 0000-0003-3547-7485 0000-0002-9576-1325 |
PMID | 32525153 |
PQID | 2415377709 |
PQPubID | 2047503 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1039_C9CS00373H proquest_miscellaneous_2574335448 crossref_citationtrail_10_1039_C9CS00373H rsc_primary_c9cs00373h proquest_journals_2415377709 proquest_miscellaneous_2412210350 pubmed_primary_32525153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200622 |
PublicationDateYYYYMMDD | 2020-06-22 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200622 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Loza-Rosas (C9CS00373H-(cit16)/*[position()=1]) 2017; 56 Torti (C9CS00373H-(cit11)/*[position()=1]) 2013; 13 Bakthavatsalam (C9CS00373H-(cit49)/*[position()=1]) 2018; 57 Boesch (C9CS00373H-(cit2)/*[position()=1]) 2016; 21 Akam (C9CS00373H-(cit21)/*[position()=1]) 2018; 180 Santini (C9CS00373H-(cit33)/*[position()=1]) 2013; 114 Pramanik (C9CS00373H-(cit12)/*[position()=1]) 2019; 30 Tury (C9CS00373H-(cit17)/*[position()=1]) 2018; 246 Estrov (C9CS00373H-(cit5)/*[position()=1]) 1987; 69 Callens (C9CS00373H-(cit13)/*[position()=1]) 2010; 207 Yasumoto (C9CS00373H-(cit18)/*[position()=1]) 2004; 24 Zhang (C9CS00373H-(cit29)/*[position()=1]) 2014; 5 Oliveri (C9CS00373H-(cit48)/*[position()=1]) 2015; 142 Gaur (C9CS00373H-(cit4)/*[position()=1]) 2018; 6 Whitnall (C9CS00373H-(cit24)/*[position()=1]) 2006; 103 Antoszczak (C9CS00373H-(cit28)/*[position()=1]) 2019; 166 Schaefer-Ramadan (C9CS00373H-(cit43)/*[position()=1]) 2019; 87 Yu (C9CS00373H-(cit22)/*[position()=1]) 2012; 23 Tardito (C9CS00373H-(cit39)/*[position()=1]) 2011; 133 Abbaspour (C9CS00373H-(cit10)/*[position()=1]) 2014; 19 Theerasilp (C9CS00373H-(cit14)/*[position()=1]) 2017; 7 Gupta (C9CS00373H-(cit26)/*[position()=1]) 2009; 138 Bergeron (C9CS00373H-(cit20)/*[position()=1]) 2010 Nassar (C9CS00373H-(cit1)/*[position()=1]) 2016; 11 Cater (C9CS00373H-(cit37)/*[position()=1]) 2013; 8 Oliveri (C9CS00373H-(cit44)/*[position()=1]) 2016; 120 Heffeter (C9CS00373H-(cit23)/*[position()=1]) 2019; 30 Costello (C9CS00373H-(cit41)/*[position()=1]) 2014; 15 Yu (C9CS00373H-(cit34)/*[position()=1]) 2006; 12 Bergeron (C9CS00373H-(cit19)/*[position()=1]) 2005; 48 Kadakia (C9CS00373H-(cit38)/*[position()=1]) 2019; 55 Magda (C9CS00373H-(cit45)/*[position()=1]) 2008; 68 Oliveri (C9CS00373H-(cit8)/*[position()=1]) 2016; 162 Maret (C9CS00373H-(cit40)/*[position()=1]) 2015; 7 Fatfat (C9CS00373H-(cit42)/*[position()=1]) 2014; 14 Mai (C9CS00373H-(cit27)/*[position()=1]) 2017; 9 Fikes (C9CS00373H-(cit31)/*[position()=1]) 2019; 490 Kielar (C9CS00373H-(cit15)/*[position()=1]) 2012; 393 Fryknäs (C9CS00373H-(cit30)/*[position()=1]) 2016; 6 Trondl (C9CS00373H-(cit25)/*[position()=1]) 2014; 85 Wadhwa (C9CS00373H-(cit35)/*[position()=1]) 2013; 337 Müller (C9CS00373H-(cit36)/*[position()=1]) 2018; 13 Helsel (C9CS00373H-(cit6)/*[position()=1]) 2015; 44 Ding (C9CS00373H-(cit47)/*[position()=1]) 2005; 65 Williams (C9CS00373H-(cit3)/*[position()=1]) 1972; 72 Wang (C9CS00373H-(cit7)/*[position()=1]) 2016; 49 Lipinski (C9CS00373H-(cit9)/*[position()=1]) 1997; 23 Liu (C9CS00373H-(cit46)/*[position()=1]) 2013; 109 Osredkar (C9CS00373H-(cit32)/*[position()=1]) 2011; s3 |
References_xml | – volume: 337 start-page: 8 year: 2013 ident: C9CS00373H-(cit35)/*[position()=1] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.05.027 – volume: 23 start-page: 596 year: 2012 ident: C9CS00373H-(cit22)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/bc200647q – volume: 393 start-page: 294 year: 2012 ident: C9CS00373H-(cit15)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2012.06.011 – volume: 24 start-page: 755 year: 2004 ident: C9CS00373H-(cit18)/*[position()=1] publication-title: Anticancer Res. – volume: 5 start-page: 3295 year: 2014 ident: C9CS00373H-(cit29)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4295 – volume: 44 start-page: 8760 year: 2015 ident: C9CS00373H-(cit6)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT00634A – volume: 142 start-page: 101 year: 2015 ident: C9CS00373H-(cit48)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2014.09.017 – volume: 85 start-page: 451 year: 2014 ident: C9CS00373H-(cit25)/*[position()=1] publication-title: Mol. Pharmacol. doi: 10.1124/mol.113.090605 – volume: 14 start-page: 527 year: 2014 ident: C9CS00373H-(cit42)/*[position()=1] publication-title: BMC Cancer doi: 10.1186/1471-2407-14-527 – volume: 8 start-page: 1621 year: 2013 ident: C9CS00373H-(cit37)/*[position()=1] publication-title: ACS Chem. Biol. doi: 10.1021/cb400198p – volume: 48 start-page: 4120 year: 2005 ident: C9CS00373H-(cit19)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm048974f – volume: 114 start-page: 815 year: 2013 ident: C9CS00373H-(cit33)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400135x – volume: 69 start-page: 757 year: 1987 ident: C9CS00373H-(cit5)/*[position()=1] publication-title: Blood doi: 10.1182/blood.V69.3.757.757 – volume: 490 start-page: 139 year: 2019 ident: C9CS00373H-(cit31)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2019.03.006 – volume: 30 start-page: 1062 year: 2019 ident: C9CS00373H-(cit23)/*[position()=1] publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2017.7487 – volume: 166 start-page: 48 year: 2019 ident: C9CS00373H-(cit28)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.01.034 – volume: 180 start-page: 186 year: 2018 ident: C9CS00373H-(cit21)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2017.12.016 – volume: 246 start-page: 103 year: 2018 ident: C9CS00373H-(cit17)/*[position()=1] publication-title: J. Pathol. doi: 10.1002/path.5104 – volume: 11 start-page: 47 year: 2016 ident: C9CS00373H-(cit1)/*[position()=1] publication-title: Annu. Rev. Pathol.: Mech. Dis. doi: 10.1146/annurev-pathol-012615-044438 – volume: 57 start-page: 12780 year: 2018 ident: C9CS00373H-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807582 – volume: 103 start-page: 14901 year: 2006 ident: C9CS00373H-(cit24)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604979103 – volume: 13 start-page: 1 year: 2018 ident: C9CS00373H-(cit36)/*[position()=1] publication-title: PLoS One – volume: 23 start-page: 3 year: 1997 ident: C9CS00373H-(cit9)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(96)00423-1 – volume: 65 start-page: 3389 year: 2005 ident: C9CS00373H-(cit47)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3577 – volume: 207 start-page: 731 year: 2010 ident: C9CS00373H-(cit13)/*[position()=1] publication-title: J. Exp. Med. doi: 10.1084/jem.20091488 – volume: 13 start-page: 342 year: 2013 ident: C9CS00373H-(cit11)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3495 – volume: 109 start-page: 1876 year: 2013 ident: C9CS00373H-(cit46)/*[position()=1] publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.534 – volume: 56 start-page: 7788 year: 2017 ident: C9CS00373H-(cit16)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00542 – volume: 12 start-page: 6876 year: 2006 ident: C9CS00373H-(cit34)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-1954 – volume: 49 start-page: 2468 year: 2016 ident: C9CS00373H-(cit7)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00380 – volume: s3 start-page: 1 year: 2011 ident: C9CS00373H-(cit32)/*[position()=1] publication-title: J. Clin. Toxicol. doi: 10.4172/2161-0495.S3-001 – volume: 7 start-page: 202 year: 2015 ident: C9CS00373H-(cit40)/*[position()=1] publication-title: Metallomics doi: 10.1039/C4MT00230J – volume: 55 start-page: 8860 year: 2019 ident: C9CS00373H-(cit38)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC00375D – volume: 138 start-page: 645 year: 2009 ident: C9CS00373H-(cit26)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2009.06.034 – volume: 9 start-page: 1025 year: 2017 ident: C9CS00373H-(cit27)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2778 – volume: 15 start-page: 353 year: 2014 ident: C9CS00373H-(cit41)/*[position()=1] publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.27633 – volume: 19 start-page: 164 year: 2014 ident: C9CS00373H-(cit10)/*[position()=1] publication-title: J. Res. Med. Sci. – volume: 21 start-page: 1291 year: 2016 ident: C9CS00373H-(cit2)/*[position()=1] publication-title: Oncologist doi: 10.1634/theoncologist.2016-0159 – volume: 7 start-page: 11158 year: 2017 ident: C9CS00373H-(cit14)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA26669J – volume: 6 start-page: 126 year: 2018 ident: C9CS00373H-(cit4)/*[position()=1] publication-title: Inorganics doi: 10.3390/inorganics6040126 – volume: 68 start-page: 5318 year: 2008 ident: C9CS00373H-(cit45)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-0601 – volume: 30 start-page: 841 year: 2019 ident: C9CS00373H-(cit12)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00924 – volume: 133 start-page: 6235 year: 2011 ident: C9CS00373H-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109413c – volume: 162 start-page: 31 year: 2016 ident: C9CS00373H-(cit8)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2016.05.012 – volume: 120 start-page: 252 year: 2016 ident: C9CS00373H-(cit44)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.05.007 – volume: 87 start-page: 366 year: 2019 ident: C9CS00373H-(cit43)/*[position()=1] publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.03.045 – start-page: 3631 year: 2010 ident: C9CS00373H-(cit20)/*[position()=1] publication-title: Synthesis doi: 10.1055/s-0030-1258245 – volume: 72 start-page: 203 year: 1972 ident: C9CS00373H-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr60277a001 – volume: 6 start-page: 1 year: 2016 ident: C9CS00373H-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep38343 |
SSID | ssj0011762 |
Score | 2.6421275 |
SecondaryResourceType | review_article |
Snippet | Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3726 |
SubjectTerms | Antineoplastic Agents - chemistry Antineoplastic Agents - therapeutic use Cancer Chelating Agents - chemistry Coordination Complexes - chemistry Coordination Complexes - therapeutic use Copper cytotoxicity death drug resistance drug therapy Humans ionophores Ionophores - chemistry Iron neoplasms Neoplasms - drug therapy patients quality of life Selectivity Side effects Stem cells Toxicity Transition Elements - chemistry Transition metals Tumors Zinc |
Title | Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32525153 https://www.proquest.com/docview/2415377709 https://www.proquest.com/docview/2412210350 https://www.proquest.com/docview/2574335448 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoAL4lVIKcgILogu3djeh48hShUglEMTqZxWXtvbgEg2ykNC_B3-KOO1vZvQqAIuVuS1HMvzeTxjj79B6BUXaZwKKQLwUKKA6bgbCJbTgKcKatMCMGPOOz6dx8MJ-3AZXbZav7ailjbr_K38ufddyf9IFepAruaV7D9Itu4UKuA3yBdKkDCUfydjs9FUMVcmE7Rh-pia2LbSpj0D3RjsVFT3BOW8XExLcLJNhpnVzNxMz2yK3CoCTOql6WW2_TDrjbjyjE81qYHnGfBRn47VtD6wMUk08-VGW23b-6HrSI4Lra58_vaeErPmnPbdEnpwiUKq6N0mgvuj-BrAf1rF9MUh2h1WEJPTJiCNa2uPRPzIqngTl9VuS-1Rc8YRuuBqbdUyi8OAJZYp0uttS3Xq8Um2tDBNSLy1o9PEknpe2y1CashWJZcrQ8NDp82e6OMAzj9nZ5PRKBsPLse30AEBX4S00UFvMH4_qi-ruknsLqvswD0LLuWnTd-7ds81ZwZMm6VPOVOZNuN76K7zSXDPAuw-aun5A3S7nrSH6FsDNFwBDde4OsE7MDvBADLcgAyLFa5Ahj3IsAUZ_hNk2ILsEZqcDcb9YeCSdASS8ngdMJmwnCQqzFmkZSKhNu0WcaKpiFVBigKKbq5JRMNQcgYqoACnXaQ6BV-ZhQU9RO15OddPEFaCKwZbkJDg5MahysG0T3NGQ8VjLlTaQa_9FGbSMdibRCrfsyqSgvKsz_sX1XQPO-hl3XZheVv2tjr2ksjcul5lxqalSZKEvINe1J9hxs1VmpjrclO1IaRrbuVvaBOBdU4jxmDgj62U66FQEoFjEdEOOgSx19UNXDroaP-HbKGKo5uH_RTdadbeMWqvYbU_A9N5nT930P0NUzrJLg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+metal+chelators%2C+pro-chelators%2C+and+ionophores+as+small+molecule+cancer+chemotherapeutic+agents&rft.jtitle=Chemical+Society+reviews&rft.au=Steinbrueck%2C+Axel&rft.au=Sedgwick%2C+Adam+C&rft.au=Brewster%2C+James+T&rft.au=Kai-Cheng%2C+Yan&rft.date=2020-06-22&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=49&rft.issue=12&rft.spage=3726&rft.epage=3747&rft_id=info:doi/10.1039%2Fc9cs00373h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |