An optimization based empirical mode decomposition scheme
The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 240; pp. 174 - 183 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, ‘physically meaningful’, and that the amplitudes can be interpreted as envelopes.
In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples. |
---|---|
AbstractList | The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, ‘physically meaningful’, and that the amplitudes can be interpreted as envelopes.
In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples. The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L 2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, 'physically meaningful', and that the amplitudes can be interpreted as envelopes. In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples. |
Author | Kunoth, Angela Huang, Boqiang |
Author_xml | – sequence: 1 givenname: Boqiang surname: Huang fullname: Huang, Boqiang email: bhuang@math.uni-paderborn.de – sequence: 2 givenname: Angela surname: Kunoth fullname: Kunoth, Angela email: kunoth@math.uni-paderborn.de |
BookMark | eNp9kD1PwzAURS1UJNrCD2DLyJLw7DR2Iqaq4kuqxAKz5by8CFdxHOwUCX49KWVi6HSXe-7TOws2631PjF1zyDhwebvL0LhMABcZqGyKMzbnpapSrlQ5Y3PIlUphJdQFW8S4AwBZ8dWcVes-8cNonf02o_V9UptITUJusMGi6RLnG0oaQu8GH-1vJeI7Obpk563pIl395ZK9Pdy_bp7S7cvj82a9TTGv5JjmxFWNxGVLAnNUkgMWUICUjShNXjRlSUVZS2FEzU2LUJGimmA6Se1KmnzJbo67Q_Afe4qjdjYidZ3pye-j5kLwCopVCVOVH6sYfIyBWj0E60z40hz0QZPe6UmTPmjSoPQUE6P-MWjHXxVjMLY7Sd4dSZq-_7QUdERLPVJjA-GoG29P0D8oFYSQ |
CitedBy_id | crossref_primary_10_1016_j_aeue_2016_06_008 crossref_primary_10_1063_5_0070140 crossref_primary_10_1007_s00500_020_05465_8 crossref_primary_10_3390_en12061093 crossref_primary_10_1142_S2424786321410085 crossref_primary_10_1016_j_dsp_2014_12_006 crossref_primary_10_3390_en9030211 crossref_primary_10_1016_j_apm_2019_03_031 crossref_primary_10_1016_j_jneumeth_2015_02_013 crossref_primary_10_1016_j_sigpro_2014_03_014 crossref_primary_10_1007_s00521_013_1482_z crossref_primary_10_1007_s10462_020_09875_w crossref_primary_10_1007_s10489_024_06013_9 crossref_primary_10_1080_07474938_2025_2471913 crossref_primary_10_1016_j_asoc_2021_107438 crossref_primary_10_3390_en10081168 crossref_primary_10_1016_j_dsp_2019_01_024 crossref_primary_10_1109_ACCESS_2019_2916000 crossref_primary_10_3390_en12020254 crossref_primary_10_3390_en9030221 crossref_primary_10_1109_ACCESS_2022_3154044 crossref_primary_10_1080_01605682_2021_1915192 crossref_primary_10_1109_ACCESS_2019_2957602 crossref_primary_10_1007_s11571_022_09870_7 crossref_primary_10_1137_140957767 crossref_primary_10_1016_j_dsp_2015_02_013 crossref_primary_10_2139_ssrn_3595914 crossref_primary_10_3390_app11010179 crossref_primary_10_1002_asmb_2625 crossref_primary_10_1016_j_dsp_2022_103891 crossref_primary_10_1016_j_neucom_2018_02_022 crossref_primary_10_1109_TIP_2014_2363000 crossref_primary_10_1016_j_cmpb_2016_12_016 crossref_primary_10_1016_j_dsp_2021_103292 crossref_primary_10_1007_s11042_022_14315_8 crossref_primary_10_1007_s12665_023_11214_5 crossref_primary_10_1007_s10462_019_09761_0 crossref_primary_10_5004_dwt_2018_22378 crossref_primary_10_1016_j_sigpro_2013_11_034 crossref_primary_10_3390_en10020188 crossref_primary_10_1007_s10462_022_10262_w crossref_primary_10_1007_s10462_019_09755_y crossref_primary_10_1007_s13042_021_01389_3 crossref_primary_10_1155_2013_658501 crossref_primary_10_2139_ssrn_3833262 crossref_primary_10_3390_min13091118 crossref_primary_10_1016_j_artmed_2020_101848 crossref_primary_10_1088_1748_0221_19_08_P08017 crossref_primary_10_1103_PhysRevD_96_044047 crossref_primary_10_1109_TIM_2014_2298153 crossref_primary_10_3390_jrfm14100464 crossref_primary_10_3390_math7121188 crossref_primary_10_1109_LSP_2020_2992877 crossref_primary_10_1016_j_heliyon_2024_e26140 crossref_primary_10_1016_j_neucom_2015_08_051 crossref_primary_10_1109_TGRS_2013_2287022 crossref_primary_10_3390_en10111713 crossref_primary_10_1080_03772063_2021_1911693 crossref_primary_10_1098_rsos_150475 crossref_primary_10_1007_s11042_023_16322_9 crossref_primary_10_1109_MSP_2013_2267931 crossref_primary_10_3390_en12244762 crossref_primary_10_1016_j_dsp_2014_02_017 |
Cites_doi | 10.1109/MSP.2010.936020 10.2136/vzj2009.0163 10.1109/PROC.1963.2308 10.1142/S1793536909000047 10.1109/PROC.1966.5138 10.1142/S1793536911000647 10.1109/TSP.2007.906771 10.1142/S179353690900031X 10.1098/rspa.1998.0193 10.1016/j.acha.2010.08.002 10.1142/S179353691100074X 10.1142/S1793536910000513 10.1142/S1793536909000096 10.1109/TSP.2010.2041606 10.1109/TASL.2010.2041108 10.1017/CBO9780511804441 10.1109/TSP.2011.2179650 10.1137/080730251 10.1002/asmb.501 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cam.2012.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 183 |
ExternalDocumentID | 10_1016_j_cam_2012_07_012 S0377042712003020 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FGOYB G-2 HZ~ NHB R2- SEW SSH WUQ ZY4 7SC 7TB 8FD AFXIZ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c396t-3e17bce16fe2c3c7610c505066d28a35d88e58b62a2b1afc09e7ebe0decef46a3 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Fri Jul 11 02:36:51 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Tue Jul 01 04:26:51 EDT 2025 Fri Feb 23 02:27:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Empirical mode decomposition (EMD) Convex optimization 65Dxx Intrinsic mode functions (IMFs) 65K10 Sparse data-adapted basis Envelope Instantaneous frequencies |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-3e17bce16fe2c3c7610c505066d28a35d88e58b62a2b1afc09e7ebe0decef46a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042712003020 |
PQID | 1221905480 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1221905480 crossref_primary_10_1016_j_cam_2012_07_012 crossref_citationtrail_10_1016_j_cam_2012_07_012 elsevier_sciencedirect_doi_10_1016_j_cam_2012_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 2013-03-00 20130301 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bedrosian (br000085) 1963; 51 Nuttall (br000090) 1966; 54 Daubechies, Lu, Wu (br000030) 2011; 30 Wu, Flandrin, Daubechies (br000105) 2011; 3 2011. Stefan, Renaut, Gelb (br000120) 2010; 3 M. Grant, S. Boyd, CVX users’ guide. Available online Rilling, Flandrin (br000100) 2008; 56 J. Rudi, Empirical mode decomposition via adaptiver wavelet-approximation, Diploma Thesis, Institut für Mathematik, Universität Paderborn, Germany, 2010 (in German). Sell, Slaney (br000115) 2010; 18 Hahn (br000075) 1996 Rudi, Pabel, Jager, Koch, Kunoth, Bogena (br000055) 2010; 9 G. Rilling, P. Flandrin, P. Gonçalves, On empirical mode decomposition and its algorithms, in: Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process, NSIP-03, Grado, Italy, 2003. Mattingley, Boyd (br000110) 2010; 27 Wu, Huang (br000010) 2009; 1 Peng, Hwang (br000025) 2010; 58 Gabor (br000065) 1946; 93 Titchmarsh (br000080) 1948 Hu, Peng, Hwang (br000150) 2012; 60 Jager, Koch, Kunoth, Pabel (br000020) 2010; 2 Huang, Shen (br000050) 2005 Huang, Wu, Long, Arnold, Chen, Blank (br000015) 2009; 1 Hou, Shi (br000035) 2011; 3 Huang, Wu, Qu, Long, Shen (br000045) 2003; 19 Nocedal, Wright (br000145) 2006 van der Pol (br000060) 1946; 93 H. Hoffmann, A. Kunoth, P. Strack, Fast multiscale PDAS solvers for quadratic optimization problems involving elliptic PDEs under inequality constraints (in preparation). Cohen (br000070) 1994 Hou, Shi (br000040) 2012 Hou, Yan, Wu (br000155) 2009; 1 Huang, Shen, Long, Wu, Shih, Zhang, Yen, Tung, Liu (br000005) 1998; 454 Mallat (br000095) 2008 2004. S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, UK. Available online Huang (10.1016/j.cam.2012.07.012_br000045) 2003; 19 Bedrosian (10.1016/j.cam.2012.07.012_br000085) 1963; 51 Nocedal (10.1016/j.cam.2012.07.012_br000145) 2006 Rilling (10.1016/j.cam.2012.07.012_br000100) 2008; 56 Nuttall (10.1016/j.cam.2012.07.012_br000090) 1966; 54 Mattingley (10.1016/j.cam.2012.07.012_br000110) 2010; 27 Peng (10.1016/j.cam.2012.07.012_br000025) 2010; 58 10.1016/j.cam.2012.07.012_br000160 Gabor (10.1016/j.cam.2012.07.012_br000065) 1946; 93 10.1016/j.cam.2012.07.012_br000140 Wu (10.1016/j.cam.2012.07.012_br000105) 2011; 3 Titchmarsh (10.1016/j.cam.2012.07.012_br000080) 1948 10.1016/j.cam.2012.07.012_br000125 Hou (10.1016/j.cam.2012.07.012_br000040) 2012 Huang (10.1016/j.cam.2012.07.012_br000005) 1998; 454 Sell (10.1016/j.cam.2012.07.012_br000115) 2010; 18 Mallat (10.1016/j.cam.2012.07.012_br000095) 2008 Hou (10.1016/j.cam.2012.07.012_br000035) 2011; 3 van der Pol (10.1016/j.cam.2012.07.012_br000060) 1946; 93 Hahn (10.1016/j.cam.2012.07.012_br000075) 1996 Jager (10.1016/j.cam.2012.07.012_br000020) 2010; 2 Huang (10.1016/j.cam.2012.07.012_br000050) 2005 Wu (10.1016/j.cam.2012.07.012_br000010) 2009; 1 Cohen (10.1016/j.cam.2012.07.012_br000070) 1994 Stefan (10.1016/j.cam.2012.07.012_br000120) 2010; 3 Rudi (10.1016/j.cam.2012.07.012_br000055) 2010; 9 10.1016/j.cam.2012.07.012_br000130 Huang (10.1016/j.cam.2012.07.012_br000015) 2009; 1 Hu (10.1016/j.cam.2012.07.012_br000150) 2012; 60 Hou (10.1016/j.cam.2012.07.012_br000155) 2009; 1 Daubechies (10.1016/j.cam.2012.07.012_br000030) 2011; 30 10.1016/j.cam.2012.07.012_br000135 |
References_xml | – volume: 18 start-page: 2051 year: 2010 end-page: 2066 ident: br000115 article-title: Solving demodulation as an optimization problem publication-title: IEEE Trans. Audio Speech Lang. Process. – year: 1994 ident: br000070 article-title: Time–Frequency Analysis – year: 1996 ident: br000075 article-title: Hilbert Transforms in Signal Processing – volume: 27 start-page: 50 year: 2010 end-page: 61 ident: br000110 article-title: Real-time convex optimization in signal processing publication-title: IEEE Signal Process. Mag. – reference: G. Rilling, P. Flandrin, P. Gonçalves, On empirical mode decomposition and its algorithms, in: Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process, NSIP-03, Grado, Italy, 2003. – reference: , 2011. – volume: 9 start-page: 925 year: 2010 end-page: 942 ident: br000055 article-title: Multiscale analysis of hydrologic time series data using the Hilbert–Huang-Transform (HHT) publication-title: Vadose Zone J. – reference: J. Rudi, Empirical mode decomposition via adaptiver wavelet-approximation, Diploma Thesis, Institut für Mathematik, Universität Paderborn, Germany, 2010 (in German). – reference: H. Hoffmann, A. Kunoth, P. Strack, Fast multiscale PDAS solvers for quadratic optimization problems involving elliptic PDEs under inequality constraints (in preparation). – volume: 19 start-page: 245 year: 2003 end-page: 268 ident: br000045 article-title: Applications of Hilbert–Huang transform to non-stationary financial time series analysis publication-title: Appl. Stoch. Models Bus. Ind. – volume: 51 start-page: 868 year: 1963 end-page: 869 ident: br000085 article-title: A product theorem for Hilbert transforms publication-title: Proc. IEEE – volume: 60 start-page: 1075 year: 2012 end-page: 1086 ident: br000150 article-title: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM–FM signals publication-title: IEEE Trans. Signal Process. – volume: 3 start-page: 1 year: 2011 end-page: 28 ident: br000035 article-title: Adaptive data analysis via sparse time–frequency representation publication-title: Adv. Adapt. Data Anal. – volume: 1 start-page: 177 year: 2009 end-page: 229 ident: br000015 article-title: On instantaneous frequency publication-title: Adv. Adapt. Data Anal. – volume: 93 start-page: 153 year: 1946 end-page: 158 ident: br000060 article-title: The fundamental principles of frequency modulation publication-title: Part III: Radio and Communication Engineering – volume: 58 start-page: 2475 year: 2010 end-page: 2483 ident: br000025 article-title: Null space pursuit: an operator-based approach to adaptive signal separation publication-title: IEEE Trans. Signal Process. – reference: , 2004. – volume: 30 start-page: 243 year: 2011 end-page: 261 ident: br000030 article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool publication-title: Appl. Comput. Harmon. Anal. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: br000005 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A – year: 1948 ident: br000080 article-title: Introduction to the Theory of Fourier Integral – volume: 3 start-page: 232 year: 2010 end-page: 251 ident: br000120 article-title: Improved total variation-type regularization using higher-order edge detectors publication-title: SIAM J. Imag. Sci. – volume: 2 start-page: 337 year: 2010 end-page: 358 ident: br000020 article-title: Fast empirical mode decompositions of multivariate data based on adaptive spline-wavelets and a generalization of the Hilbert–Huang-transform (HHT) to arbitrary space dimensions publication-title: Adv. Adapt. Data Anal. – year: 2006 ident: br000145 article-title: Numerical Optimization – volume: 3 start-page: 29 year: 2011 end-page: 39 ident: br000105 article-title: One or two frequencies? the synchrosqueezing answers publication-title: Adv. Adapt. Data Anal. – year: 2005 ident: br000050 article-title: Hilbert–Huang Transform and its Applications – volume: 54 start-page: 1458 year: 1966 end-page: 1459 ident: br000090 article-title: On the quadrature approximation to the Hilbert transform of modulated signals publication-title: Proc. IEEE – reference: M. Grant, S. Boyd, CVX users’ guide. Available online: – year: 2012 ident: br000040 article-title: Data-Driven Time–Frequency Analysis – reference: S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, UK. Available online: – year: 2008 ident: br000095 article-title: A Wavelet Tour of Signal Processing publication-title: The Sparse Way – volume: 1 start-page: 483 year: 2009 end-page: 516 ident: br000155 article-title: A variant of the EMD method for multi-scale data publication-title: Adv. Adapt. Data Anal. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: br000010 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 93 start-page: 429 year: 1946 end-page: 441 ident: br000065 article-title: Theory of communication. Part 1: the analysis of information publication-title: Part III: Radio and Communication Engineering – volume: 56 start-page: 85 year: 2008 end-page: 95 ident: br000100 article-title: One or two frequencies? the empirical mode decomposition answers publication-title: IEEE Trans. Signal Process. – volume: 27 start-page: 50 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000110 article-title: Real-time convex optimization in signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936020 – volume: 9 start-page: 925 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000055 article-title: Multiscale analysis of hydrologic time series data using the Hilbert–Huang-Transform (HHT) publication-title: Vadose Zone J. doi: 10.2136/vzj2009.0163 – volume: 51 start-page: 868 year: 1963 ident: 10.1016/j.cam.2012.07.012_br000085 article-title: A product theorem for Hilbert transforms publication-title: Proc. IEEE doi: 10.1109/PROC.1963.2308 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.cam.2012.07.012_br000010 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 54 start-page: 1458 year: 1966 ident: 10.1016/j.cam.2012.07.012_br000090 article-title: On the quadrature approximation to the Hilbert transform of modulated signals publication-title: Proc. IEEE doi: 10.1109/PROC.1966.5138 – volume: 3 start-page: 1 year: 2011 ident: 10.1016/j.cam.2012.07.012_br000035 article-title: Adaptive data analysis via sparse time–frequency representation publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536911000647 – volume: 56 start-page: 85 year: 2008 ident: 10.1016/j.cam.2012.07.012_br000100 article-title: One or two frequencies? the empirical mode decomposition answers publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.906771 – year: 2008 ident: 10.1016/j.cam.2012.07.012_br000095 article-title: A Wavelet Tour of Signal Processing – year: 1994 ident: 10.1016/j.cam.2012.07.012_br000070 – ident: 10.1016/j.cam.2012.07.012_br000135 – ident: 10.1016/j.cam.2012.07.012_br000160 – volume: 1 start-page: 483 year: 2009 ident: 10.1016/j.cam.2012.07.012_br000155 article-title: A variant of the EMD method for multi-scale data publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S179353690900031X – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.cam.2012.07.012_br000005 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1998.0193 – volume: 30 start-page: 243 year: 2011 ident: 10.1016/j.cam.2012.07.012_br000030 article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.08.002 – volume: 3 start-page: 29 year: 2011 ident: 10.1016/j.cam.2012.07.012_br000105 article-title: One or two frequencies? the synchrosqueezing answers publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S179353691100074X – volume: 93 start-page: 429 year: 1946 ident: 10.1016/j.cam.2012.07.012_br000065 article-title: Theory of communication. Part 1: the analysis of information publication-title: J. Inst. Electr. Eng. – year: 1948 ident: 10.1016/j.cam.2012.07.012_br000080 – volume: 2 start-page: 337 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000020 article-title: Fast empirical mode decompositions of multivariate data based on adaptive spline-wavelets and a generalization of the Hilbert–Huang-transform (HHT) to arbitrary space dimensions publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000513 – volume: 1 start-page: 177 year: 2009 ident: 10.1016/j.cam.2012.07.012_br000015 article-title: On instantaneous frequency publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000096 – volume: 58 start-page: 2475 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000025 article-title: Null space pursuit: an operator-based approach to adaptive signal separation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2041606 – ident: 10.1016/j.cam.2012.07.012_br000140 – year: 2012 ident: 10.1016/j.cam.2012.07.012_br000040 – volume: 18 start-page: 2051 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000115 article-title: Solving demodulation as an optimization problem publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2010.2041108 – year: 2006 ident: 10.1016/j.cam.2012.07.012_br000145 – ident: 10.1016/j.cam.2012.07.012_br000125 doi: 10.1017/CBO9780511804441 – volume: 60 start-page: 1075 year: 2012 ident: 10.1016/j.cam.2012.07.012_br000150 article-title: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM–FM signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2179650 – year: 2005 ident: 10.1016/j.cam.2012.07.012_br000050 – ident: 10.1016/j.cam.2012.07.012_br000130 – volume: 3 start-page: 232 year: 2010 ident: 10.1016/j.cam.2012.07.012_br000120 article-title: Improved total variation-type regularization using higher-order edge detectors publication-title: SIAM J. Imag. Sci. doi: 10.1137/080730251 – volume: 93 start-page: 153 year: 1946 ident: 10.1016/j.cam.2012.07.012_br000060 article-title: The fundamental principles of frequency modulation publication-title: J. Inst. Electr. Eng. – volume: 19 start-page: 245 year: 2003 ident: 10.1016/j.cam.2012.07.012_br000045 article-title: Applications of Hilbert–Huang transform to non-stationary financial time series analysis publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.501 – year: 1996 ident: 10.1016/j.cam.2012.07.012_br000075 |
SSID | ssj0006914 |
Score | 2.3536046 |
Snippet | The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary... The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 174 |
SubjectTerms | Construction Convex optimization Decomposition Empirical analysis Empirical mode decomposition (EMD) Envelope Envelopes Instantaneous frequencies Intrinsic mode functions (IMFs) Iterative methods Mathematical analysis Mathematical models Optimization Sparse data-adapted basis |
Title | An optimization based empirical mode decomposition scheme |
URI | https://dx.doi.org/10.1016/j.cam.2012.07.012 https://www.proquest.com/docview/1221905480 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zvuiDeMV5GRV8ErqlSdu0j3M45mVD1MHeQpOcwsR1w22v_nZPehkouAefAiVpy0nznS_Nd84h5BrQRerUN24QGt_1dcpcpXCXYtB7aENBpHme7cEw7I_8h3EwrpFuFQtjZZUl9heYnqN1eaVdWrM9n0zar5QLYStFeFZfhawHcZj7UR7EN75do3EYF_m9sbNre1cnm7nGSyc2GN3-DhQt6rG_fNMvlM5dT2-f7JWc0ekUr3VAapAdkt3BOuHq4ojEncyZ4eqflmGVjvVOxoHpfJLnAHFsxRvHgFWQlzItB_e1MIVjMurdvXX7blkVwdU8DpcuB08oDV6YAtNcC-Q_GmkMUgfDooQHJoogiFTIEqa8JNU0BoEzRfERkPphwk9IPZtlcEocQXUaqohprbhvuQHaSseeEhAj8TC6QWhlD6nLlOG2csWHrLRh7xJNKK0JJRUSmwa5WQ-ZF_kyNnX2KyPLH5MuEc83DbuqJkTiYrAnHEkGs9VCegwBmNoUdmf_u_U52WF5vQsrMrsg9eXnCi6RdSxVk2y1vrwm2e50X56ebXv_2B8284_tGw-62Ls |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QH9QH4zXitSY-mUy67tLtEYkEFHgREt6atT1LMDKIwP_3dBcSTeTBpyVLuy2n63e-rV-_Q8gDYIrUqW-cIDS-4-uUO0rhV4rB7KENA5HmPtuDYdgd-6-TYFIj7WovjJVVlthfYHqO1uWZZhnN5mI6bb4zTwhbKcK1-ipkPTtkF9mAsPUbepPnDRyHcWHwja0d27xa2sxFXjqxu9Ht_0DxxFz-V3L6BdN57ukckcOSNNJW8VzHpAbZCTkYbBxXl6ckbmV0jtN_Vu6rpDY9GQqzxTQ3AaG25A01YCXkpU6L4octzOCMjDsvo3bXKcsiONqLw5XjgSuUBjdMgWtPCyRAGnkMcgfDo8QLTBRBEKmQJ1y5SapZDAKHiuEtIPXDxDsn9WyewQWhguk0VBHXWnm-JQcYKx27SkCMzMPoBmFVPKQuPcNt6YpPWYnDPiSGUNoQSiYkHhrkcdNlURhmbGvsV0GWP0ZdIqBv63ZfDYjE2WCXOJIM5uuldDkiMLMedpf_u_Qd2euOBn3Z7w3frsg-z4tfWMXZNamvvtZwgxRkpW7zV-wbWmPXuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+based+empirical+mode+decomposition+scheme&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Huang%2C+Boqiang&rft.au=Kunoth%2C+Angela&rft.date=2013-03-01&rft.issn=0377-0427&rft.volume=240&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.cam.2012.07.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |