An optimization based empirical mode decomposition scheme

The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 240; pp. 174 - 183
Main Authors Huang, Boqiang, Kunoth, Angela
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, ‘physically meaningful’, and that the amplitudes can be interpreted as envelopes. In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples.
AbstractList The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, ‘physically meaningful’, and that the amplitudes can be interpreted as envelopes. In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples.
The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components, called intrinsic mode functions (IMFs), are constructed such that they are approximately orthogonal to each other with respect to the L 2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, 'physically meaningful', and that the amplitudes can be interpreted as envelopes. In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples.
Author Kunoth, Angela
Huang, Boqiang
Author_xml – sequence: 1
  givenname: Boqiang
  surname: Huang
  fullname: Huang, Boqiang
  email: bhuang@math.uni-paderborn.de
– sequence: 2
  givenname: Angela
  surname: Kunoth
  fullname: Kunoth, Angela
  email: kunoth@math.uni-paderborn.de
BookMark eNp9kD1PwzAURS1UJNrCD2DLyJLw7DR2Iqaq4kuqxAKz5by8CFdxHOwUCX49KWVi6HSXe-7TOws2631PjF1zyDhwebvL0LhMABcZqGyKMzbnpapSrlQ5Y3PIlUphJdQFW8S4AwBZ8dWcVes-8cNonf02o_V9UptITUJusMGi6RLnG0oaQu8GH-1vJeI7Obpk563pIl395ZK9Pdy_bp7S7cvj82a9TTGv5JjmxFWNxGVLAnNUkgMWUICUjShNXjRlSUVZS2FEzU2LUJGimmA6Se1KmnzJbo67Q_Afe4qjdjYidZ3pye-j5kLwCopVCVOVH6sYfIyBWj0E60z40hz0QZPe6UmTPmjSoPQUE6P-MWjHXxVjMLY7Sd4dSZq-_7QUdERLPVJjA-GoG29P0D8oFYSQ
CitedBy_id crossref_primary_10_1016_j_aeue_2016_06_008
crossref_primary_10_1063_5_0070140
crossref_primary_10_1007_s00500_020_05465_8
crossref_primary_10_3390_en12061093
crossref_primary_10_1142_S2424786321410085
crossref_primary_10_1016_j_dsp_2014_12_006
crossref_primary_10_3390_en9030211
crossref_primary_10_1016_j_apm_2019_03_031
crossref_primary_10_1016_j_jneumeth_2015_02_013
crossref_primary_10_1016_j_sigpro_2014_03_014
crossref_primary_10_1007_s00521_013_1482_z
crossref_primary_10_1007_s10462_020_09875_w
crossref_primary_10_1007_s10489_024_06013_9
crossref_primary_10_1080_07474938_2025_2471913
crossref_primary_10_1016_j_asoc_2021_107438
crossref_primary_10_3390_en10081168
crossref_primary_10_1016_j_dsp_2019_01_024
crossref_primary_10_1109_ACCESS_2019_2916000
crossref_primary_10_3390_en12020254
crossref_primary_10_3390_en9030221
crossref_primary_10_1109_ACCESS_2022_3154044
crossref_primary_10_1080_01605682_2021_1915192
crossref_primary_10_1109_ACCESS_2019_2957602
crossref_primary_10_1007_s11571_022_09870_7
crossref_primary_10_1137_140957767
crossref_primary_10_1016_j_dsp_2015_02_013
crossref_primary_10_2139_ssrn_3595914
crossref_primary_10_3390_app11010179
crossref_primary_10_1002_asmb_2625
crossref_primary_10_1016_j_dsp_2022_103891
crossref_primary_10_1016_j_neucom_2018_02_022
crossref_primary_10_1109_TIP_2014_2363000
crossref_primary_10_1016_j_cmpb_2016_12_016
crossref_primary_10_1016_j_dsp_2021_103292
crossref_primary_10_1007_s11042_022_14315_8
crossref_primary_10_1007_s12665_023_11214_5
crossref_primary_10_1007_s10462_019_09761_0
crossref_primary_10_5004_dwt_2018_22378
crossref_primary_10_1016_j_sigpro_2013_11_034
crossref_primary_10_3390_en10020188
crossref_primary_10_1007_s10462_022_10262_w
crossref_primary_10_1007_s10462_019_09755_y
crossref_primary_10_1007_s13042_021_01389_3
crossref_primary_10_1155_2013_658501
crossref_primary_10_2139_ssrn_3833262
crossref_primary_10_3390_min13091118
crossref_primary_10_1016_j_artmed_2020_101848
crossref_primary_10_1088_1748_0221_19_08_P08017
crossref_primary_10_1103_PhysRevD_96_044047
crossref_primary_10_1109_TIM_2014_2298153
crossref_primary_10_3390_jrfm14100464
crossref_primary_10_3390_math7121188
crossref_primary_10_1109_LSP_2020_2992877
crossref_primary_10_1016_j_heliyon_2024_e26140
crossref_primary_10_1016_j_neucom_2015_08_051
crossref_primary_10_1109_TGRS_2013_2287022
crossref_primary_10_3390_en10111713
crossref_primary_10_1080_03772063_2021_1911693
crossref_primary_10_1098_rsos_150475
crossref_primary_10_1007_s11042_023_16322_9
crossref_primary_10_1109_MSP_2013_2267931
crossref_primary_10_3390_en12244762
crossref_primary_10_1016_j_dsp_2014_02_017
Cites_doi 10.1109/MSP.2010.936020
10.2136/vzj2009.0163
10.1109/PROC.1963.2308
10.1142/S1793536909000047
10.1109/PROC.1966.5138
10.1142/S1793536911000647
10.1109/TSP.2007.906771
10.1142/S179353690900031X
10.1098/rspa.1998.0193
10.1016/j.acha.2010.08.002
10.1142/S179353691100074X
10.1142/S1793536910000513
10.1142/S1793536909000096
10.1109/TSP.2010.2041606
10.1109/TASL.2010.2041108
10.1017/CBO9780511804441
10.1109/TSP.2011.2179650
10.1137/080730251
10.1002/asmb.501
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2012.07.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 183
ExternalDocumentID 10_1016_j_cam_2012_07_012
S0377042712003020
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSH
WUQ
ZY4
7SC
7TB
8FD
AFXIZ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-3e17bce16fe2c3c7610c505066d28a35d88e58b62a2b1afc09e7ebe0decef46a3
IEDL.DBID IXB
ISSN 0377-0427
IngestDate Fri Jul 11 02:36:51 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Jul 01 04:26:51 EDT 2025
Fri Feb 23 02:27:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Empirical mode decomposition (EMD)
Convex optimization
65Dxx
Intrinsic mode functions (IMFs)
65K10
Sparse data-adapted basis
Envelope
Instantaneous frequencies
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-3e17bce16fe2c3c7610c505066d28a35d88e58b62a2b1afc09e7ebe0decef46a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042712003020
PQID 1221905480
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1221905480
crossref_primary_10_1016_j_cam_2012_07_012
crossref_citationtrail_10_1016_j_cam_2012_07_012
elsevier_sciencedirect_doi_10_1016_j_cam_2012_07_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bedrosian (br000085) 1963; 51
Nuttall (br000090) 1966; 54
Daubechies, Lu, Wu (br000030) 2011; 30
Wu, Flandrin, Daubechies (br000105) 2011; 3
2011.
Stefan, Renaut, Gelb (br000120) 2010; 3
M. Grant, S. Boyd, CVX users’ guide. Available online
Rilling, Flandrin (br000100) 2008; 56
J. Rudi, Empirical mode decomposition via adaptiver wavelet-approximation, Diploma Thesis, Institut für Mathematik, Universität Paderborn, Germany, 2010 (in German).
Sell, Slaney (br000115) 2010; 18
Hahn (br000075) 1996
Rudi, Pabel, Jager, Koch, Kunoth, Bogena (br000055) 2010; 9
G. Rilling, P. Flandrin, P. Gonçalves, On empirical mode decomposition and its algorithms, in: Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process, NSIP-03, Grado, Italy, 2003.
Mattingley, Boyd (br000110) 2010; 27
Wu, Huang (br000010) 2009; 1
Peng, Hwang (br000025) 2010; 58
Gabor (br000065) 1946; 93
Titchmarsh (br000080) 1948
Hu, Peng, Hwang (br000150) 2012; 60
Jager, Koch, Kunoth, Pabel (br000020) 2010; 2
Huang, Shen (br000050) 2005
Huang, Wu, Long, Arnold, Chen, Blank (br000015) 2009; 1
Hou, Shi (br000035) 2011; 3
Huang, Wu, Qu, Long, Shen (br000045) 2003; 19
Nocedal, Wright (br000145) 2006
van der Pol (br000060) 1946; 93
H. Hoffmann, A. Kunoth, P. Strack, Fast multiscale PDAS solvers for quadratic optimization problems involving elliptic PDEs under inequality constraints (in preparation).
Cohen (br000070) 1994
Hou, Shi (br000040) 2012
Hou, Yan, Wu (br000155) 2009; 1
Huang, Shen, Long, Wu, Shih, Zhang, Yen, Tung, Liu (br000005) 1998; 454
Mallat (br000095) 2008
2004.
S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, UK. Available online
Huang (10.1016/j.cam.2012.07.012_br000045) 2003; 19
Bedrosian (10.1016/j.cam.2012.07.012_br000085) 1963; 51
Nocedal (10.1016/j.cam.2012.07.012_br000145) 2006
Rilling (10.1016/j.cam.2012.07.012_br000100) 2008; 56
Nuttall (10.1016/j.cam.2012.07.012_br000090) 1966; 54
Mattingley (10.1016/j.cam.2012.07.012_br000110) 2010; 27
Peng (10.1016/j.cam.2012.07.012_br000025) 2010; 58
10.1016/j.cam.2012.07.012_br000160
Gabor (10.1016/j.cam.2012.07.012_br000065) 1946; 93
10.1016/j.cam.2012.07.012_br000140
Wu (10.1016/j.cam.2012.07.012_br000105) 2011; 3
Titchmarsh (10.1016/j.cam.2012.07.012_br000080) 1948
10.1016/j.cam.2012.07.012_br000125
Hou (10.1016/j.cam.2012.07.012_br000040) 2012
Huang (10.1016/j.cam.2012.07.012_br000005) 1998; 454
Sell (10.1016/j.cam.2012.07.012_br000115) 2010; 18
Mallat (10.1016/j.cam.2012.07.012_br000095) 2008
Hou (10.1016/j.cam.2012.07.012_br000035) 2011; 3
van der Pol (10.1016/j.cam.2012.07.012_br000060) 1946; 93
Hahn (10.1016/j.cam.2012.07.012_br000075) 1996
Jager (10.1016/j.cam.2012.07.012_br000020) 2010; 2
Huang (10.1016/j.cam.2012.07.012_br000050) 2005
Wu (10.1016/j.cam.2012.07.012_br000010) 2009; 1
Cohen (10.1016/j.cam.2012.07.012_br000070) 1994
Stefan (10.1016/j.cam.2012.07.012_br000120) 2010; 3
Rudi (10.1016/j.cam.2012.07.012_br000055) 2010; 9
10.1016/j.cam.2012.07.012_br000130
Huang (10.1016/j.cam.2012.07.012_br000015) 2009; 1
Hu (10.1016/j.cam.2012.07.012_br000150) 2012; 60
Hou (10.1016/j.cam.2012.07.012_br000155) 2009; 1
Daubechies (10.1016/j.cam.2012.07.012_br000030) 2011; 30
10.1016/j.cam.2012.07.012_br000135
References_xml – volume: 18
  start-page: 2051
  year: 2010
  end-page: 2066
  ident: br000115
  article-title: Solving demodulation as an optimization problem
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– year: 1994
  ident: br000070
  article-title: Time–Frequency Analysis
– year: 1996
  ident: br000075
  article-title: Hilbert Transforms in Signal Processing
– volume: 27
  start-page: 50
  year: 2010
  end-page: 61
  ident: br000110
  article-title: Real-time convex optimization in signal processing
  publication-title: IEEE Signal Process. Mag.
– reference: G. Rilling, P. Flandrin, P. Gonçalves, On empirical mode decomposition and its algorithms, in: Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process, NSIP-03, Grado, Italy, 2003.
– reference: , 2011.
– volume: 9
  start-page: 925
  year: 2010
  end-page: 942
  ident: br000055
  article-title: Multiscale analysis of hydrologic time series data using the Hilbert–Huang-Transform (HHT)
  publication-title: Vadose Zone J.
– reference: J. Rudi, Empirical mode decomposition via adaptiver wavelet-approximation, Diploma Thesis, Institut für Mathematik, Universität Paderborn, Germany, 2010 (in German).
– reference: H. Hoffmann, A. Kunoth, P. Strack, Fast multiscale PDAS solvers for quadratic optimization problems involving elliptic PDEs under inequality constraints (in preparation).
– volume: 19
  start-page: 245
  year: 2003
  end-page: 268
  ident: br000045
  article-title: Applications of Hilbert–Huang transform to non-stationary financial time series analysis
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 51
  start-page: 868
  year: 1963
  end-page: 869
  ident: br000085
  article-title: A product theorem for Hilbert transforms
  publication-title: Proc. IEEE
– volume: 60
  start-page: 1075
  year: 2012
  end-page: 1086
  ident: br000150
  article-title: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM–FM signals
  publication-title: IEEE Trans. Signal Process.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 28
  ident: br000035
  article-title: Adaptive data analysis via sparse time–frequency representation
  publication-title: Adv. Adapt. Data Anal.
– volume: 1
  start-page: 177
  year: 2009
  end-page: 229
  ident: br000015
  article-title: On instantaneous frequency
  publication-title: Adv. Adapt. Data Anal.
– volume: 93
  start-page: 153
  year: 1946
  end-page: 158
  ident: br000060
  article-title: The fundamental principles of frequency modulation
  publication-title: Part III: Radio and Communication Engineering
– volume: 58
  start-page: 2475
  year: 2010
  end-page: 2483
  ident: br000025
  article-title: Null space pursuit: an operator-based approach to adaptive signal separation
  publication-title: IEEE Trans. Signal Process.
– reference: , 2004.
– volume: 30
  start-page: 243
  year: 2011
  end-page: 261
  ident: br000030
  article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: br000005
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A
– year: 1948
  ident: br000080
  article-title: Introduction to the Theory of Fourier Integral
– volume: 3
  start-page: 232
  year: 2010
  end-page: 251
  ident: br000120
  article-title: Improved total variation-type regularization using higher-order edge detectors
  publication-title: SIAM J. Imag. Sci.
– volume: 2
  start-page: 337
  year: 2010
  end-page: 358
  ident: br000020
  article-title: Fast empirical mode decompositions of multivariate data based on adaptive spline-wavelets and a generalization of the Hilbert–Huang-transform (HHT) to arbitrary space dimensions
  publication-title: Adv. Adapt. Data Anal.
– year: 2006
  ident: br000145
  article-title: Numerical Optimization
– volume: 3
  start-page: 29
  year: 2011
  end-page: 39
  ident: br000105
  article-title: One or two frequencies? the synchrosqueezing answers
  publication-title: Adv. Adapt. Data Anal.
– year: 2005
  ident: br000050
  article-title: Hilbert–Huang Transform and its Applications
– volume: 54
  start-page: 1458
  year: 1966
  end-page: 1459
  ident: br000090
  article-title: On the quadrature approximation to the Hilbert transform of modulated signals
  publication-title: Proc. IEEE
– reference: M. Grant, S. Boyd, CVX users’ guide. Available online:
– year: 2012
  ident: br000040
  article-title: Data-Driven Time–Frequency Analysis
– reference: S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, UK. Available online:
– year: 2008
  ident: br000095
  article-title: A Wavelet Tour of Signal Processing
  publication-title: The Sparse Way
– volume: 1
  start-page: 483
  year: 2009
  end-page: 516
  ident: br000155
  article-title: A variant of the EMD method for multi-scale data
  publication-title: Adv. Adapt. Data Anal.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: br000010
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 93
  start-page: 429
  year: 1946
  end-page: 441
  ident: br000065
  article-title: Theory of communication. Part 1: the analysis of information
  publication-title: Part III: Radio and Communication Engineering
– volume: 56
  start-page: 85
  year: 2008
  end-page: 95
  ident: br000100
  article-title: One or two frequencies? the empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
– volume: 27
  start-page: 50
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000110
  article-title: Real-time convex optimization in signal processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936020
– volume: 9
  start-page: 925
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000055
  article-title: Multiscale analysis of hydrologic time series data using the Hilbert–Huang-Transform (HHT)
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2009.0163
– volume: 51
  start-page: 868
  year: 1963
  ident: 10.1016/j.cam.2012.07.012_br000085
  article-title: A product theorem for Hilbert transforms
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1963.2308
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.cam.2012.07.012_br000010
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 54
  start-page: 1458
  year: 1966
  ident: 10.1016/j.cam.2012.07.012_br000090
  article-title: On the quadrature approximation to the Hilbert transform of modulated signals
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1966.5138
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.cam.2012.07.012_br000035
  article-title: Adaptive data analysis via sparse time–frequency representation
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536911000647
– volume: 56
  start-page: 85
  year: 2008
  ident: 10.1016/j.cam.2012.07.012_br000100
  article-title: One or two frequencies? the empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.906771
– year: 2008
  ident: 10.1016/j.cam.2012.07.012_br000095
  article-title: A Wavelet Tour of Signal Processing
– year: 1994
  ident: 10.1016/j.cam.2012.07.012_br000070
– ident: 10.1016/j.cam.2012.07.012_br000135
– ident: 10.1016/j.cam.2012.07.012_br000160
– volume: 1
  start-page: 483
  year: 2009
  ident: 10.1016/j.cam.2012.07.012_br000155
  article-title: A variant of the EMD method for multi-scale data
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S179353690900031X
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.cam.2012.07.012_br000005
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.1998.0193
– volume: 30
  start-page: 243
  year: 2011
  ident: 10.1016/j.cam.2012.07.012_br000030
  article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.08.002
– volume: 3
  start-page: 29
  year: 2011
  ident: 10.1016/j.cam.2012.07.012_br000105
  article-title: One or two frequencies? the synchrosqueezing answers
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S179353691100074X
– volume: 93
  start-page: 429
  year: 1946
  ident: 10.1016/j.cam.2012.07.012_br000065
  article-title: Theory of communication. Part 1: the analysis of information
  publication-title: J. Inst. Electr. Eng.
– year: 1948
  ident: 10.1016/j.cam.2012.07.012_br000080
– volume: 2
  start-page: 337
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000020
  article-title: Fast empirical mode decompositions of multivariate data based on adaptive spline-wavelets and a generalization of the Hilbert–Huang-transform (HHT) to arbitrary space dimensions
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000513
– volume: 1
  start-page: 177
  year: 2009
  ident: 10.1016/j.cam.2012.07.012_br000015
  article-title: On instantaneous frequency
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000096
– volume: 58
  start-page: 2475
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000025
  article-title: Null space pursuit: an operator-based approach to adaptive signal separation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2041606
– ident: 10.1016/j.cam.2012.07.012_br000140
– year: 2012
  ident: 10.1016/j.cam.2012.07.012_br000040
– volume: 18
  start-page: 2051
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000115
  article-title: Solving demodulation as an optimization problem
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2010.2041108
– year: 2006
  ident: 10.1016/j.cam.2012.07.012_br000145
– ident: 10.1016/j.cam.2012.07.012_br000125
  doi: 10.1017/CBO9780511804441
– volume: 60
  start-page: 1075
  year: 2012
  ident: 10.1016/j.cam.2012.07.012_br000150
  article-title: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM–FM signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2179650
– year: 2005
  ident: 10.1016/j.cam.2012.07.012_br000050
– ident: 10.1016/j.cam.2012.07.012_br000130
– volume: 3
  start-page: 232
  year: 2010
  ident: 10.1016/j.cam.2012.07.012_br000120
  article-title: Improved total variation-type regularization using higher-order edge detectors
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080730251
– volume: 93
  start-page: 153
  year: 1946
  ident: 10.1016/j.cam.2012.07.012_br000060
  article-title: The fundamental principles of frequency modulation
  publication-title: J. Inst. Electr. Eng.
– volume: 19
  start-page: 245
  year: 2003
  ident: 10.1016/j.cam.2012.07.012_br000045
  article-title: Applications of Hilbert–Huang transform to non-stationary financial time series analysis
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.501
– year: 1996
  ident: 10.1016/j.cam.2012.07.012_br000075
SSID ssj0006914
Score 2.3536046
Snippet The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary...
The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Construction
Convex optimization
Decomposition
Empirical analysis
Empirical mode decomposition (EMD)
Envelope
Envelopes
Instantaneous frequencies
Intrinsic mode functions (IMFs)
Iterative methods
Mathematical analysis
Mathematical models
Optimization
Sparse data-adapted basis
Title An optimization based empirical mode decomposition scheme
URI https://dx.doi.org/10.1016/j.cam.2012.07.012
https://www.proquest.com/docview/1221905480
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zvuiDeMV5GRV8ErqlSdu0j3M45mVD1MHeQpOcwsR1w22v_nZPehkouAefAiVpy0nznS_Nd84h5BrQRerUN24QGt_1dcpcpXCXYtB7aENBpHme7cEw7I_8h3EwrpFuFQtjZZUl9heYnqN1eaVdWrM9n0zar5QLYStFeFZfhawHcZj7UR7EN75do3EYF_m9sbNre1cnm7nGSyc2GN3-DhQt6rG_fNMvlM5dT2-f7JWc0ekUr3VAapAdkt3BOuHq4ojEncyZ4eqflmGVjvVOxoHpfJLnAHFsxRvHgFWQlzItB_e1MIVjMurdvXX7blkVwdU8DpcuB08oDV6YAtNcC-Q_GmkMUgfDooQHJoogiFTIEqa8JNU0BoEzRfERkPphwk9IPZtlcEocQXUaqohprbhvuQHaSseeEhAj8TC6QWhlD6nLlOG2csWHrLRh7xJNKK0JJRUSmwa5WQ-ZF_kyNnX2KyPLH5MuEc83DbuqJkTiYrAnHEkGs9VCegwBmNoUdmf_u_U52WF5vQsrMrsg9eXnCi6RdSxVk2y1vrwm2e50X56ebXv_2B8284_tGw-62Ls
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QH9QH4zXitSY-mUy67tLtEYkEFHgREt6atT1LMDKIwP_3dBcSTeTBpyVLuy2n63e-rV-_Q8gDYIrUqW-cIDS-4-uUO0rhV4rB7KENA5HmPtuDYdgd-6-TYFIj7WovjJVVlthfYHqO1uWZZhnN5mI6bb4zTwhbKcK1-ipkPTtkF9mAsPUbepPnDRyHcWHwja0d27xa2sxFXjqxu9Ht_0DxxFz-V3L6BdN57ukckcOSNNJW8VzHpAbZCTkYbBxXl6ckbmV0jtN_Vu6rpDY9GQqzxTQ3AaG25A01YCXkpU6L4octzOCMjDsvo3bXKcsiONqLw5XjgSuUBjdMgWtPCyRAGnkMcgfDo8QLTBRBEKmQJ1y5SapZDAKHiuEtIPXDxDsn9WyewQWhguk0VBHXWnm-JQcYKx27SkCMzMPoBmFVPKQuPcNt6YpPWYnDPiSGUNoQSiYkHhrkcdNlURhmbGvsV0GWP0ZdIqBv63ZfDYjE2WCXOJIM5uuldDkiMLMedpf_u_Qd2euOBn3Z7w3frsg-z4tfWMXZNamvvtZwgxRkpW7zV-wbWmPXuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+based+empirical+mode+decomposition+scheme&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Huang%2C+Boqiang&rft.au=Kunoth%2C+Angela&rft.date=2013-03-01&rft.issn=0377-0427&rft.volume=240&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.cam.2012.07.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon