A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC

Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 68; no. 8; pp. 2179 - 2186
Main Authors Guglielmo, Giuseppe Di, Fahim, Farah, Herwig, Christian, Valentin, Manuel Blanco, Duarte, Javier, Gingu, Cristian, Harris, Philip, Hirschauer, James, Kwok, Martin, Loncar, Vladimir, Luo, Yingyi, Miranda, Llovizna, Ngadiuba, Jennifer, Noonan, Daniel, Ogrenci-Memik, Seda, Pierini, Maurizio, Summers, Sioni, Tran, Nhan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…