A New Subject-Sensitive Hashing Algorithm Based on Multi-PatchDrop and Swin-Unet for the Integrity Authentication of HRRS Image

Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 13; no. 9; p. 336
Main Authors Ding, Kaimeng, Wang, Yingying, Wang, Chishe, Ma, Ji
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still not ideal. In this paper, we propose a Multi-PatchDrop mechanism to improve the performance of Transformer-based subject-sensitive hashing. The Multi-PatchDrop mechanism determines different patch dropout values for different Transformer blocks in ViT models. On the basis of a Multi-PatchDrop, we propose an improved Swin-Unet for implementing subject-sensitive hashing. In this improved Swin-Unet, Multi-PatchDrop has been integrated, and each Swin Transformer block (except the first one) is preceded by a patch dropout layer. Experimental results demonstrate that the robustness of our proposed subject-sensitive hashing algorithm is not only stronger than that of the CNN-based algorithms but also stronger than that of Transformer-based algorithms. The tampering sensitivity is of the same intensity as the AGIM-net and M-net-based algorithms, stronger than other Transformer-based algorithms.
AbstractList Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still not ideal. In this paper, we propose a Multi-PatchDrop mechanism to improve the performance of Transformer-based subject-sensitive hashing. The Multi-PatchDrop mechanism determines different patch dropout values for different Transformer blocks in ViT models. On the basis of a Multi-PatchDrop, we propose an improved Swin-Unet for implementing subject-sensitive hashing. In this improved Swin-Unet, Multi-PatchDrop has been integrated, and each Swin Transformer block (except the first one) is preceded by a patch dropout layer. Experimental results demonstrate that the robustness of our proposed subject-sensitive hashing algorithm is not only stronger than that of the CNN-based algorithms but also stronger than that of Transformer-based algorithms. The tampering sensitivity is of the same intensity as the AGIM-net and M-net-based algorithms, stronger than other Transformer-based algorithms.
Audience Academic
Author Wang, Yingying
Ding, Kaimeng
Wang, Chishe
Ma, Ji
Author_xml – sequence: 1
  givenname: Kaimeng
  orcidid: 0000-0002-1339-813X
  surname: Ding
  fullname: Ding, Kaimeng
– sequence: 2
  givenname: Yingying
  surname: Wang
  fullname: Wang, Yingying
– sequence: 3
  givenname: Chishe
  surname: Wang
  fullname: Wang, Chishe
– sequence: 4
  givenname: Ji
  orcidid: 0000-0003-3613-3836
  surname: Ma
  fullname: Ma, Ji
BookMark eNpdUktv1DAQjlCRKEtv_ABLXDiQ4le8znEpj12pPNSl58ixx1lHib3YDlVP_HVcFqEK--CZ0fd9M-OZ59WZDx6q6iXBl4y1-K0bB0cYbjFj4kl1TinFddsKfvbIflZdpDTiclrCJMfn1a8N-gJ3aL_0I-hc78Enl91PQFuVDs4PaDMNIbp8mNE7lcCg4NHnZcqu_qayPryP4YiUN2h_53x96yEjGyLKB0A7n2EozHu0WYrvs9Mqu0IPFm1vbvZoN6sBXlRPrZoSXPx9V9Xtxw_fr7b19ddPu6vNda1ZK3JNqbGCtZQLZSQXaykb2jdMWqmA91wS4IwTQ7gCYznFZg2aE9GAolxaWLNVtTvpmqDG7hjdrOJ9F5Tr_gRCHDoVS4kTdMb2GJveEKnKF2nSW8Fb0TLTY2p4I4rW65PWMYYfC6TczS5pmCblISypY6RUhhuMeYG--g86hiX60mlBEVx0ZZnXqro8oQZV8jtvQ45Kl2tgdrqM2boS30iCBReYPsi-ORF0DClFsP86Irh72Ibu8Taw3yTQp5Y
Cites_doi 10.3390/electronics13122412
10.1109/JSTARS.2024.3356660
10.1016/j.procs.2021.05.021
10.3390/math12142200
10.1007/978-3-319-24574-4_28
10.20944/preprints202406.0084.v1
10.1109/TGRS.2022.3144165
10.3390/rs16132397
10.1007/s41651-023-00162-0
10.1109/TGRS.2023.3266781
10.1109/CVPR.2018.00418
10.3390/rs16122252
10.1016/j.neunet.2019.08.025
10.1109/TIFS.2015.2407698
10.1109/TMM.2020.2999188
10.3390/electronics11182810
10.3390/bdcc7040178
10.1109/JSTARS.2022.3231890
10.3390/rs16132289
10.1109/TPAMI.2022.3152247
10.1007/978-3-030-25614-2_4
10.3390/app13031815
10.1145/3505244
10.3390/a17050182
10.1007/s41651-023-00136-2
10.1109/WACV56688.2023.00394
10.1080/10106049.2023.2168071
10.3390/rs16142573
10.3390/rs16071183
10.1109/TCSVT.2020.3047142
10.1109/ICCV48922.2021.00986
10.3390/rs16132427
10.1109/LGRS.2024.3407101
10.1016/j.cnsns.2010.12.016
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/ijgi13090336
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_dfb00dbd18a840c1bf649693db02d456
A810646024
10_3390_ijgi13090336
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
ZBA
PMFND
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c396t-22df639246ad84678852b538f8ae4b481e4341d14aedf420d7ec4165ea248fe73
IEDL.DBID BENPR
ISSN 2220-9964
IngestDate Wed Aug 27 01:29:22 EDT 2025
Fri Jul 11 10:42:02 EDT 2025
Fri Jul 25 11:54:40 EDT 2025
Tue Jun 10 21:02:18 EDT 2025
Tue Jul 01 02:54:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-22df639246ad84678852b538f8ae4b481e4341d14aedf420d7ec4165ea248fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3613-3836
0000-0002-1339-813X
OpenAccessLink https://www.proquest.com/docview/3110496803?pq-origsite=%requestingapplication%
PQID 3110496803
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_dfb00dbd18a840c1bf649693db02d456
proquest_miscellaneous_3153805004
proquest_journals_3110496803
gale_infotracacademiconefile_A810646024
crossref_primary_10_3390_ijgi13090336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Samanta (ref_14) 2021; 185
Deng (ref_44) 2011; 16
Ibtehaz (ref_39) 2020; 121
Zhang (ref_33) 2022; 60
Ouyang (ref_3) 2023; 16
ref_34
ref_11
ref_10
ref_30
Ren (ref_5) 2023; 7
ref_19
ref_18
Ding (ref_35) 2015; 40
Han (ref_12) 2023; 61
ref_38
ref_15
Xu (ref_43) 2024; 21
Li (ref_40) 2022; 19
Ding (ref_6) 2023; 38
ref_25
ref_24
ref_23
ref_22
ref_21
Qin (ref_13) 2021; 31
ref_20
ref_42
Han (ref_7) 2022; 45
ref_41
Khan (ref_9) 2022; 54
Ji (ref_37) 2019; 48
Li (ref_1) 2022; 19
ref_2
ref_29
Kokila (ref_36) 2023; 7
ref_28
ref_27
ref_26
ref_8
Wang (ref_17) 2015; 7
ref_4
Huang (ref_16) 2021; 23
Ding (ref_31) 2024; 17
He (ref_32) 2022; 60
References_xml – ident: ref_22
  doi: 10.3390/electronics13122412
– volume: 17
  start-page: 3836
  year: 2024
  ident: ref_31
  article-title: SDTU-Net: Stepwise-Drop and Transformer-Based U-Net for Subject-Sensitive Hashing of HRRS Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3356660
– volume: 48
  start-page: 448
  year: 2019
  ident: ref_37
  article-title: Building extraction via convolutional neural networks from an open remote sensing building dataset
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 185
  start-page: 203
  year: 2021
  ident: ref_14
  article-title: Analysis of Perceptual Hashing Algorithms in Image Manipulation Detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.05.021
– ident: ref_30
– ident: ref_20
  doi: 10.3390/math12142200
– ident: ref_28
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_34
– ident: ref_27
  doi: 10.20944/preprints202406.0084.v1
– volume: 60
  start-page: 4408715
  year: 2022
  ident: ref_32
  article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3144165
– volume: 19
  start-page: 8009205
  year: 2022
  ident: ref_40
  article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_2
  doi: 10.3390/rs16132397
– volume: 7
  start-page: 31
  year: 2023
  ident: ref_5
  article-title: A Multilevel Digital Watermarking Protocol for Vector Geographic Data Based on Blockchain
  publication-title: J. Geovisualization Spat. Anal.
  doi: 10.1007/s41651-023-00162-0
– volume: 61
  start-page: 5607414
  year: 2023
  ident: ref_12
  article-title: Encrypting Hashing Against Localization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3266781
– ident: ref_42
  doi: 10.1109/CVPR.2018.00418
– ident: ref_18
– ident: ref_24
  doi: 10.3390/rs16122252
– volume: 40
  start-page: 716
  year: 2015
  ident: ref_35
  article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication
  publication-title: Wuhan Daxue Xuebao
– volume: 121
  start-page: 74
  year: 2020
  ident: ref_39
  article-title: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Net.
  doi: 10.1016/j.neunet.2019.08.025
– volume: 7
  start-page: 1336
  year: 2015
  ident: ref_17
  article-title: A Visual Model-Based Perceptual Image Hash for Content Authentication
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2407698
– volume: 23
  start-page: 1516
  year: 2021
  ident: ref_16
  article-title: Perceptual Image Hashing With Texture and Invariant Vector Distance for Copy Detection
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2020.2999188
– ident: ref_15
  doi: 10.3390/electronics11182810
– volume: 19
  start-page: 6003805
  year: 2022
  ident: ref_1
  article-title: Multilevel Adaptive-Scale Context Aggregating Network for Semantic Segmentation in High-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_19
  doi: 10.3390/bdcc7040178
– volume: 16
  start-page: 1378
  year: 2023
  ident: ref_3
  article-title: Blockchain-Assisted Verifiable and Secure Remote Sensing Image Retrieval in Cloud Environment
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3231890
– ident: ref_21
  doi: 10.3390/rs16132289
– volume: 45
  start-page: 87
  year: 2022
  ident: ref_7
  article-title: A survey on vision transformer
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref_29
  doi: 10.1007/978-3-030-25614-2_4
– ident: ref_10
  doi: 10.3390/app13031815
– volume: 60
  start-page: 4408820
  year: 2022
  ident: ref_33
  article-title: Transformer and CNN Hybrid Deep Neural Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_41
– volume: 54
  start-page: 200
  year: 2022
  ident: ref_9
  article-title: Transformers in Vision: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3505244
– ident: ref_4
  doi: 10.3390/a17050182
– volume: 7
  start-page: 8
  year: 2023
  ident: ref_36
  article-title: Hybrid Behrens-Fisher- and Gray Contrast–Based Feature Point Selection for Building Detection from Satellite Images
  publication-title: J. Geovisualization Spat. Anal.
  doi: 10.1007/s41651-023-00136-2
– ident: ref_11
  doi: 10.1109/WACV56688.2023.00394
– ident: ref_38
– volume: 38
  start-page: 2168071
  year: 2023
  ident: ref_6
  article-title: AGIM-Net Based Subject-Sensitive Hashing Algorithm for Integrity Authentication of HRRS Images
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2023.2168071
– ident: ref_23
  doi: 10.3390/rs16142573
– ident: ref_26
  doi: 10.3390/rs16071183
– volume: 31
  start-page: 4523
  year: 2021
  ident: ref_13
  article-title: Perceptual Image Hashing for Content Authentication Based on Convolutional Neural Network With Multiple Constraint
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3047142
– ident: ref_25
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref_8
  doi: 10.3390/rs16132427
– volume: 21
  start-page: 6010705
  year: 2024
  ident: ref_43
  article-title: Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2024.3407101
– volume: 16
  start-page: 3269
  year: 2011
  ident: ref_44
  article-title: Analysis and improvement of a hash-based image encryption algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.12.016
SSID ssj0000913840
Score 2.3010368
Snippet Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 336
SubjectTerms Algorithms
Computational linguistics
deep learning
dropouts
exhibitions
Hash based algorithms
image analysis
Image resolution
Image retrieval
Integrity
integrity authentication
Language processing
Multi-PatchDrop
Natural language interfaces
Neural networks
patch dropout
Performance enhancement
Remote sensing
Robustness
subject-sensitive hashing
tampering
Transformers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQQERaJErgThZTWzHcY5boNoigVCXRb1Z_uwuokm1mxXqqX-9Yzste0Fcek1GkeWZefPGGc8g9I6XrKGaVSTYEAjnzhKjY4mVaKgz3AufLtJ-_Samc_7lrD7bGvUVa8Jye-C8cYcugGE44yqpIRexlQmCt6JlzpTUQfSP6AsxbyuZShjcVgzEc6U7g7z-cPnrfAl43ZYsdWP-G4NSq_5_AXKKMsdP0ZORHuJJXtYz9MB3u-jhOKl8cbWLHv9crjdZYv0cXU8woBQG74_HKWQWq9EjfuFpnpGEJ7_Pe0j_Fxf4CMKVw32H05Vb8h0gePFp1V9i3Tk8-7PsyLzzAwYOi4ET4pPURgIoOo6HaLGkKJ_t4T7g6enpDJ9cABK9QPPjzz8-Tsk4UoFY1oqBUOoCcBLKhXaReUhZUwOYF6T23HBZeQ5hzVVcexc4LV3jLVC22mvKZfANe4l2ur7zrxBuralYqGsTd1o2vpW0sgEAUJeNaC0v0PvbTVaXuXOGgowjKkNtK6NAR1EDdzKx33V6AFagRitQ_7OCAn2I-lPRK4eVtnq8XABLjf2t1ERC6ssFEJIC7d2qWI3uulYMSBB8T5asQAd3r8HR4t8T3fl-E2Vgn8oaQOX1faz4DXpEYTm5XG0P7Qyrjd8HfjOYt8mUbwDP5_d-
  priority: 102
  providerName: Directory of Open Access Journals
Title A New Subject-Sensitive Hashing Algorithm Based on Multi-PatchDrop and Swin-Unet for the Integrity Authentication of HRRS Image
URI https://www.proquest.com/docview/3110496803
https://www.proquest.com/docview/3153805004
https://doaj.org/article/dfb00dbd18a840c1bf649693db02d456
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbY9gA8IBggOkZlJBBP1hLbSZwn1MJKh8Q0tRTtLbJjuy1iSdemQjzxr3OXuB0v8JpY-eHzfffd-XxHyBsZiYxrETNfes-ktCUzGlOs0oxbI13q2oO0Xy7T8Ux-vk6uQ8BtE9Iqd5jYArWtS4yRnwmwUzJPVSTer24Zdo3C3dXQQuOAHAEEK3C-jobnl1eTfZQFq16CC9NlvAvw78-W3-dLwO08Em1V5jtb1Jbs_xcwt9Zm9Jg8CjSRDjq5PiH3XHVM7oeO5Ytfx-Tht-Vm243YPCW_BxTQigIKYFiFTTErHXGMjrteSXTwYw4_0yxu6BDMlqV1Rdujt-wKoHjxcV2vqK4snf5cVmxWuYYCl6XADelFW04CqDrFYBqmFnUxPlp7Op5MpvTiBhDpGZmNzr9-GLPQWoGVIk8bxrn1wE24TLVFBqJUwg1gn1faSSNV7CSYNxtL7ayXPLKZK4G6JU5zqbzLxHNyWNWVe0FoXppY-CQxONMqc7nicekBCHWUpXkpe-TtbpKLVVdBowDPA4VR_C2MHhmiBPZjsO51e6Fez4ugRoX1ABPW2FhpEGsZG5_CosiFNRG3wAV75B3Kr0DtbNa61OGQAXwq1rkqBgpcYJkCMemR052Ii6C2m-JukfXI6_1tUDjcRdGVq7c4BuYpSgBcTv7_iJfkAYcXdQlpp-SwWW_dK2AwjemTAzX61A-Ltd_GAf4A9yXxzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEBQQhgKLRMXJqr1evw4IpZSQ0IdQ06De3F3vbhJE7ZA4qnriH_EbmfEj5QK3Xu3V2pqZ_eax8wB4K7wg5jLwXZtb6wqhc1dJSrGKYq6VMJGpC2mPT6LBWHw5D8834HdXC0NplR0m1kCty5xi5HsB6imRRokXfJj_dGlqFN2udiM0GrE4NNdX6LIt3w8PkL-7nPc_nX0cuO1UATcP0qhyOdcW1TIXkdSkfJMk5AqPvU2kEUokvhGI7NoX0mgruKdjk6PVEhrJRWJNHOC-d-CuCHA3qkzvf17HdKjHJjpMTX49vvf2Zt8nM9QSqRfUPaBvNF89IOBfaqDWbf2H8KA1SlmvkaJHsGGKbdhq56NPr7fh_rfZctWsWD6GXz2G2MgQcyiI444oB55Qkw2ayUys92OCpKuml2wflaRmZcHqQl_3KwL_9GBRzpksNBtdzQp3XJiKoeXM0BJlw7p5BToGjEJ3lMjURBRZadng9HTEhpeIf09gfCskfwqbRVmYZ8DSXPmBDUNFlE5ikybczy3CrvTiKM2FA7sdkbN5068jQz-HmJH9zQwH9okD6zXUZbt-UC4mWXtoM20RlLTSfiKRrbmvbIQimAZaeVyj5enAO-JfRlhQLWQu25IG_FXqqpX1EnS4RYRmkAM7HYuzFiSW2Y1IO_Bm_RqPN93ZyMKUK1qDdPJChLLn_9_iNWwNzo6PsqPhyeELuMfxo00q3A5sVouVeYm2U6Ve1QLL4OK2T8gfQKgqrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQFBABAosEhUnK_bu-nVAKCGNEgpRlBDUm1nvIwmidkgcVT3xv_h1zPqRcoFbr_bKtmZmv29mPDsD8Ia7LKSCeY6RxjicK-mkwpZYBSFVKdeBLg_Sfh4Hwzn_eO6fH8Dv5iyMLatsMLEEapVLmyPvMOQpHgeRyzqmLouY9Afv1z8dO0HK_mltxmlUJnKmry4xfNu-G_VR1yeUDk6_fBg69YQBR7I4KBxKlUGKpjwQyhJxFPk0RQgwkdA85ZGnOaK88rjQynDqqlBL9GB8LSiPjA4ZPvcWHIYYFbktOOydjifTfYbHdtzE8Kmqtmcsdjur74sVckbssrIj9DUPluMC_kUKJdMNHsD92kUl3cqmHsKBzo7gTj0tfXl1BPe-rra7asX2EfzqEkRKgghkUzrOzFbEWwwlw2pOE-n-WKDwiuUF6SFlKpJnpDz260yQBpb9Tb4mIlNkdrnKnHmmC4J-NEG_lIzKVhYYJhCbyLNlTVV-keSGDKfTGRldIBo-hvmNCP0JtLI800-BxDL1mPH91Eo6CnUcUU8aBGHhhkEseRtOGiEn66p7R4JRj1VG8rcy2tCzGtivsT23ywv5ZpHUWzhRBiFKpcqLBKpVeqkJ0CBjplKXKvRD2_DW6i-xyFBshBT1AQf8VNtjK-lGGH7zAJ2iNhw3Kk5qyNgm1wbehtf727jZ7R8ckel8Z9egnFwfge3Z_x_xCm7j7kg-jcZnz-EuxXdWdXHH0Co2O_0CHakifVlbLIFvN71J_gAiJTBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Subject-Sensitive+Hashing+Algorithm+Based+on+Multi-PatchDrop+and+Swin-Unet+for+the+Integrity+Authentication+of+HRRS+Image&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Ding%2C+Kaimeng&rft.au=Wang%2C+Yingying&rft.au=Wang%2C+Chishe&rft.au=Ma%2C+Ji&rft.date=2024-09-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fijgi13090336&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon