A New Subject-Sensitive Hashing Algorithm Based on Multi-PatchDrop and Swin-Unet for the Integrity Authentication of HRRS Image
Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 13; no. 9; p. 336 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still not ideal. In this paper, we propose a Multi-PatchDrop mechanism to improve the performance of Transformer-based subject-sensitive hashing. The Multi-PatchDrop mechanism determines different patch dropout values for different Transformer blocks in ViT models. On the basis of a Multi-PatchDrop, we propose an improved Swin-Unet for implementing subject-sensitive hashing. In this improved Swin-Unet, Multi-PatchDrop has been integrated, and each Swin Transformer block (except the first one) is preceded by a patch dropout layer. Experimental results demonstrate that the robustness of our proposed subject-sensitive hashing algorithm is not only stronger than that of the CNN-based algorithms but also stronger than that of Transformer-based algorithms. The tampering sensitivity is of the same intensity as the AGIM-net and M-net-based algorithms, stronger than other Transformer-based algorithms. |
---|---|
AbstractList | Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still not ideal. In this paper, we propose a Multi-PatchDrop mechanism to improve the performance of Transformer-based subject-sensitive hashing. The Multi-PatchDrop mechanism determines different patch dropout values for different Transformer blocks in ViT models. On the basis of a Multi-PatchDrop, we propose an improved Swin-Unet for implementing subject-sensitive hashing. In this improved Swin-Unet, Multi-PatchDrop has been integrated, and each Swin Transformer block (except the first one) is preceded by a patch dropout layer. Experimental results demonstrate that the robustness of our proposed subject-sensitive hashing algorithm is not only stronger than that of the CNN-based algorithms but also stronger than that of Transformer-based algorithms. The tampering sensitivity is of the same intensity as the AGIM-net and M-net-based algorithms, stronger than other Transformer-based algorithms. |
Audience | Academic |
Author | Wang, Yingying Ding, Kaimeng Wang, Chishe Ma, Ji |
Author_xml | – sequence: 1 givenname: Kaimeng orcidid: 0000-0002-1339-813X surname: Ding fullname: Ding, Kaimeng – sequence: 2 givenname: Yingying surname: Wang fullname: Wang, Yingying – sequence: 3 givenname: Chishe surname: Wang fullname: Wang, Chishe – sequence: 4 givenname: Ji orcidid: 0000-0003-3613-3836 surname: Ma fullname: Ma, Ji |
BookMark | eNpdUktv1DAQjlCRKEtv_ABLXDiQ4le8znEpj12pPNSl58ixx1lHib3YDlVP_HVcFqEK--CZ0fd9M-OZ59WZDx6q6iXBl4y1-K0bB0cYbjFj4kl1TinFddsKfvbIflZdpDTiclrCJMfn1a8N-gJ3aL_0I-hc78Enl91PQFuVDs4PaDMNIbp8mNE7lcCg4NHnZcqu_qayPryP4YiUN2h_53x96yEjGyLKB0A7n2EozHu0WYrvs9Mqu0IPFm1vbvZoN6sBXlRPrZoSXPx9V9Xtxw_fr7b19ddPu6vNda1ZK3JNqbGCtZQLZSQXaykb2jdMWqmA91wS4IwTQ7gCYznFZg2aE9GAolxaWLNVtTvpmqDG7hjdrOJ9F5Tr_gRCHDoVS4kTdMb2GJveEKnKF2nSW8Fb0TLTY2p4I4rW65PWMYYfC6TczS5pmCblISypY6RUhhuMeYG--g86hiX60mlBEVx0ZZnXqro8oQZV8jtvQ45Kl2tgdrqM2boS30iCBReYPsi-ORF0DClFsP86Irh72Ibu8Taw3yTQp5Y |
Cites_doi | 10.3390/electronics13122412 10.1109/JSTARS.2024.3356660 10.1016/j.procs.2021.05.021 10.3390/math12142200 10.1007/978-3-319-24574-4_28 10.20944/preprints202406.0084.v1 10.1109/TGRS.2022.3144165 10.3390/rs16132397 10.1007/s41651-023-00162-0 10.1109/TGRS.2023.3266781 10.1109/CVPR.2018.00418 10.3390/rs16122252 10.1016/j.neunet.2019.08.025 10.1109/TIFS.2015.2407698 10.1109/TMM.2020.2999188 10.3390/electronics11182810 10.3390/bdcc7040178 10.1109/JSTARS.2022.3231890 10.3390/rs16132289 10.1109/TPAMI.2022.3152247 10.1007/978-3-030-25614-2_4 10.3390/app13031815 10.1145/3505244 10.3390/a17050182 10.1007/s41651-023-00136-2 10.1109/WACV56688.2023.00394 10.1080/10106049.2023.2168071 10.3390/rs16142573 10.3390/rs16071183 10.1109/TCSVT.2020.3047142 10.1109/ICCV48922.2021.00986 10.3390/rs16132427 10.1109/LGRS.2024.3407101 10.1016/j.cnsns.2010.12.016 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/ijgi13090336 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_dfb00dbd18a840c1bf649693db02d456 A810646024 10_3390_ijgi13090336 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS ZBA PMFND 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c396t-22df639246ad84678852b538f8ae4b481e4341d14aedf420d7ec4165ea248fe73 |
IEDL.DBID | BENPR |
ISSN | 2220-9964 |
IngestDate | Wed Aug 27 01:29:22 EDT 2025 Fri Jul 11 10:42:02 EDT 2025 Fri Jul 25 11:54:40 EDT 2025 Tue Jun 10 21:02:18 EDT 2025 Tue Jul 01 02:54:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-22df639246ad84678852b538f8ae4b481e4341d14aedf420d7ec4165ea248fe73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3613-3836 0000-0002-1339-813X |
OpenAccessLink | https://www.proquest.com/docview/3110496803?pq-origsite=%requestingapplication% |
PQID | 3110496803 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dfb00dbd18a840c1bf649693db02d456 proquest_miscellaneous_3153805004 proquest_journals_3110496803 gale_infotracacademiconefile_A810646024 crossref_primary_10_3390_ijgi13090336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Samanta (ref_14) 2021; 185 Deng (ref_44) 2011; 16 Ibtehaz (ref_39) 2020; 121 Zhang (ref_33) 2022; 60 Ouyang (ref_3) 2023; 16 ref_34 ref_11 ref_10 ref_30 Ren (ref_5) 2023; 7 ref_19 ref_18 Ding (ref_35) 2015; 40 Han (ref_12) 2023; 61 ref_38 ref_15 Xu (ref_43) 2024; 21 Li (ref_40) 2022; 19 Ding (ref_6) 2023; 38 ref_25 ref_24 ref_23 ref_22 ref_21 Qin (ref_13) 2021; 31 ref_20 ref_42 Han (ref_7) 2022; 45 ref_41 Khan (ref_9) 2022; 54 Ji (ref_37) 2019; 48 Li (ref_1) 2022; 19 ref_2 ref_29 Kokila (ref_36) 2023; 7 ref_28 ref_27 ref_26 ref_8 Wang (ref_17) 2015; 7 ref_4 Huang (ref_16) 2021; 23 Ding (ref_31) 2024; 17 He (ref_32) 2022; 60 |
References_xml | – ident: ref_22 doi: 10.3390/electronics13122412 – volume: 17 start-page: 3836 year: 2024 ident: ref_31 article-title: SDTU-Net: Stepwise-Drop and Transformer-Based U-Net for Subject-Sensitive Hashing of HRRS Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3356660 – volume: 48 start-page: 448 year: 2019 ident: ref_37 article-title: Building extraction via convolutional neural networks from an open remote sensing building dataset publication-title: Acta Geod. Cartogr. Sin. – volume: 185 start-page: 203 year: 2021 ident: ref_14 article-title: Analysis of Perceptual Hashing Algorithms in Image Manipulation Detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.05.021 – ident: ref_30 – ident: ref_20 doi: 10.3390/math12142200 – ident: ref_28 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_34 – ident: ref_27 doi: 10.20944/preprints202406.0084.v1 – volume: 60 start-page: 4408715 year: 2022 ident: ref_32 article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3144165 – volume: 19 start-page: 8009205 year: 2022 ident: ref_40 article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_2 doi: 10.3390/rs16132397 – volume: 7 start-page: 31 year: 2023 ident: ref_5 article-title: A Multilevel Digital Watermarking Protocol for Vector Geographic Data Based on Blockchain publication-title: J. Geovisualization Spat. Anal. doi: 10.1007/s41651-023-00162-0 – volume: 61 start-page: 5607414 year: 2023 ident: ref_12 article-title: Encrypting Hashing Against Localization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3266781 – ident: ref_42 doi: 10.1109/CVPR.2018.00418 – ident: ref_18 – ident: ref_24 doi: 10.3390/rs16122252 – volume: 40 start-page: 716 year: 2015 ident: ref_35 article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication publication-title: Wuhan Daxue Xuebao – volume: 121 start-page: 74 year: 2020 ident: ref_39 article-title: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Net. doi: 10.1016/j.neunet.2019.08.025 – volume: 7 start-page: 1336 year: 2015 ident: ref_17 article-title: A Visual Model-Based Perceptual Image Hash for Content Authentication publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2407698 – volume: 23 start-page: 1516 year: 2021 ident: ref_16 article-title: Perceptual Image Hashing With Texture and Invariant Vector Distance for Copy Detection publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2020.2999188 – ident: ref_15 doi: 10.3390/electronics11182810 – volume: 19 start-page: 6003805 year: 2022 ident: ref_1 article-title: Multilevel Adaptive-Scale Context Aggregating Network for Semantic Segmentation in High-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_19 doi: 10.3390/bdcc7040178 – volume: 16 start-page: 1378 year: 2023 ident: ref_3 article-title: Blockchain-Assisted Verifiable and Secure Remote Sensing Image Retrieval in Cloud Environment publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3231890 – ident: ref_21 doi: 10.3390/rs16132289 – volume: 45 start-page: 87 year: 2022 ident: ref_7 article-title: A survey on vision transformer publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3152247 – ident: ref_29 doi: 10.1007/978-3-030-25614-2_4 – ident: ref_10 doi: 10.3390/app13031815 – volume: 60 start-page: 4408820 year: 2022 ident: ref_33 article-title: Transformer and CNN Hybrid Deep Neural Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_41 – volume: 54 start-page: 200 year: 2022 ident: ref_9 article-title: Transformers in Vision: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/3505244 – ident: ref_4 doi: 10.3390/a17050182 – volume: 7 start-page: 8 year: 2023 ident: ref_36 article-title: Hybrid Behrens-Fisher- and Gray Contrast–Based Feature Point Selection for Building Detection from Satellite Images publication-title: J. Geovisualization Spat. Anal. doi: 10.1007/s41651-023-00136-2 – ident: ref_11 doi: 10.1109/WACV56688.2023.00394 – ident: ref_38 – volume: 38 start-page: 2168071 year: 2023 ident: ref_6 article-title: AGIM-Net Based Subject-Sensitive Hashing Algorithm for Integrity Authentication of HRRS Images publication-title: Geocarto Int. doi: 10.1080/10106049.2023.2168071 – ident: ref_23 doi: 10.3390/rs16142573 – ident: ref_26 doi: 10.3390/rs16071183 – volume: 31 start-page: 4523 year: 2021 ident: ref_13 article-title: Perceptual Image Hashing for Content Authentication Based on Convolutional Neural Network With Multiple Constraint publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.3047142 – ident: ref_25 doi: 10.1109/ICCV48922.2021.00986 – ident: ref_8 doi: 10.3390/rs16132427 – volume: 21 start-page: 6010705 year: 2024 ident: ref_43 article-title: Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2024.3407101 – volume: 16 start-page: 3269 year: 2011 ident: ref_44 article-title: Analysis and improvement of a hash-based image encryption algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.12.016 |
SSID | ssj0000913840 |
Score | 2.3010368 |
Snippet | Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 336 |
SubjectTerms | Algorithms Computational linguistics deep learning dropouts exhibitions Hash based algorithms image analysis Image resolution Image retrieval Integrity integrity authentication Language processing Multi-PatchDrop Natural language interfaces Neural networks patch dropout Performance enhancement Remote sensing Robustness subject-sensitive hashing tampering Transformers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQQERaJErgThZTWzHcY5boNoigVCXRb1Z_uwuokm1mxXqqX-9Yzste0Fcek1GkeWZefPGGc8g9I6XrKGaVSTYEAjnzhKjY4mVaKgz3AufLtJ-_Samc_7lrD7bGvUVa8Jye-C8cYcugGE44yqpIRexlQmCt6JlzpTUQfSP6AsxbyuZShjcVgzEc6U7g7z-cPnrfAl43ZYsdWP-G4NSq_5_AXKKMsdP0ZORHuJJXtYz9MB3u-jhOKl8cbWLHv9crjdZYv0cXU8woBQG74_HKWQWq9EjfuFpnpGEJ7_Pe0j_Fxf4CMKVw32H05Vb8h0gePFp1V9i3Tk8-7PsyLzzAwYOi4ET4pPURgIoOo6HaLGkKJ_t4T7g6enpDJ9cABK9QPPjzz8-Tsk4UoFY1oqBUOoCcBLKhXaReUhZUwOYF6T23HBZeQ5hzVVcexc4LV3jLVC22mvKZfANe4l2ur7zrxBuralYqGsTd1o2vpW0sgEAUJeNaC0v0PvbTVaXuXOGgowjKkNtK6NAR1EDdzKx33V6AFagRitQ_7OCAn2I-lPRK4eVtnq8XABLjf2t1ERC6ssFEJIC7d2qWI3uulYMSBB8T5asQAd3r8HR4t8T3fl-E2Vgn8oaQOX1faz4DXpEYTm5XG0P7Qyrjd8HfjOYt8mUbwDP5_d- priority: 102 providerName: Directory of Open Access Journals |
Title | A New Subject-Sensitive Hashing Algorithm Based on Multi-PatchDrop and Swin-Unet for the Integrity Authentication of HRRS Image |
URI | https://www.proquest.com/docview/3110496803 https://www.proquest.com/docview/3153805004 https://doaj.org/article/dfb00dbd18a840c1bf649693db02d456 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbY9gA8IBggOkZlJBBP1hLbSZwn1MJKh8Q0tRTtLbJjuy1iSdemQjzxr3OXuB0v8JpY-eHzfffd-XxHyBsZiYxrETNfes-ktCUzGlOs0oxbI13q2oO0Xy7T8Ux-vk6uQ8BtE9Iqd5jYArWtS4yRnwmwUzJPVSTer24Zdo3C3dXQQuOAHAEEK3C-jobnl1eTfZQFq16CC9NlvAvw78-W3-dLwO08Em1V5jtb1Jbs_xcwt9Zm9Jg8CjSRDjq5PiH3XHVM7oeO5Ytfx-Tht-Vm243YPCW_BxTQigIKYFiFTTErHXGMjrteSXTwYw4_0yxu6BDMlqV1Rdujt-wKoHjxcV2vqK4snf5cVmxWuYYCl6XADelFW04CqDrFYBqmFnUxPlp7Op5MpvTiBhDpGZmNzr9-GLPQWoGVIk8bxrn1wE24TLVFBqJUwg1gn1faSSNV7CSYNxtL7ayXPLKZK4G6JU5zqbzLxHNyWNWVe0FoXppY-CQxONMqc7nicekBCHWUpXkpe-TtbpKLVVdBowDPA4VR_C2MHhmiBPZjsO51e6Fez4ugRoX1ABPW2FhpEGsZG5_CosiFNRG3wAV75B3Kr0DtbNa61OGQAXwq1rkqBgpcYJkCMemR052Ii6C2m-JukfXI6_1tUDjcRdGVq7c4BuYpSgBcTv7_iJfkAYcXdQlpp-SwWW_dK2AwjemTAzX61A-Ltd_GAf4A9yXxzA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEBQQhgKLRMXJqr1evw4IpZSQ0IdQ06De3F3vbhJE7ZA4qnriH_EbmfEj5QK3Xu3V2pqZ_eax8wB4K7wg5jLwXZtb6wqhc1dJSrGKYq6VMJGpC2mPT6LBWHw5D8834HdXC0NplR0m1kCty5xi5HsB6imRRokXfJj_dGlqFN2udiM0GrE4NNdX6LIt3w8PkL-7nPc_nX0cuO1UATcP0qhyOdcW1TIXkdSkfJMk5AqPvU2kEUokvhGI7NoX0mgruKdjk6PVEhrJRWJNHOC-d-CuCHA3qkzvf17HdKjHJjpMTX49vvf2Zt8nM9QSqRfUPaBvNF89IOBfaqDWbf2H8KA1SlmvkaJHsGGKbdhq56NPr7fh_rfZctWsWD6GXz2G2MgQcyiI444oB55Qkw2ayUys92OCpKuml2wflaRmZcHqQl_3KwL_9GBRzpksNBtdzQp3XJiKoeXM0BJlw7p5BToGjEJ3lMjURBRZadng9HTEhpeIf09gfCskfwqbRVmYZ8DSXPmBDUNFlE5ikybczy3CrvTiKM2FA7sdkbN5068jQz-HmJH9zQwH9okD6zXUZbt-UC4mWXtoM20RlLTSfiKRrbmvbIQimAZaeVyj5enAO-JfRlhQLWQu25IG_FXqqpX1EnS4RYRmkAM7HYuzFiSW2Y1IO_Bm_RqPN93ZyMKUK1qDdPJChLLn_9_iNWwNzo6PsqPhyeELuMfxo00q3A5sVouVeYm2U6Ve1QLL4OK2T8gfQKgqrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQFBABAosEhUnK_bu-nVAKCGNEgpRlBDUm1nvIwmidkgcVT3xv_h1zPqRcoFbr_bKtmZmv29mPDsD8Ia7LKSCeY6RxjicK-mkwpZYBSFVKdeBLg_Sfh4Hwzn_eO6fH8Dv5iyMLatsMLEEapVLmyPvMOQpHgeRyzqmLouY9Afv1z8dO0HK_mltxmlUJnKmry4xfNu-G_VR1yeUDk6_fBg69YQBR7I4KBxKlUGKpjwQyhJxFPk0RQgwkdA85ZGnOaK88rjQynDqqlBL9GB8LSiPjA4ZPvcWHIYYFbktOOydjifTfYbHdtzE8Kmqtmcsdjur74sVckbssrIj9DUPluMC_kUKJdMNHsD92kUl3cqmHsKBzo7gTj0tfXl1BPe-rra7asX2EfzqEkRKgghkUzrOzFbEWwwlw2pOE-n-WKDwiuUF6SFlKpJnpDz260yQBpb9Tb4mIlNkdrnKnHmmC4J-NEG_lIzKVhYYJhCbyLNlTVV-keSGDKfTGRldIBo-hvmNCP0JtLI800-BxDL1mPH91Eo6CnUcUU8aBGHhhkEseRtOGiEn66p7R4JRj1VG8rcy2tCzGtivsT23ywv5ZpHUWzhRBiFKpcqLBKpVeqkJ0CBjplKXKvRD2_DW6i-xyFBshBT1AQf8VNtjK-lGGH7zAJ2iNhw3Kk5qyNgm1wbehtf727jZ7R8ckel8Z9egnFwfge3Z_x_xCm7j7kg-jcZnz-EuxXdWdXHH0Co2O_0CHakifVlbLIFvN71J_gAiJTBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Subject-Sensitive+Hashing+Algorithm+Based+on+Multi-PatchDrop+and+Swin-Unet+for+the+Integrity+Authentication+of+HRRS+Image&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Ding%2C+Kaimeng&rft.au=Wang%2C+Yingying&rft.au=Wang%2C+Chishe&rft.au=Ma%2C+Ji&rft.date=2024-09-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fijgi13090336&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |