Still an Ineffective Method With supertrials/ERPs-Comments on "decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features"
A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that con...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 11; pp. 1 - 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that confound. Training and testing on aggregated supertrials derived by summing trials demonstrates that the two prior methods achieve statistically significant above-chance accuracy while the newly proposed method does not. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3292062 |