Rasputin, more promiscuous than ever: a review of G3BP

In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whet...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of developmental biology Vol. 48; no. 10; pp. 1065 - 1077
Main Authors Irvine, Katharine, Stirling, Renee, Hume, David, Kennedy, Derek
Format Journal Article
LanguageEnglish
Published Spain 01.12.2004
Subjects
Online AccessGet full text
ISSN0214-6282
DOI10.1387/ijdb.041893ki

Cover

Loading…
Abstract In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whether all G3BP functions impinge on their RNA-binding activities, so any theories are naturally subject to this qualification. It is hypothesised that, in coordination with an array of other proteins, G3BP, in a phosphorylation-dependent manner, is involved in the post-transcriptional regulation of a subset of mRNAs, at least some of which are in common with those regulated by Hu proteins. These transcripts, partially controlled at the post-transcriptional level by G3BPs, code for proteins important in transcription (e.g. c-Myc) and cytoskeletal arrangement (e.g. Tau), amongst other as yet undetermined pathways. The subtle differences between G3BP family members could dictate binding to a variety of signalling proteins, so each of the G3BPs may participate in different, though possibly related mRNPs, which are assembled in response to different stimuli. The combinatorial nature of the mRNP complex offers a powerful means of regulating gene expression, beyond that provided by a simple mRNA sequence. The ways in which mRNP flexibility and specificity may be harnessed to coordinate gene expression of functionally or structurally related mRNAs are not yet fully appreciated. Characterising mRNP composition and the function/s of mRNP components, such as the G3BPs, will aid in the understanding of how post-transcriptional mechanisms contribute to the global regulation of gene expression.
AbstractList In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whether all G3BP functions impinge on their RNA-binding activities, so any theories are naturally subject to this qualification. It is hypothesised that, in coordination with an array of other proteins, G3BP, in a phosphorylation-dependent manner, is involved in the post-transcriptional regulation of a subset of mRNAs, at least some of which are in common with those regulated by Hu proteins. These transcripts, partially controlled at the post-transcriptional level by G3BPs, code for proteins important in transcription (e.g. c-Myc) and cytoskeletal arrangement (e.g. Tau), amongst other as yet undetermined pathways. The subtle differences between G3BP family members could dictate binding to a variety of signalling proteins, so each of the G3BPs may participate in different, though possibly related mRNPs, which are assembled in response to different stimuli. The combinatorial nature of the mRNP complex offers a powerful means of regulating gene expression, beyond that provided by a simple mRNA sequence. The ways in which mRNP flexibility and specificity may be harnessed to coordinate gene expression of functionally or structurally related mRNAs are not yet fully appreciated. Characterising mRNP composition and the function/s of mRNP components, such as the G3BPs, will aid in the understanding of how post-transcriptional mechanisms contribute to the global regulation of gene expression.
In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whether all G3BP functions impinge on their RNA-binding activities, so any theories are naturally subject to this qualification. It is hypothesised that, in coordination with an array of other proteins, G3BP, in a phosphorylation-dependent manner, is involved in the post-transcriptional regulation of a subset of mRNAs, at least some of which are in common with those regulated by Hu proteins. These transcripts, partially controlled at the post-transcriptional level by G3BPs, code for proteins important in transcription (e.g. c-Myc) and cytoskeletal arrangement (e.g. Tau), amongst other as yet undetermined pathways. The subtle differences between G3BP family members could dictate binding to a variety of signalling proteins, so each of the G3BPs may participate in different, though possibly related mRNPs, which are assembled in response to different stimuli. The combinatorial nature of the mRNP complex offers a powerful means of regulating gene expression, beyond that provided by a simple mRNA sequence. The ways in which mRNP flexibility and specificity may be harnessed to coordinate gene expression of functionally or structurally related mRNAs are not yet fully appreciated. Characterising mRNP composition and the function/s of mRNP components, such as the G3BPs, will aid in the understanding of how post-transcriptional mechanisms contribute to the global regulation of gene expression.In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whether all G3BP functions impinge on their RNA-binding activities, so any theories are naturally subject to this qualification. It is hypothesised that, in coordination with an array of other proteins, G3BP, in a phosphorylation-dependent manner, is involved in the post-transcriptional regulation of a subset of mRNAs, at least some of which are in common with those regulated by Hu proteins. These transcripts, partially controlled at the post-transcriptional level by G3BPs, code for proteins important in transcription (e.g. c-Myc) and cytoskeletal arrangement (e.g. Tau), amongst other as yet undetermined pathways. The subtle differences between G3BP family members could dictate binding to a variety of signalling proteins, so each of the G3BPs may participate in different, though possibly related mRNPs, which are assembled in response to different stimuli. The combinatorial nature of the mRNP complex offers a powerful means of regulating gene expression, beyond that provided by a simple mRNA sequence. The ways in which mRNP flexibility and specificity may be harnessed to coordinate gene expression of functionally or structurally related mRNAs are not yet fully appreciated. Characterising mRNP composition and the function/s of mRNP components, such as the G3BPs, will aid in the understanding of how post-transcriptional mechanisms contribute to the global regulation of gene expression.
Author Kennedy, Derek
Irvine, Katharine
Hume, David
Stirling, Renee
Author_xml – sequence: 1
  givenname: Katharine
  surname: Irvine
  fullname: Irvine, Katharine
– sequence: 2
  givenname: Renee
  surname: Stirling
  fullname: Stirling, Renee
– sequence: 3
  givenname: David
  surname: Hume
  fullname: Hume, David
– sequence: 4
  givenname: Derek
  surname: Kennedy
  fullname: Kennedy, Derek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15602692$$D View this record in MEDLINE/PubMed
BookMark eNptkDtPwzAUhT0U0QeMrMgTEyl-xI7DBhUUpEogBLNlJzfCJY9iJ0X8exK1ZUBMV0f6ztG5Z4pGdVMDQmeUzClXyZVb53ZOYqpS_uFGaEIYjSPJFBujaQhr0muikmM0pkISJlM2QfLFhE3XuvoSV40HvPFN5ULWNV3A7bupMWzBX2ODPWwdfOGmwEt--3yCjgpTBjjd3xl6u797XTxEq6fl4-JmFWU8lW3EheJWCZNnKZWcZISAjFUaixwI9Dq3lltmBYlZnFEVKwO2sDbJCykEF5bP0MUut-_12UFo9dAOytLU0FfUMqGJUinrwfM92NkKcr3xrjL-Wx8-7QG-AzLfhOCh0JlrTeuauvXGlZoSPWyohw31YcPeFf1x_Qb_y_8AXcV05w
CitedBy_id crossref_primary_10_1098_rsob_220369
crossref_primary_10_1007_s00018_014_1660_x
crossref_primary_10_1128_JVI_01298_17
crossref_primary_10_1038_nsmb_3462
crossref_primary_10_1128_MCB_00766_14
crossref_primary_10_1371_journal_pone_0068516
crossref_primary_10_3390_v15020449
crossref_primary_10_1124_jpet_122_001538
crossref_primary_10_1371_journal_pone_0142144
crossref_primary_10_1128_MCB_02300_06
crossref_primary_10_1128_JVI_01779_16
crossref_primary_10_1016_j_dci_2012_05_006
crossref_primary_10_1093_nar_gkaa376
crossref_primary_10_1111_j_1742_4658_2009_07488_x
crossref_primary_10_1186_1476_4598_12_156
crossref_primary_10_1016_j_gene_2016_08_021
crossref_primary_10_1080_21541264_2016_1221491
crossref_primary_10_1371_journal_pone_0029024
crossref_primary_10_1038_onc_2017_225
crossref_primary_10_1038_s41467_020_18734_9
crossref_primary_10_1242_jeb_005017
crossref_primary_10_1261_rna_030270_111
crossref_primary_10_1016_j_yexcr_2008_11_011
crossref_primary_10_1016_j_bbcan_2009_05_002
crossref_primary_10_1016_j_bbrc_2022_03_160
crossref_primary_10_1016_j_mce_2005_11_011
crossref_primary_10_3390_genes6010001
crossref_primary_10_1098_rsob_160078
crossref_primary_10_1242_jcs_084046
crossref_primary_10_1242_jcs_100933
crossref_primary_10_1016_j_ydbio_2023_04_009
crossref_primary_10_1038_s41419_018_0504_2
crossref_primary_10_1016_j_stem_2009_05_021
crossref_primary_10_1016_j_bbrc_2012_02_140
crossref_primary_10_1007_s00428_013_1452_y
crossref_primary_10_1128_JVI_02220_10
crossref_primary_10_1111_jnc_15280
crossref_primary_10_1038_s41467_021_27024_x
crossref_primary_10_1128_JVI_02247_10
crossref_primary_10_1158_1940_6207_CAPR_09_0185
crossref_primary_10_1016_j_jbc_2022_102231
crossref_primary_10_1038_ng_765
crossref_primary_10_1016_j_abb_2023_109702
crossref_primary_10_1101_gad_1545007
crossref_primary_10_1128_JVI_01011_08
crossref_primary_10_1128_MCB_25_19_8703_8716_2005
crossref_primary_10_1016_j_bcp_2014_04_003
crossref_primary_10_1080_1061186X_2018_1523415
crossref_primary_10_1371_journal_pgen_1003169
crossref_primary_10_1038_s44319_024_00204_8
crossref_primary_10_1128_JVI_00647_16
crossref_primary_10_1007_s12031_008_9118_y
crossref_primary_10_1038_s41388_019_0762_1
crossref_primary_10_1186_s13071_017_2557_y
crossref_primary_10_3389_fgene_2022_1034889
crossref_primary_10_1007_s00438_011_0657_5
crossref_primary_10_1042_BJ20091383
crossref_primary_10_1371_journal_pone_0072864
crossref_primary_10_1371_journal_pone_0016692
crossref_primary_10_1016_j_jocn_2007_11_014
crossref_primary_10_3109_10428194_2011_623255
crossref_primary_10_1523_JNEUROSCI_6386_09_2010
crossref_primary_10_1016_j_tibs_2013_12_002
crossref_primary_10_4049_jimmunol_175_7_4274
crossref_primary_10_1111_his_12695
crossref_primary_10_1128_JVI_03612_14
crossref_primary_10_1016_j_phrs_2020_105143
crossref_primary_10_1101_gad_461107
crossref_primary_10_26508_lsa_202101328
crossref_primary_10_1128_JVI_02344_20
crossref_primary_10_1016_j_brainresbull_2006_11_011
crossref_primary_10_1016_j_cell_2020_12_024
crossref_primary_10_1016_j_arcmed_2020_10_002
crossref_primary_10_3892_mmr_2020_11527
crossref_primary_10_1074_jbc_RA118_002046
crossref_primary_10_1128_JVI_00013_11
crossref_primary_10_1158_1541_7786_MCR_10_0574
crossref_primary_10_7554_eLife_75050
crossref_primary_10_1007_s12975_017_0586_7
crossref_primary_10_1111_gtc_12023
crossref_primary_10_1038_aps_2017_58
crossref_primary_10_3389_fpls_2021_680710
crossref_primary_10_1038_sj_leu_2404852
crossref_primary_10_1074_jbc_RA118_005868
crossref_primary_10_1186_s12943_021_01418_3
crossref_primary_10_1242_jcs_130708
crossref_primary_10_1007_s00018_017_2540_y
crossref_primary_10_1128_msphere_00273_23
crossref_primary_10_1261_rna_033829_112
crossref_primary_10_1371_journal_pone_0080947
crossref_primary_10_1016_j_gene_2022_146294
crossref_primary_10_1186_s13046_019_1347_0
crossref_primary_10_3109_08916934_2013_866100
crossref_primary_10_1242_jcs_065920
crossref_primary_10_1016_j_dnarep_2007_04_010
crossref_primary_10_1016_j_bbrc_2012_03_070
crossref_primary_10_1186_s13071_015_1070_4
crossref_primary_10_1016_j_jbc_2022_102552
crossref_primary_10_1016_j_bbabio_2010_10_016
crossref_primary_10_1016_j_gendis_2021_11_003
crossref_primary_10_1002_mrd_22483
crossref_primary_10_1016_j_bbamcr_2018_09_001
crossref_primary_10_1371_journal_ppat_1010598
crossref_primary_10_1002_bit_25141
crossref_primary_10_1016_j_celrep_2020_03_084
crossref_primary_10_1016_j_molcel_2008_04_018
crossref_primary_10_1091_mbc_e05_08_0708
crossref_primary_10_1074_jbc_M603980200
crossref_primary_10_1038_srep17304
crossref_primary_10_1016_j_atherosclerosis_2020_08_003
crossref_primary_10_4137_BBI_S1075
crossref_primary_10_1021_pr7008753
crossref_primary_10_1016_j_phrs_2022_106548
crossref_primary_10_1261_rna_2237610
crossref_primary_10_3109_01677063_2014_917644
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1387/ijdb.041893ki
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EndPage 1077
ExternalDocumentID 15602692
10_1387_ijdb_041893ki
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
123
36B
53G
9UO
AAYXX
ADIYS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
DU5
EBS
EJD
EMB
EMOBN
F5P
GX1
P2P
SJN
SV3
TR2
UDS
Z7D
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c396t-3583b85adc91630c00e648945de0e30cdbb3b2b50424c1848aebfbb7df65535b3
ISSN 0214-6282
IngestDate Fri Jul 11 03:46:16 EDT 2025
Sat Sep 28 08:36:22 EDT 2024
Thu Apr 24 23:06:52 EDT 2025
Tue Jul 01 01:25:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-3583b85adc91630c00e648945de0e30cdbb3b2b50424c1848aebfbb7df65535b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.ijdb.ehu.es/web/descarga/paper/041893ki
PMID 15602692
PQID 67178892
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_67178892
pubmed_primary_15602692
crossref_citationtrail_10_1387_ijdb_041893ki
crossref_primary_10_1387_ijdb_041893ki
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-12-01
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Spain
PublicationPlace_xml – name: Spain
PublicationTitle The International journal of developmental biology
PublicationTitleAlternate Int J Dev Biol
PublicationYear 2004
SSID ssj0021087
Score 2.1243587
SecondaryResourceType review_article
Snippet In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1065
SubjectTerms Animals
Carrier Proteins - metabolism
Carrier Proteins - pharmacology
DNA Helicases
Drosophila
Drosophila Proteins - pharmacology
Gene Expression Regulation, Developmental
Humans
Immunohistochemistry
Models, Biological
Neoplasms - metabolism
NF-kappa B - metabolism
Poly-ADP-Ribose Binding Proteins
Protein Binding
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
RNA - metabolism
RNA Helicases
RNA Recognition Motif Proteins
RNA, Messenger - metabolism
Signal Transduction
Time Factors
Ubiquitin - metabolism
Zebrafish
Title Rasputin, more promiscuous than ever: a review of G3BP
URI https://www.ncbi.nlm.nih.gov/pubmed/15602692
https://www.proquest.com/docview/67178892
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxJvy9AFxYbMkfiQON167Kw4IQVequER-ogJKVyU9wK9nJk931ZUWLpFrxYky83U8M_48JuQZd96YTIcEnH2dCC19UoYc_ng2V6nTqXEdy_djfnwiPizkYqIOtbtLGnNg_-zcV_I_WoU-0Cvukv0HzY4PhQ5og37hChqG64V0_Fn_Ot30VQCQMItsK9Cb3SCvFXPiLzwSNNv9zNMelSP-5lPsk85H_uSQGIzKSbiJVAQdfcmmEU9gZ7qMKJIy9Dpao__SLLGO1rdOhbWP8ePPkOm3zP07v-7rBw-5CBHxOjqTxTKR5Ext2VehYhylkbWEcFRGMy9EosVOq84xL3K4_O7MQSoy8LB-LKfpa1iyPzOrjVzDdslOFRUOr4bhl8kVBnEFWvKjxcgJgvC3PVFx_Iy-KCsMf7n19m0n5pzIpPVQ5jfI9T60oK87nNwkl3x9i1ztDhv9Da2vq7Z1m-QDbvYpooZGqKGIGoqoeUU17TBDV4EiZu6Qk8P387fHSX9-RmJ5mTcJl4obJbWzEAPw1Kapz4UqhXQ-9fDbGcMNMxJXvy1E-kp7E4wpXMil5NLwu2SvXtX-PqHg5SlmlRDeKBEYL4OyMjhmiizwUvkZ2R8EUtm-uDyecfKz2in-GXk-3n7aVVU578ang3QrlAQyAmsP4qjyIiuUKtmM3OuEPj1I4rFqJXtw0Zc8JNcmMD8ie8164x-Dq9mYJy08_gKitn-J
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rasputin%2C+more+promiscuous+than+ever%3A+a+review+of+G3BP&rft.jtitle=The+International+journal+of+developmental+biology&rft.au=Irvine%2C+Katharine&rft.au=Stirling%2C+Renee&rft.au=Hume%2C+David&rft.au=Kennedy%2C+Derek&rft.date=2004-12-01&rft.issn=0214-6282&rft.volume=48&rft.issue=10&rft.spage=1065&rft.epage=1077&rft_id=info:doi/10.1387%2Fijdb.041893ki&rft.externalDBID=n%2Fa&rft.externalDocID=10_1387_ijdb_041893ki
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0214-6282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0214-6282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0214-6282&client=summon