Still an Ineffective Method With supertrials/ERPs-Comments on "decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features"

A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that con...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 11; pp. 1 - 3
Main Authors Bharadwaj, Hari M, Wilbur, Ronnie B, Siskind, Jeffrey Mark
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that confound. Training and testing on aggregated supertrials derived by summing trials demonstrates that the two prior methods achieve statistically significant above-chance accuracy while the newly proposed method does not.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2023.3292062