A new computational workflow to guide personalized drug therapy

Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often dri...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 148; p. 104546
Main Authors Pernice, Simone, Maglione, Alessandro, Tortarolo, Dora, Sirovich, Roberta, Clerico, Marinella, Rolla, Simona, Beccuti, Marco, Cordero, Francesca
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics. GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations. To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months. GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions. [Display omitted]
AbstractList Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.OBJECTIVEComputational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.METHODSGreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months.RESULTSTo illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months.GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions.CONCLUSIONGreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions.
Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics. GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations. To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months. GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions.
Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics. GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations. To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months. GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions. [Display omitted]
ArticleNumber 104546
Author Cordero, Francesca
Clerico, Marinella
Sirovich, Roberta
Beccuti, Marco
Pernice, Simone
Tortarolo, Dora
Maglione, Alessandro
Rolla, Simona
Author_xml – sequence: 1
  givenname: Simone
  surname: Pernice
  fullname: Pernice, Simone
  organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0001-7153-2248
  surname: Maglione
  fullname: Maglione, Alessandro
  organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy
– sequence: 3
  givenname: Dora
  surname: Tortarolo
  fullname: Tortarolo, Dora
  organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy
– sequence: 4
  givenname: Roberta
  orcidid: 0000-0002-3189-8269
  surname: Sirovich
  fullname: Sirovich, Roberta
  organization: Department of Mathematics, University of Turin, Via Carlo Alberto 10, Turin, 10123, Italy
– sequence: 5
  givenname: Marinella
  surname: Clerico
  fullname: Clerico, Marinella
  organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy
– sequence: 6
  givenname: Simona
  orcidid: 0000-0002-6371-7354
  surname: Rolla
  fullname: Rolla, Simona
  email: simona.rolla@unito.it
  organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy
– sequence: 7
  givenname: Marco
  orcidid: 0000-0001-6125-9460
  surname: Beccuti
  fullname: Beccuti, Marco
  organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy
– sequence: 8
  givenname: Francesca
  orcidid: 0000-0002-3143-3330
  surname: Cordero
  fullname: Cordero, Francesca
  organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37984546$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1URD_gB7CgjCwptpPYjhhQVfElVWKB2XLtS3FJ42AnVOXXkyqUgaGTz7rnOd29YzSoXAUIXRI8JZiwm_V0vbRTimnS_dMsZSdoRLKExjgVePBXs3SIxiGsMSYky9gZGiY8F3t-hO5mUQXbSLtN3Taqsa5SZbR1_qMo3TZqXLRqrYGoBh_2LfsNJjK-XUXNO3hV787RaaHKABe_7wS9Pdy_zp_ixcvj83y2iHWSsyamuUmJoSIRJtc5K7hR2rAMOCdcJ0ueLTUQVejCCEVBC9HtqfKMYS4YLVKcTNB1P7f27rOF0MiNDRrKUlXg2iCpyCnlOOe8Q69-0Xa5ASNrbzfK7-Th6A7gPaC9C8FDIbXtb2-8sqUkWO7jlWvZxSv38co-3s4k_8zD8GPObe9AF8-XBS-DtlBpMNaDbqRx9oj9A6DCkaA
CitedBy_id crossref_primary_10_3390_jpm14020199
crossref_primary_10_1016_j_jbi_2024_104619
Cites_doi 10.3389/fninf.2018.00026
10.1186/s12859-020-03648-6
10.1212/WNL.0000000000004354
10.3390/jpm12020166
10.1007/s11538-023-01181-0
10.3390/cells9061396
10.1016/j.csbj.2023.05.020
10.1038/s41467-017-00268-2
10.2217/nmt-2017-0035
10.1177/1352458519881759
10.1093/biomet/87.3.587
10.1049/iet-syb.2017.0015
10.1007/s00415-020-09983-1
10.1212/NXI.0000000000000635
10.1186/1471-2377-14-58
10.1212/WNL.0000000000000520
10.1177/1352458519888610
10.1007/978-3-030-63061-4_26
10.3390/app11188400
10.1186/s12859-019-3196-4
10.1038/nm1651
10.1198/016214503000189
10.1177/1352458518796675
10.1109/JBHI.2020.3003996
10.3389/fimmu.2022.818325
10.1093/bioinformatics/btad201
10.1158/0008-5472.CAN-16-1467
10.1038/s41579-022-00770-5
10.15252/msb.20188664
10.1126/science.abj8222
10.1126/science.abm7930
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jbi.2023.104546
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID 37984546
10_1016_j_jbi_2023_104546
S1532046423002678
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABDPE
ABFRF
ABJNI
ABMAC
ABMZM
ABVKL
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAYWO
AAYXX
ACIEU
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
ID FETCH-LOGICAL-c396t-29d41d2838d9c96f7dacd65e7717c3b75bce1afcfd8a2ec88556a95607862f403
IEDL.DBID IXB
ISSN 1532-0464
1532-0480
IngestDate Fri Jul 11 13:02:49 EDT 2025
Thu Apr 03 07:00:41 EDT 2025
Tue Jul 01 04:12:13 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Sat Dec 14 16:15:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiple Sclerosis
Longitudinal data
Computational models
0000
1111
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-29d41d2838d9c96f7dacd65e7717c3b75bce1afcfd8a2ec88556a95607862f403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6125-9460
0000-0002-3143-3330
0000-0002-3189-8269
0000-0002-6371-7354
0000-0001-7153-2248
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1532046423002678
PMID 37984546
PQID 2892270977
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2892270977
pubmed_primary_37984546
crossref_citationtrail_10_1016_j_jbi_2023_104546
crossref_primary_10_1016_j_jbi_2023_104546
elsevier_sciencedirect_doi_10_1016_j_jbi_2023_104546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – sequence: 0
  name: Elsevier Inc
References Kozak, Formanowicz, Formanowicz (b5) 2018; 12
Ferraty, Vieu (b15) 2006
Comi, Alroughani, Boster, Bass, Berkovich, Fernández, Kim, Limmroth, Lycke, Macdonell (b37) 2020; 26
Castagno, Pernice, Ghetti, Povero, Pradelli, Paolotti, Balbo, Sereno, Beccuti (b8) 2020; 21
Weatherley, Araujo, Dando, Jenner (b12) 2023; 85
Soldan, Lieberman (b33) 2023; 21
Coles, Cohen, Fox, Giovannoni, Hartung, Havrdova, Schippling, Selmaj, Traboulsee, Compston (b21) 2017; 89
Steingo, Al Malik, Bass, Berkovich, Carraro, Fernández, Ionete, Massacesi, Meuth, Mitsikostas (b22) 2020; 267
Amparore, Balbo, Beccuti, Donatelli, Franceschinis (b28) 2016
Wiendl, Carraro, Comi, Izquierdo, Kim, Sharrack, Tornatore, Daizadeh, Chung, Jacobs (b36) 2020; 7
Robinson, Steinman (b32) 2022; 375
Van Wijmeersch, Singer, Boster, Broadley, Fernández, Freedman, Izquierdo, Lycke, Pozzilli, Sharrack (b34) 2020; 26
Peng, Xie, Tang, Liu (b7) 2021; 11
Kebir, Kreymborg, Ifergan, Dodelet-Devillers, Cayrol, Bernard, Giuliani, Arbour, Becher, Prat (b30) 2007; 13
Udyavar, Wooten, Hoeksema, Bansal, Califano, Estrada, Schnell, Irish, Massion, Quaranta (b9) 2017; 5
Eduati, Jaaks, Wappler, Cramer, Merten, Garnett, Saez-Rodriguez (b10) 2020; 16
Mansoori, Rahgozar, Kavousi (b3) 2021; 25
Pernice, Follia, Maglione, Pennisi, Pappalardo, Novelli, Clerico, Beccuti, Cordero, Rolla (b6) 2020; 21
Khan, Marquardt, Gupta, Knoll, Schmitz, Spitschak, Engelmann, Vera, Wolkenhauer, Pützer (b11) 2017; 8
Collin, Gebhardt, Golebiewski, Karaderi, Hillemanns, Khan, Salehzadeh-Yazdi, Kirschner, Krobitsch, Consortium, Kuepfer (b1) 2022; 12
Pernice, Beccuti, Romano, Pennisi, Maglione, Cutrupi, Pappalardo, Capra, Franceschinis, De Pierro, Balbo, Cordero, Calogero (b18) 2020; 12313 LNBI
Rolla, Maglione, De Mercanti, Clerico (b25) 2020; 9
Ramsay, Silverman (b16) 2005
R. Core Team (b29) 2023
Ashraf, Ahmad, Ali, Ul-Haq (b4) 2018; 12
Giovannoni (b19) 2017; 7
Pernice, Pennisi, Romano, Maglione, Cutrupi, Pappalardo, Balbo, Beccuti, Cordero, Calogero (b17) 2019
Rolla, De Mercanti, Bardina, Maglione, Taverna, Novelli, Cocco, Vladic, Habek, Adamec (b20) 2022; 13
Wray, Havrdova, Snydman, Arnold, Cohen, Coles, Hartung, Selmaj, Weiner, Daizadeh (b23) 2019; 25
Kousin-Ezewu, Azzopardi, Parker, Tuohy, Compston, Coles, Jones (b35) 2014; 82
James, Sugar (b26) 2003; 98
James, Hastie, Sugar (b27) 2000; 87
Bjornevik, Cortese, Healy, Kuhle, Mina, Leng, Elledge, Niebuhr, Scher, Munger (b31) 2022; 375
Pernice, Sirovich, Grassi, Viviani, Ferri, Sassi, Alessandrí, Tortarolo, Calogero, Trusolino, Bertotti, Beccuti, Olivero, Cordero (b14) 2023; 39
Maleki, Crispino, Italia, Di Salvatore, Chiacchio, Sips, Bursi, Russo, Maimone, Pappalardo (b13) 2023; 21
Petri (b2) 1966
Meyer-Moock, Feng, Maeurer, Dippel, Kohlmann (b24) 2014; 14
Meyer-Moock (10.1016/j.jbi.2023.104546_b24) 2014; 14
James (10.1016/j.jbi.2023.104546_b26) 2003; 98
Petri (10.1016/j.jbi.2023.104546_b2) 1966
Pernice (10.1016/j.jbi.2023.104546_b18) 2020; 12313 LNBI
Ashraf (10.1016/j.jbi.2023.104546_b4) 2018; 12
Pernice (10.1016/j.jbi.2023.104546_b6) 2020; 21
Ferraty (10.1016/j.jbi.2023.104546_b15) 2006
Khan (10.1016/j.jbi.2023.104546_b11) 2017; 8
R. Core Team (10.1016/j.jbi.2023.104546_b29) 2023
Kebir (10.1016/j.jbi.2023.104546_b30) 2007; 13
Rolla (10.1016/j.jbi.2023.104546_b20) 2022; 13
Rolla (10.1016/j.jbi.2023.104546_b25) 2020; 9
Peng (10.1016/j.jbi.2023.104546_b7) 2021; 11
Kousin-Ezewu (10.1016/j.jbi.2023.104546_b35) 2014; 82
Soldan (10.1016/j.jbi.2023.104546_b33) 2023; 21
Pernice (10.1016/j.jbi.2023.104546_b14) 2023; 39
Ramsay (10.1016/j.jbi.2023.104546_b16) 2005
Eduati (10.1016/j.jbi.2023.104546_b10) 2020; 16
Robinson (10.1016/j.jbi.2023.104546_b32) 2022; 375
Kozak (10.1016/j.jbi.2023.104546_b5) 2018; 12
Castagno (10.1016/j.jbi.2023.104546_b8) 2020; 21
Pernice (10.1016/j.jbi.2023.104546_b17) 2019
Steingo (10.1016/j.jbi.2023.104546_b22) 2020; 267
Mansoori (10.1016/j.jbi.2023.104546_b3) 2021; 25
Udyavar (10.1016/j.jbi.2023.104546_b9) 2017; 5
Comi (10.1016/j.jbi.2023.104546_b37) 2020; 26
Weatherley (10.1016/j.jbi.2023.104546_b12) 2023; 85
Maleki (10.1016/j.jbi.2023.104546_b13) 2023; 21
Wray (10.1016/j.jbi.2023.104546_b23) 2019; 25
James (10.1016/j.jbi.2023.104546_b27) 2000; 87
Bjornevik (10.1016/j.jbi.2023.104546_b31) 2022; 375
Van Wijmeersch (10.1016/j.jbi.2023.104546_b34) 2020; 26
Amparore (10.1016/j.jbi.2023.104546_b28) 2016
Wiendl (10.1016/j.jbi.2023.104546_b36) 2020; 7
Collin (10.1016/j.jbi.2023.104546_b1) 2022; 12
Giovannoni (10.1016/j.jbi.2023.104546_b19) 2017; 7
Coles (10.1016/j.jbi.2023.104546_b21) 2017; 89
References_xml – volume: 87
  start-page: 587
  year: 2000
  end-page: 602
  ident: b27
  article-title: Principal component models for sparse functional data
  publication-title: Biometrika
– volume: 14
  start-page: 1
  year: 2014
  end-page: 10
  ident: b24
  article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis
  publication-title: BMC Neurol.
– volume: 12
  start-page: 108
  year: 2018
  end-page: 117
  ident: b5
  article-title: Structural analysis of a Petri net model of oxidative stress in atherosclerosis
  publication-title: IET Syst. Biol.
– year: 2023
  ident: b29
  article-title: R: A Language and Environment for Statistical Computing
– volume: 25
  start-page: 874
  year: 2021
  end-page: 880
  ident: b3
  article-title: A pathway analysis approach using Petri net
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2006
  ident: b15
  article-title: Nonparametric Functional Data Analysis: Theory and Practice
– volume: 98
  start-page: 397
  year: 2003
  end-page: 408
  ident: b26
  article-title: Clustering for sparsely sampled functional data
  publication-title: J. Amer. Statist. Assoc.
– volume: 7
  start-page: 13
  year: 2017
  end-page: 17
  ident: b19
  article-title: Personalized medicine in multiple sclerosis
  publication-title: Neurodegener. Dis. Manag.
– volume: 12
  year: 2018
  ident: b4
  article-title: Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach
  publication-title: Front. Neuroinform.
– volume: 85
  start-page: 75
  year: 2023
  end-page: 80
  ident: b12
  article-title: Could mathematics be the key to unlocking the mysteries of multiple sclerosis?
  publication-title: Bull. Math. Biol.
– volume: 16
  year: 2020
  ident: b10
  article-title: Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies
  publication-title: Mol. Syst. Biol.
– volume: 375
  start-page: 296
  year: 2022
  end-page: 301
  ident: b31
  article-title: Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis
  publication-title: Science
– volume: 26
  start-page: 1866
  year: 2020
  end-page: 1876
  ident: b37
  article-title: Efficacy of alemtuzumab in relapsing-remitting MS patients who received additional courses after the initial two courses: pooled analysis of the CARE-MS, extension, and TOPAZ studies
  publication-title: Multiple Scler. J.
– volume: 11
  year: 2021
  ident: b7
  article-title: Modeling and analyzing transmission of infectious diseases using generalized stochastic Petri nets
  publication-title: Appl. Sci.
– volume: 267
  start-page: 3343
  year: 2020
  end-page: 3353
  ident: b22
  article-title: Long-term efficacy and safety of alemtuzumab in patients with RRMS: 12-year follow-up of CAMMS223
  publication-title: J. Neurol.
– volume: 21
  start-page: 344
  year: 2020
  ident: b8
  article-title: A computational framework for modeling and studying pertussis epidemiology and vaccination
  publication-title: BMC Bioinf.
– volume: 89
  start-page: 1117
  year: 2017
  end-page: 1126
  ident: b21
  article-title: Alemtuzumab CARE-MS ii 5-year follow-up: efficacy and safety findings
  publication-title: Neurology
– volume: 82
  start-page: 2158
  year: 2014
  end-page: 2164
  ident: b35
  article-title: Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity
  publication-title: Neurology
– volume: 13
  year: 2022
  ident: b20
  article-title: Long-term effects of alemtuzumab on CD4+ lymphocytes in multiple sclerosis patients: A 72-month follow-up
  publication-title: Front. Immunol.
– year: 2005
  ident: b16
  article-title: Functional Data Analysis
– volume: 25
  start-page: 1605
  year: 2019
  end-page: 1617
  ident: b23
  article-title: Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study
  publication-title: Multiple Scler. J.
– year: 2019
  ident: b17
  article-title: A computational approach based on the Colored Petri Net formalism for studying Multiple Sclerosis
  publication-title: BMC Bioinf.
– volume: 12
  year: 2022
  ident: b1
  article-title: Computational models for clinical applications in personalized medicine—guidelines and recommendations for data integration and model validation
  publication-title: J. Pers. Med.
– volume: 21
  start-page: 3081
  year: 2023
  end-page: 3090
  ident: b13
  article-title: Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation
  publication-title: Comput. Struct. Biotechnol. J.
– start-page: 227
  year: 2016
  end-page: 254
  ident: b28
  article-title: 30 Years of GreatSPN
  publication-title: Principles of Performance and Reliability Modeling and Evaluation
– volume: 21
  start-page: 51
  year: 2023
  end-page: 64
  ident: b33
  article-title: Epstein–Barr virus and multiple sclerosis
  publication-title: Nat. Rev. Microbiol.
– volume: 7
  year: 2020
  ident: b36
  article-title: Lymphocyte pharmacodynamics are not associated with autoimmunity or efficacy after alemtuzumab
  publication-title: Neurol. Neuroimmunol. Neuroinflammation
– volume: 9
  start-page: 1396
  year: 2020
  ident: b25
  article-title: The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis
  publication-title: Cells
– volume: 375
  start-page: 264
  year: 2022
  end-page: 265
  ident: b32
  article-title: Epstein-Barr virus and multiple sclerosis
  publication-title: Science
– volume: 8
  start-page: 198
  year: 2017
  ident: b11
  article-title: Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures
  publication-title: Nature Commun.
– volume: 5
  start-page: 1063
  year: 2017
  end-page: 1074
  ident: b9
  article-title: Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity
  publication-title: Cancer Res.
– volume: 39
  start-page: btad201
  year: 2023
  ident: b14
  article-title: CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
  publication-title: Bioinformatics
– year: 1966
  ident: b2
  article-title: Kommunikation Mit Automaten.
– volume: 12313 LNBI
  start-page: 299
  year: 2020
  end-page: 308
  ident: b18
  article-title: Multiple sclerosis disease: A computational approach for investigating its drug interactions
  publication-title: Lecture Notes in Comput. Sci.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 20
  ident: b6
  article-title: Computational modeling of the immune response in Multiple Sclerosis using Epimod framework
  publication-title: BMC Bioinf.
– volume: 26
  start-page: 1719
  year: 2020
  end-page: 1728
  ident: b34
  article-title: Efficacy of alemtuzumab over 6 years in relapsing–remitting multiple sclerosis patients who relapsed between courses 1 and 2: Post hoc analysis of the CARE-MS studies
  publication-title: Multiple Scler. J.
– volume: 13
  start-page: 1173
  year: 2007
  end-page: 1175
  ident: b30
  article-title: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation
  publication-title: Nat. Med.
– volume: 12
  year: 2018
  ident: 10.1016/j.jbi.2023.104546_b4
  article-title: Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2018.00026
– volume: 21
  start-page: 344
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b8
  article-title: A computational framework for modeling and studying pertussis epidemiology and vaccination
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-020-03648-6
– volume: 89
  start-page: 1117
  issue: 11
  year: 2017
  ident: 10.1016/j.jbi.2023.104546_b21
  article-title: Alemtuzumab CARE-MS ii 5-year follow-up: efficacy and safety findings
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004354
– volume: 12
  issue: 2
  year: 2022
  ident: 10.1016/j.jbi.2023.104546_b1
  article-title: Computational models for clinical applications in personalized medicine-guidelines and recommendations for data integration and model validation
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm12020166
– volume: 85
  start-page: 75
  year: 2023
  ident: 10.1016/j.jbi.2023.104546_b12
  article-title: Could mathematics be the key to unlocking the mysteries of multiple sclerosis?
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-023-01181-0
– volume: 9
  start-page: 1396
  issue: 6
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b25
  article-title: The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis
  publication-title: Cells
  doi: 10.3390/cells9061396
– volume: 21
  start-page: 3081
  year: 2023
  ident: 10.1016/j.jbi.2023.104546_b13
  article-title: Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.05.020
– volume: 8
  start-page: 198
  issue: 1
  year: 2017
  ident: 10.1016/j.jbi.2023.104546_b11
  article-title: Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures
  publication-title: Nature Commun.
  doi: 10.1038/s41467-017-00268-2
– volume: 7
  start-page: 13
  issue: 6s
  year: 2017
  ident: 10.1016/j.jbi.2023.104546_b19
  article-title: Personalized medicine in multiple sclerosis
  publication-title: Neurodegener. Dis. Manag.
  doi: 10.2217/nmt-2017-0035
– year: 2005
  ident: 10.1016/j.jbi.2023.104546_b16
– year: 1966
  ident: 10.1016/j.jbi.2023.104546_b2
– volume: 21
  start-page: 1
  issue: 17
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b6
  article-title: Computational modeling of the immune response in Multiple Sclerosis using Epimod framework
  publication-title: BMC Bioinf.
– volume: 26
  start-page: 1719
  issue: 13
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b34
  article-title: Efficacy of alemtuzumab over 6 years in relapsing–remitting multiple sclerosis patients who relapsed between courses 1 and 2: Post hoc analysis of the CARE-MS studies
  publication-title: Multiple Scler. J.
  doi: 10.1177/1352458519881759
– volume: 87
  start-page: 587
  issue: 3
  year: 2000
  ident: 10.1016/j.jbi.2023.104546_b27
  article-title: Principal component models for sparse functional data
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.587
– volume: 12
  start-page: 108
  issue: 3
  year: 2018
  ident: 10.1016/j.jbi.2023.104546_b5
  article-title: Structural analysis of a Petri net model of oxidative stress in atherosclerosis
  publication-title: IET Syst. Biol.
  doi: 10.1049/iet-syb.2017.0015
– year: 2023
  ident: 10.1016/j.jbi.2023.104546_b29
– volume: 267
  start-page: 3343
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b22
  article-title: Long-term efficacy and safety of alemtuzumab in patients with RRMS: 12-year follow-up of CAMMS223
  publication-title: J. Neurol.
  doi: 10.1007/s00415-020-09983-1
– volume: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b36
  article-title: Lymphocyte pharmacodynamics are not associated with autoimmunity or efficacy after alemtuzumab
  publication-title: Neurol. Neuroimmunol. Neuroinflammation
  doi: 10.1212/NXI.0000000000000635
– volume: 14
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.jbi.2023.104546_b24
  article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-14-58
– volume: 82
  start-page: 2158
  issue: 24
  year: 2014
  ident: 10.1016/j.jbi.2023.104546_b35
  article-title: Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000520
– volume: 26
  start-page: 1866
  issue: 14
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b37
  article-title: Efficacy of alemtuzumab in relapsing-remitting MS patients who received additional courses after the initial two courses: pooled analysis of the CARE-MS, extension, and TOPAZ studies
  publication-title: Multiple Scler. J.
  doi: 10.1177/1352458519888610
– volume: 12313 LNBI
  start-page: 299
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b18
  article-title: Multiple sclerosis disease: A computational approach for investigating its drug interactions
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-030-63061-4_26
– volume: 11
  issue: 18
  year: 2021
  ident: 10.1016/j.jbi.2023.104546_b7
  article-title: Modeling and analyzing transmission of infectious diseases using generalized stochastic Petri nets
  publication-title: Appl. Sci.
  doi: 10.3390/app11188400
– year: 2006
  ident: 10.1016/j.jbi.2023.104546_b15
– year: 2019
  ident: 10.1016/j.jbi.2023.104546_b17
  article-title: A computational approach based on the Colored Petri Net formalism for studying Multiple Sclerosis
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-019-3196-4
– volume: 13
  start-page: 1173
  issue: 10
  year: 2007
  ident: 10.1016/j.jbi.2023.104546_b30
  article-title: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation
  publication-title: Nat. Med.
  doi: 10.1038/nm1651
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  ident: 10.1016/j.jbi.2023.104546_b26
  article-title: Clustering for sparsely sampled functional data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214503000189
– volume: 25
  start-page: 1605
  issue: 12
  year: 2019
  ident: 10.1016/j.jbi.2023.104546_b23
  article-title: Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study
  publication-title: Multiple Scler. J.
  doi: 10.1177/1352458518796675
– volume: 25
  start-page: 874
  issue: 3
  year: 2021
  ident: 10.1016/j.jbi.2023.104546_b3
  article-title: A pathway analysis approach using Petri net
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3003996
– volume: 13
  year: 2022
  ident: 10.1016/j.jbi.2023.104546_b20
  article-title: Long-term effects of alemtuzumab on CD4+ lymphocytes in multiple sclerosis patients: A 72-month follow-up
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.818325
– volume: 39
  start-page: btad201
  issue: 5
  year: 2023
  ident: 10.1016/j.jbi.2023.104546_b14
  article-title: CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad201
– volume: 5
  start-page: 1063
  issue: 77
  year: 2017
  ident: 10.1016/j.jbi.2023.104546_b9
  article-title: Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1467
– start-page: 227
  year: 2016
  ident: 10.1016/j.jbi.2023.104546_b28
  article-title: 30 Years of GreatSPN
– volume: 21
  start-page: 51
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2023.104546_b33
  article-title: Epstein–Barr virus and multiple sclerosis
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-022-00770-5
– volume: 16
  issue: 2
  year: 2020
  ident: 10.1016/j.jbi.2023.104546_b10
  article-title: Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188664
– volume: 375
  start-page: 296
  issue: 6578
  year: 2022
  ident: 10.1016/j.jbi.2023.104546_b31
  article-title: Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis
  publication-title: Science
  doi: 10.1126/science.abj8222
– volume: 375
  start-page: 264
  issue: 6578
  year: 2022
  ident: 10.1016/j.jbi.2023.104546_b32
  article-title: Epstein-Barr virus and multiple sclerosis
  publication-title: Science
  doi: 10.1126/science.abm7930
SSID ssj0011556
Score 2.3920493
Snippet Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104546
SubjectTerms Computational models
Longitudinal data
Multiple Sclerosis
Title A new computational workflow to guide personalized drug therapy
URI https://dx.doi.org/10.1016/j.jbi.2023.104546
https://www.ncbi.nlm.nih.gov/pubmed/37984546
https://www.proquest.com/docview/2892270977
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48QBQRrVc9ygo-CbHNucmT1KLUE_GAvi2b3U2pSFu0RfTB3-5MNikK6oNPIWEnWWY2s9_sXAD7aeIaLt3I0bFGA8WNM4eqqDlKpkmSeRkidModvrqO2g_BeSfsTEGrzIWhsMpC91udnmvr4km94GZ92OvV71zqaRAgfvbJkOCU8OsHcZ7E1zmeeBJwv4xszVSPwhiD0rOZx3g9pr1D6h9Ons6QMPDPe9Nv2DPfg06XYakAj6xp57cCU6ZfgYUvJQUrMHdVOMsrsGiP5JjNNFqFoyZDDM1U3sehOANkFJeVPQ1e2WjAuuOeNmxYwvN3o5l-HneZzdF6W4OH05P7Vtsp-ic4yk-ikeMlOnA14odYJyqJMq6l0lFoOJpwyk95mCrjykxlOpaeUXGMrJJkL3E0c7Kg4a_DTH_QN5vAdCPlSiqD1BEVpEkjH1-HusmE3A-lrEKj5JxQRXFx6nHxJMooskeBzBbEbGGZXYWDCcnQVtb4a3BQikN8Wx4CNf9fZHul6AT-NuQLkX0zGL8ItDM9jzcQ_VZhw8p0MgufJzFRb_3vo9swT3c25mUHZkbPY7OLyGWU1mD68MOtwWyzdXt5Q9ezi_Z1LV-wn4No7SQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48wAMRrVc9V_BJiG3OTZ5ExdKq7YsKfVs2uxupSFu0RfTXO5NNioL2wdckkywzm5lvdi6AkzRxDZdu5OhYo4PixplDXdQcJdMkybwMETrVDrc7UfMxuOmG3Rm4KmthKK2y0P1Wp-faurhSK7hZG_Z6tXuXZhoEiJ99ciR4PAvziAY4zW9odS8noQQ0mJFtmupRHmNQhjbzJK_ntHdGA8Qp1BkSCP7dOP0FPnMj1FiD1QI9sgu7wHWYMf0KLH_rKViBhXYRLa_Aij2TY7bUaAPOLxiCaKbyQQ7FISCjxKzsZfDORgP2NO5pw4YlPv80munX8ROzRVofm_DYuH64ajrFAAVH-Uk0crxEB65GABHrRCVRxrVUOgoNRx9O-SkPU2VcmalMx9IzKo6RVZIcJo5-ThbU_S2Y6w_6ZgeYrqdcSWWQOqKONGnk4-tQOZmQ-6GUVaiXnBOq6C5OQy5eRJlG9iyQ2YKYLSyzq3A6IRna1hrTHg5KcYgf-0Og6p9GdlyKTuB_Q8EQ2TeD8ZtAR9PzeB3hbxW2rUwnq_B5EhP17v8-egSLzYf2nbhrdW73YInu2ASYfZgbvY7NAcKYUXqYb9MvD8HsIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+computational+workflow+to+guide+personalized+drug+therapy&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Pernice%2C+Simone&rft.au=Maglione%2C+Alessandro&rft.au=Tortarolo%2C+Dora&rft.au=Sirovich%2C+Roberta&rft.date=2023-12-01&rft.issn=1532-0464&rft.volume=148&rft.spage=104546&rft_id=info:doi/10.1016%2Fj.jbi.2023.104546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2023_104546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon