A new computational workflow to guide personalized drug therapy
Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often dri...
Saved in:
Published in | Journal of biomedical informatics Vol. 148; p. 104546 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.
GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.
To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months.
GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions.
[Display omitted] |
---|---|
AbstractList | Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.OBJECTIVEComputational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.METHODSGreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months.RESULTSTo illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months.GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions.CONCLUSIONGreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions. Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics. GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations. To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months. GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions. Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics. GreatNectoris designed by combining an analytic strategy composed of CONNECTOR, a data-driven framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations. To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab treatment separate non-responders versus responders patients, and the patients in the non-responders group are characterized by an increase of the Th17 concentration around 36 months. GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose dynamics suggested insight into patient-tailored interventions. [Display omitted] |
ArticleNumber | 104546 |
Author | Cordero, Francesca Clerico, Marinella Sirovich, Roberta Beccuti, Marco Pernice, Simone Tortarolo, Dora Maglione, Alessandro Rolla, Simona |
Author_xml | – sequence: 1 givenname: Simone surname: Pernice fullname: Pernice, Simone organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy – sequence: 2 givenname: Alessandro orcidid: 0000-0001-7153-2248 surname: Maglione fullname: Maglione, Alessandro organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy – sequence: 3 givenname: Dora surname: Tortarolo fullname: Tortarolo, Dora organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy – sequence: 4 givenname: Roberta orcidid: 0000-0002-3189-8269 surname: Sirovich fullname: Sirovich, Roberta organization: Department of Mathematics, University of Turin, Via Carlo Alberto 10, Turin, 10123, Italy – sequence: 5 givenname: Marinella surname: Clerico fullname: Clerico, Marinella organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy – sequence: 6 givenname: Simona orcidid: 0000-0002-6371-7354 surname: Rolla fullname: Rolla, Simona email: simona.rolla@unito.it organization: Department of Clinical and Biological Sciences, Regione Gonzole 10, Orbassano, 10043, Italy – sequence: 7 givenname: Marco orcidid: 0000-0001-6125-9460 surname: Beccuti fullname: Beccuti, Marco organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy – sequence: 8 givenname: Francesca orcidid: 0000-0002-3143-3330 surname: Cordero fullname: Cordero, Francesca organization: Department of Computer Science, University of Turin, Corso Svizzera 185, Turin, 10149, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37984546$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1URD_gB7CgjCwptpPYjhhQVfElVWKB2XLtS3FJ42AnVOXXkyqUgaGTz7rnOd29YzSoXAUIXRI8JZiwm_V0vbRTimnS_dMsZSdoRLKExjgVePBXs3SIxiGsMSYky9gZGiY8F3t-hO5mUQXbSLtN3Taqsa5SZbR1_qMo3TZqXLRqrYGoBh_2LfsNJjK-XUXNO3hV787RaaHKABe_7wS9Pdy_zp_ixcvj83y2iHWSsyamuUmJoSIRJtc5K7hR2rAMOCdcJ0ueLTUQVejCCEVBC9HtqfKMYS4YLVKcTNB1P7f27rOF0MiNDRrKUlXg2iCpyCnlOOe8Q69-0Xa5ASNrbzfK7-Th6A7gPaC9C8FDIbXtb2-8sqUkWO7jlWvZxSv38co-3s4k_8zD8GPObe9AF8-XBS-DtlBpMNaDbqRx9oj9A6DCkaA |
CitedBy_id | crossref_primary_10_3390_jpm14020199 crossref_primary_10_1016_j_jbi_2024_104619 |
Cites_doi | 10.3389/fninf.2018.00026 10.1186/s12859-020-03648-6 10.1212/WNL.0000000000004354 10.3390/jpm12020166 10.1007/s11538-023-01181-0 10.3390/cells9061396 10.1016/j.csbj.2023.05.020 10.1038/s41467-017-00268-2 10.2217/nmt-2017-0035 10.1177/1352458519881759 10.1093/biomet/87.3.587 10.1049/iet-syb.2017.0015 10.1007/s00415-020-09983-1 10.1212/NXI.0000000000000635 10.1186/1471-2377-14-58 10.1212/WNL.0000000000000520 10.1177/1352458519888610 10.1007/978-3-030-63061-4_26 10.3390/app11188400 10.1186/s12859-019-3196-4 10.1038/nm1651 10.1198/016214503000189 10.1177/1352458518796675 10.1109/JBHI.2020.3003996 10.3389/fimmu.2022.818325 10.1093/bioinformatics/btad201 10.1158/0008-5472.CAN-16-1467 10.1038/s41579-022-00770-5 10.15252/msb.20188664 10.1126/science.abj8222 10.1126/science.abm7930 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jbi.2023.104546 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
ExternalDocumentID | 37984546 10_1016_j_jbi_2023_104546 S1532046423002678 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXKI AAXUO AAYFN ABBOA ABBQC ABDPE ABFRF ABJNI ABMAC ABMZM ABVKL ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEKER AENEX AEXQZ AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAYWO AAYXX ACIEU ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c396t-29d41d2838d9c96f7dacd65e7717c3b75bce1afcfd8a2ec88556a95607862f403 |
IEDL.DBID | IXB |
ISSN | 1532-0464 1532-0480 |
IngestDate | Fri Jul 11 13:02:49 EDT 2025 Thu Apr 03 07:00:41 EDT 2025 Tue Jul 01 04:12:13 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Sat Dec 14 16:15:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple Sclerosis Longitudinal data Computational models 0000 1111 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-29d41d2838d9c96f7dacd65e7717c3b75bce1afcfd8a2ec88556a95607862f403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6125-9460 0000-0002-3143-3330 0000-0002-3189-8269 0000-0002-6371-7354 0000-0001-7153-2248 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1532046423002678 |
PMID | 37984546 |
PQID | 2892270977 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2892270977 pubmed_primary_37984546 crossref_citationtrail_10_1016_j_jbi_2023_104546 crossref_primary_10_1016_j_jbi_2023_104546 elsevier_sciencedirect_doi_10_1016_j_jbi_2023_104546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 2023-Dec 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical informatics |
PublicationTitleAlternate | J Biomed Inform |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – sequence: 0 name: Elsevier Inc |
References | Kozak, Formanowicz, Formanowicz (b5) 2018; 12 Ferraty, Vieu (b15) 2006 Comi, Alroughani, Boster, Bass, Berkovich, Fernández, Kim, Limmroth, Lycke, Macdonell (b37) 2020; 26 Castagno, Pernice, Ghetti, Povero, Pradelli, Paolotti, Balbo, Sereno, Beccuti (b8) 2020; 21 Weatherley, Araujo, Dando, Jenner (b12) 2023; 85 Soldan, Lieberman (b33) 2023; 21 Coles, Cohen, Fox, Giovannoni, Hartung, Havrdova, Schippling, Selmaj, Traboulsee, Compston (b21) 2017; 89 Steingo, Al Malik, Bass, Berkovich, Carraro, Fernández, Ionete, Massacesi, Meuth, Mitsikostas (b22) 2020; 267 Amparore, Balbo, Beccuti, Donatelli, Franceschinis (b28) 2016 Wiendl, Carraro, Comi, Izquierdo, Kim, Sharrack, Tornatore, Daizadeh, Chung, Jacobs (b36) 2020; 7 Robinson, Steinman (b32) 2022; 375 Van Wijmeersch, Singer, Boster, Broadley, Fernández, Freedman, Izquierdo, Lycke, Pozzilli, Sharrack (b34) 2020; 26 Peng, Xie, Tang, Liu (b7) 2021; 11 Kebir, Kreymborg, Ifergan, Dodelet-Devillers, Cayrol, Bernard, Giuliani, Arbour, Becher, Prat (b30) 2007; 13 Udyavar, Wooten, Hoeksema, Bansal, Califano, Estrada, Schnell, Irish, Massion, Quaranta (b9) 2017; 5 Eduati, Jaaks, Wappler, Cramer, Merten, Garnett, Saez-Rodriguez (b10) 2020; 16 Mansoori, Rahgozar, Kavousi (b3) 2021; 25 Pernice, Follia, Maglione, Pennisi, Pappalardo, Novelli, Clerico, Beccuti, Cordero, Rolla (b6) 2020; 21 Khan, Marquardt, Gupta, Knoll, Schmitz, Spitschak, Engelmann, Vera, Wolkenhauer, Pützer (b11) 2017; 8 Collin, Gebhardt, Golebiewski, Karaderi, Hillemanns, Khan, Salehzadeh-Yazdi, Kirschner, Krobitsch, Consortium, Kuepfer (b1) 2022; 12 Pernice, Beccuti, Romano, Pennisi, Maglione, Cutrupi, Pappalardo, Capra, Franceschinis, De Pierro, Balbo, Cordero, Calogero (b18) 2020; 12313 LNBI Rolla, Maglione, De Mercanti, Clerico (b25) 2020; 9 Ramsay, Silverman (b16) 2005 R. Core Team (b29) 2023 Ashraf, Ahmad, Ali, Ul-Haq (b4) 2018; 12 Giovannoni (b19) 2017; 7 Pernice, Pennisi, Romano, Maglione, Cutrupi, Pappalardo, Balbo, Beccuti, Cordero, Calogero (b17) 2019 Rolla, De Mercanti, Bardina, Maglione, Taverna, Novelli, Cocco, Vladic, Habek, Adamec (b20) 2022; 13 Wray, Havrdova, Snydman, Arnold, Cohen, Coles, Hartung, Selmaj, Weiner, Daizadeh (b23) 2019; 25 Kousin-Ezewu, Azzopardi, Parker, Tuohy, Compston, Coles, Jones (b35) 2014; 82 James, Sugar (b26) 2003; 98 James, Hastie, Sugar (b27) 2000; 87 Bjornevik, Cortese, Healy, Kuhle, Mina, Leng, Elledge, Niebuhr, Scher, Munger (b31) 2022; 375 Pernice, Sirovich, Grassi, Viviani, Ferri, Sassi, Alessandrí, Tortarolo, Calogero, Trusolino, Bertotti, Beccuti, Olivero, Cordero (b14) 2023; 39 Maleki, Crispino, Italia, Di Salvatore, Chiacchio, Sips, Bursi, Russo, Maimone, Pappalardo (b13) 2023; 21 Petri (b2) 1966 Meyer-Moock, Feng, Maeurer, Dippel, Kohlmann (b24) 2014; 14 Meyer-Moock (10.1016/j.jbi.2023.104546_b24) 2014; 14 James (10.1016/j.jbi.2023.104546_b26) 2003; 98 Petri (10.1016/j.jbi.2023.104546_b2) 1966 Pernice (10.1016/j.jbi.2023.104546_b18) 2020; 12313 LNBI Ashraf (10.1016/j.jbi.2023.104546_b4) 2018; 12 Pernice (10.1016/j.jbi.2023.104546_b6) 2020; 21 Ferraty (10.1016/j.jbi.2023.104546_b15) 2006 Khan (10.1016/j.jbi.2023.104546_b11) 2017; 8 R. Core Team (10.1016/j.jbi.2023.104546_b29) 2023 Kebir (10.1016/j.jbi.2023.104546_b30) 2007; 13 Rolla (10.1016/j.jbi.2023.104546_b20) 2022; 13 Rolla (10.1016/j.jbi.2023.104546_b25) 2020; 9 Peng (10.1016/j.jbi.2023.104546_b7) 2021; 11 Kousin-Ezewu (10.1016/j.jbi.2023.104546_b35) 2014; 82 Soldan (10.1016/j.jbi.2023.104546_b33) 2023; 21 Pernice (10.1016/j.jbi.2023.104546_b14) 2023; 39 Ramsay (10.1016/j.jbi.2023.104546_b16) 2005 Eduati (10.1016/j.jbi.2023.104546_b10) 2020; 16 Robinson (10.1016/j.jbi.2023.104546_b32) 2022; 375 Kozak (10.1016/j.jbi.2023.104546_b5) 2018; 12 Castagno (10.1016/j.jbi.2023.104546_b8) 2020; 21 Pernice (10.1016/j.jbi.2023.104546_b17) 2019 Steingo (10.1016/j.jbi.2023.104546_b22) 2020; 267 Mansoori (10.1016/j.jbi.2023.104546_b3) 2021; 25 Udyavar (10.1016/j.jbi.2023.104546_b9) 2017; 5 Comi (10.1016/j.jbi.2023.104546_b37) 2020; 26 Weatherley (10.1016/j.jbi.2023.104546_b12) 2023; 85 Maleki (10.1016/j.jbi.2023.104546_b13) 2023; 21 Wray (10.1016/j.jbi.2023.104546_b23) 2019; 25 James (10.1016/j.jbi.2023.104546_b27) 2000; 87 Bjornevik (10.1016/j.jbi.2023.104546_b31) 2022; 375 Van Wijmeersch (10.1016/j.jbi.2023.104546_b34) 2020; 26 Amparore (10.1016/j.jbi.2023.104546_b28) 2016 Wiendl (10.1016/j.jbi.2023.104546_b36) 2020; 7 Collin (10.1016/j.jbi.2023.104546_b1) 2022; 12 Giovannoni (10.1016/j.jbi.2023.104546_b19) 2017; 7 Coles (10.1016/j.jbi.2023.104546_b21) 2017; 89 |
References_xml | – volume: 87 start-page: 587 year: 2000 end-page: 602 ident: b27 article-title: Principal component models for sparse functional data publication-title: Biometrika – volume: 14 start-page: 1 year: 2014 end-page: 10 ident: b24 article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis publication-title: BMC Neurol. – volume: 12 start-page: 108 year: 2018 end-page: 117 ident: b5 article-title: Structural analysis of a Petri net model of oxidative stress in atherosclerosis publication-title: IET Syst. Biol. – year: 2023 ident: b29 article-title: R: A Language and Environment for Statistical Computing – volume: 25 start-page: 874 year: 2021 end-page: 880 ident: b3 article-title: A pathway analysis approach using Petri net publication-title: IEEE J. Biomed. Health Inf. – year: 2006 ident: b15 article-title: Nonparametric Functional Data Analysis: Theory and Practice – volume: 98 start-page: 397 year: 2003 end-page: 408 ident: b26 article-title: Clustering for sparsely sampled functional data publication-title: J. Amer. Statist. Assoc. – volume: 7 start-page: 13 year: 2017 end-page: 17 ident: b19 article-title: Personalized medicine in multiple sclerosis publication-title: Neurodegener. Dis. Manag. – volume: 12 year: 2018 ident: b4 article-title: Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach publication-title: Front. Neuroinform. – volume: 85 start-page: 75 year: 2023 end-page: 80 ident: b12 article-title: Could mathematics be the key to unlocking the mysteries of multiple sclerosis? publication-title: Bull. Math. Biol. – volume: 16 year: 2020 ident: b10 article-title: Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies publication-title: Mol. Syst. Biol. – volume: 375 start-page: 296 year: 2022 end-page: 301 ident: b31 article-title: Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis publication-title: Science – volume: 26 start-page: 1866 year: 2020 end-page: 1876 ident: b37 article-title: Efficacy of alemtuzumab in relapsing-remitting MS patients who received additional courses after the initial two courses: pooled analysis of the CARE-MS, extension, and TOPAZ studies publication-title: Multiple Scler. J. – volume: 11 year: 2021 ident: b7 article-title: Modeling and analyzing transmission of infectious diseases using generalized stochastic Petri nets publication-title: Appl. Sci. – volume: 267 start-page: 3343 year: 2020 end-page: 3353 ident: b22 article-title: Long-term efficacy and safety of alemtuzumab in patients with RRMS: 12-year follow-up of CAMMS223 publication-title: J. Neurol. – volume: 21 start-page: 344 year: 2020 ident: b8 article-title: A computational framework for modeling and studying pertussis epidemiology and vaccination publication-title: BMC Bioinf. – volume: 89 start-page: 1117 year: 2017 end-page: 1126 ident: b21 article-title: Alemtuzumab CARE-MS ii 5-year follow-up: efficacy and safety findings publication-title: Neurology – volume: 82 start-page: 2158 year: 2014 end-page: 2164 ident: b35 article-title: Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity publication-title: Neurology – volume: 13 year: 2022 ident: b20 article-title: Long-term effects of alemtuzumab on CD4+ lymphocytes in multiple sclerosis patients: A 72-month follow-up publication-title: Front. Immunol. – year: 2005 ident: b16 article-title: Functional Data Analysis – volume: 25 start-page: 1605 year: 2019 end-page: 1617 ident: b23 article-title: Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study publication-title: Multiple Scler. J. – year: 2019 ident: b17 article-title: A computational approach based on the Colored Petri Net formalism for studying Multiple Sclerosis publication-title: BMC Bioinf. – volume: 12 year: 2022 ident: b1 article-title: Computational models for clinical applications in personalized medicine—guidelines and recommendations for data integration and model validation publication-title: J. Pers. Med. – volume: 21 start-page: 3081 year: 2023 end-page: 3090 ident: b13 article-title: Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation publication-title: Comput. Struct. Biotechnol. J. – start-page: 227 year: 2016 end-page: 254 ident: b28 article-title: 30 Years of GreatSPN publication-title: Principles of Performance and Reliability Modeling and Evaluation – volume: 21 start-page: 51 year: 2023 end-page: 64 ident: b33 article-title: Epstein–Barr virus and multiple sclerosis publication-title: Nat. Rev. Microbiol. – volume: 7 year: 2020 ident: b36 article-title: Lymphocyte pharmacodynamics are not associated with autoimmunity or efficacy after alemtuzumab publication-title: Neurol. Neuroimmunol. Neuroinflammation – volume: 9 start-page: 1396 year: 2020 ident: b25 article-title: The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis publication-title: Cells – volume: 375 start-page: 264 year: 2022 end-page: 265 ident: b32 article-title: Epstein-Barr virus and multiple sclerosis publication-title: Science – volume: 8 start-page: 198 year: 2017 ident: b11 article-title: Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures publication-title: Nature Commun. – volume: 5 start-page: 1063 year: 2017 end-page: 1074 ident: b9 article-title: Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity publication-title: Cancer Res. – volume: 39 start-page: btad201 year: 2023 ident: b14 article-title: CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system publication-title: Bioinformatics – year: 1966 ident: b2 article-title: Kommunikation Mit Automaten. – volume: 12313 LNBI start-page: 299 year: 2020 end-page: 308 ident: b18 article-title: Multiple sclerosis disease: A computational approach for investigating its drug interactions publication-title: Lecture Notes in Comput. Sci. – volume: 21 start-page: 1 year: 2020 end-page: 20 ident: b6 article-title: Computational modeling of the immune response in Multiple Sclerosis using Epimod framework publication-title: BMC Bioinf. – volume: 26 start-page: 1719 year: 2020 end-page: 1728 ident: b34 article-title: Efficacy of alemtuzumab over 6 years in relapsing–remitting multiple sclerosis patients who relapsed between courses 1 and 2: Post hoc analysis of the CARE-MS studies publication-title: Multiple Scler. J. – volume: 13 start-page: 1173 year: 2007 end-page: 1175 ident: b30 article-title: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation publication-title: Nat. Med. – volume: 12 year: 2018 ident: 10.1016/j.jbi.2023.104546_b4 article-title: Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00026 – volume: 21 start-page: 344 year: 2020 ident: 10.1016/j.jbi.2023.104546_b8 article-title: A computational framework for modeling and studying pertussis epidemiology and vaccination publication-title: BMC Bioinf. doi: 10.1186/s12859-020-03648-6 – volume: 89 start-page: 1117 issue: 11 year: 2017 ident: 10.1016/j.jbi.2023.104546_b21 article-title: Alemtuzumab CARE-MS ii 5-year follow-up: efficacy and safety findings publication-title: Neurology doi: 10.1212/WNL.0000000000004354 – volume: 12 issue: 2 year: 2022 ident: 10.1016/j.jbi.2023.104546_b1 article-title: Computational models for clinical applications in personalized medicine-guidelines and recommendations for data integration and model validation publication-title: J. Pers. Med. doi: 10.3390/jpm12020166 – volume: 85 start-page: 75 year: 2023 ident: 10.1016/j.jbi.2023.104546_b12 article-title: Could mathematics be the key to unlocking the mysteries of multiple sclerosis? publication-title: Bull. Math. Biol. doi: 10.1007/s11538-023-01181-0 – volume: 9 start-page: 1396 issue: 6 year: 2020 ident: 10.1016/j.jbi.2023.104546_b25 article-title: The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis publication-title: Cells doi: 10.3390/cells9061396 – volume: 21 start-page: 3081 year: 2023 ident: 10.1016/j.jbi.2023.104546_b13 article-title: Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.05.020 – volume: 8 start-page: 198 issue: 1 year: 2017 ident: 10.1016/j.jbi.2023.104546_b11 article-title: Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures publication-title: Nature Commun. doi: 10.1038/s41467-017-00268-2 – volume: 7 start-page: 13 issue: 6s year: 2017 ident: 10.1016/j.jbi.2023.104546_b19 article-title: Personalized medicine in multiple sclerosis publication-title: Neurodegener. Dis. Manag. doi: 10.2217/nmt-2017-0035 – year: 2005 ident: 10.1016/j.jbi.2023.104546_b16 – year: 1966 ident: 10.1016/j.jbi.2023.104546_b2 – volume: 21 start-page: 1 issue: 17 year: 2020 ident: 10.1016/j.jbi.2023.104546_b6 article-title: Computational modeling of the immune response in Multiple Sclerosis using Epimod framework publication-title: BMC Bioinf. – volume: 26 start-page: 1719 issue: 13 year: 2020 ident: 10.1016/j.jbi.2023.104546_b34 article-title: Efficacy of alemtuzumab over 6 years in relapsing–remitting multiple sclerosis patients who relapsed between courses 1 and 2: Post hoc analysis of the CARE-MS studies publication-title: Multiple Scler. J. doi: 10.1177/1352458519881759 – volume: 87 start-page: 587 issue: 3 year: 2000 ident: 10.1016/j.jbi.2023.104546_b27 article-title: Principal component models for sparse functional data publication-title: Biometrika doi: 10.1093/biomet/87.3.587 – volume: 12 start-page: 108 issue: 3 year: 2018 ident: 10.1016/j.jbi.2023.104546_b5 article-title: Structural analysis of a Petri net model of oxidative stress in atherosclerosis publication-title: IET Syst. Biol. doi: 10.1049/iet-syb.2017.0015 – year: 2023 ident: 10.1016/j.jbi.2023.104546_b29 – volume: 267 start-page: 3343 year: 2020 ident: 10.1016/j.jbi.2023.104546_b22 article-title: Long-term efficacy and safety of alemtuzumab in patients with RRMS: 12-year follow-up of CAMMS223 publication-title: J. Neurol. doi: 10.1007/s00415-020-09983-1 – volume: 7 issue: 1 year: 2020 ident: 10.1016/j.jbi.2023.104546_b36 article-title: Lymphocyte pharmacodynamics are not associated with autoimmunity or efficacy after alemtuzumab publication-title: Neurol. Neuroimmunol. Neuroinflammation doi: 10.1212/NXI.0000000000000635 – volume: 14 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.jbi.2023.104546_b24 article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis publication-title: BMC Neurol. doi: 10.1186/1471-2377-14-58 – volume: 82 start-page: 2158 issue: 24 year: 2014 ident: 10.1016/j.jbi.2023.104546_b35 article-title: Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity publication-title: Neurology doi: 10.1212/WNL.0000000000000520 – volume: 26 start-page: 1866 issue: 14 year: 2020 ident: 10.1016/j.jbi.2023.104546_b37 article-title: Efficacy of alemtuzumab in relapsing-remitting MS patients who received additional courses after the initial two courses: pooled analysis of the CARE-MS, extension, and TOPAZ studies publication-title: Multiple Scler. J. doi: 10.1177/1352458519888610 – volume: 12313 LNBI start-page: 299 year: 2020 ident: 10.1016/j.jbi.2023.104546_b18 article-title: Multiple sclerosis disease: A computational approach for investigating its drug interactions publication-title: Lecture Notes in Comput. Sci. doi: 10.1007/978-3-030-63061-4_26 – volume: 11 issue: 18 year: 2021 ident: 10.1016/j.jbi.2023.104546_b7 article-title: Modeling and analyzing transmission of infectious diseases using generalized stochastic Petri nets publication-title: Appl. Sci. doi: 10.3390/app11188400 – year: 2006 ident: 10.1016/j.jbi.2023.104546_b15 – year: 2019 ident: 10.1016/j.jbi.2023.104546_b17 article-title: A computational approach based on the Colored Petri Net formalism for studying Multiple Sclerosis publication-title: BMC Bioinf. doi: 10.1186/s12859-019-3196-4 – volume: 13 start-page: 1173 issue: 10 year: 2007 ident: 10.1016/j.jbi.2023.104546_b30 article-title: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation publication-title: Nat. Med. doi: 10.1038/nm1651 – volume: 98 start-page: 397 issue: 462 year: 2003 ident: 10.1016/j.jbi.2023.104546_b26 article-title: Clustering for sparsely sampled functional data publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214503000189 – volume: 25 start-page: 1605 issue: 12 year: 2019 ident: 10.1016/j.jbi.2023.104546_b23 article-title: Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study publication-title: Multiple Scler. J. doi: 10.1177/1352458518796675 – volume: 25 start-page: 874 issue: 3 year: 2021 ident: 10.1016/j.jbi.2023.104546_b3 article-title: A pathway analysis approach using Petri net publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3003996 – volume: 13 year: 2022 ident: 10.1016/j.jbi.2023.104546_b20 article-title: Long-term effects of alemtuzumab on CD4+ lymphocytes in multiple sclerosis patients: A 72-month follow-up publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.818325 – volume: 39 start-page: btad201 issue: 5 year: 2023 ident: 10.1016/j.jbi.2023.104546_b14 article-title: CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad201 – volume: 5 start-page: 1063 issue: 77 year: 2017 ident: 10.1016/j.jbi.2023.104546_b9 article-title: Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1467 – start-page: 227 year: 2016 ident: 10.1016/j.jbi.2023.104546_b28 article-title: 30 Years of GreatSPN – volume: 21 start-page: 51 issue: 1 year: 2023 ident: 10.1016/j.jbi.2023.104546_b33 article-title: Epstein–Barr virus and multiple sclerosis publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-022-00770-5 – volume: 16 issue: 2 year: 2020 ident: 10.1016/j.jbi.2023.104546_b10 article-title: Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188664 – volume: 375 start-page: 296 issue: 6578 year: 2022 ident: 10.1016/j.jbi.2023.104546_b31 article-title: Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis publication-title: Science doi: 10.1126/science.abj8222 – volume: 375 start-page: 264 issue: 6578 year: 2022 ident: 10.1016/j.jbi.2023.104546_b32 article-title: Epstein-Barr virus and multiple sclerosis publication-title: Science doi: 10.1126/science.abm7930 |
SSID | ssj0011556 |
Score | 2.3920493 |
Snippet | Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104546 |
SubjectTerms | Computational models Longitudinal data Multiple Sclerosis |
Title | A new computational workflow to guide personalized drug therapy |
URI | https://dx.doi.org/10.1016/j.jbi.2023.104546 https://www.ncbi.nlm.nih.gov/pubmed/37984546 https://www.proquest.com/docview/2892270977 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48QBQRrVc9ygo-CbHNucmT1KLUE_GAvi2b3U2pSFu0RfTB3-5MNikK6oNPIWEnWWY2s9_sXAD7aeIaLt3I0bFGA8WNM4eqqDlKpkmSeRkidModvrqO2g_BeSfsTEGrzIWhsMpC91udnmvr4km94GZ92OvV71zqaRAgfvbJkOCU8OsHcZ7E1zmeeBJwv4xszVSPwhiD0rOZx3g9pr1D6h9Ons6QMPDPe9Nv2DPfg06XYakAj6xp57cCU6ZfgYUvJQUrMHdVOMsrsGiP5JjNNFqFoyZDDM1U3sehOANkFJeVPQ1e2WjAuuOeNmxYwvN3o5l-HneZzdF6W4OH05P7Vtsp-ic4yk-ikeMlOnA14odYJyqJMq6l0lFoOJpwyk95mCrjykxlOpaeUXGMrJJkL3E0c7Kg4a_DTH_QN5vAdCPlSiqD1BEVpEkjH1-HusmE3A-lrEKj5JxQRXFx6nHxJMooskeBzBbEbGGZXYWDCcnQVtb4a3BQikN8Wx4CNf9fZHul6AT-NuQLkX0zGL8ItDM9jzcQ_VZhw8p0MgufJzFRb_3vo9swT3c25mUHZkbPY7OLyGWU1mD68MOtwWyzdXt5Q9ezi_Z1LV-wn4No7SQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48wAMRrVc9V_BJiG3OTZ5ExdKq7YsKfVs2uxupSFu0RfTXO5NNioL2wdckkywzm5lvdi6AkzRxDZdu5OhYo4PixplDXdQcJdMkybwMETrVDrc7UfMxuOmG3Rm4KmthKK2y0P1Wp-faurhSK7hZG_Z6tXuXZhoEiJ99ciR4PAvziAY4zW9odS8noQQ0mJFtmupRHmNQhjbzJK_ntHdGA8Qp1BkSCP7dOP0FPnMj1FiD1QI9sgu7wHWYMf0KLH_rKViBhXYRLa_Aij2TY7bUaAPOLxiCaKbyQQ7FISCjxKzsZfDORgP2NO5pw4YlPv80munX8ROzRVofm_DYuH64ajrFAAVH-Uk0crxEB65GABHrRCVRxrVUOgoNRx9O-SkPU2VcmalMx9IzKo6RVZIcJo5-ThbU_S2Y6w_6ZgeYrqdcSWWQOqKONGnk4-tQOZmQ-6GUVaiXnBOq6C5OQy5eRJlG9iyQ2YKYLSyzq3A6IRna1hrTHg5KcYgf-0Og6p9GdlyKTuB_Q8EQ2TeD8ZtAR9PzeB3hbxW2rUwnq_B5EhP17v8-egSLzYf2nbhrdW73YInu2ASYfZgbvY7NAcKYUXqYb9MvD8HsIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+computational+workflow+to+guide+personalized+drug+therapy&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Pernice%2C+Simone&rft.au=Maglione%2C+Alessandro&rft.au=Tortarolo%2C+Dora&rft.au=Sirovich%2C+Roberta&rft.date=2023-12-01&rft.issn=1532-0464&rft.volume=148&rft.spage=104546&rft_id=info:doi/10.1016%2Fj.jbi.2023.104546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2023_104546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |