A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC

Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 68; no. 8; pp. 2179 - 2186
Main Authors Guglielmo, Giuseppe Di, Fahim, Farah, Herwig, Christian, Valentin, Manuel Blanco, Duarte, Javier, Gingu, Cristian, Harris, Philip, Hirschauer, James, Kwok, Martin, Loncar, Vladimir, Luo, Yingyi, Miranda, Llovizna, Ngadiuba, Jennifer, Noonan, Daniel, Ogrenci-Memik, Seda, Pierini, Maurizio, Summers, Sioni, Tran, Nhan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9499
1558-1578
DOI10.1109/TNS.2021.3087100

Cover

Loading…
Abstract Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.
AbstractList Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. Furthermore, this is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.
Author Fahim, Farah
Luo, Yingyi
Summers, Sioni
Tran, Nhan
Guglielmo, Giuseppe Di
Kwok, Martin
Ogrenci-Memik, Seda
Gingu, Cristian
Herwig, Christian
Ngadiuba, Jennifer
Duarte, Javier
Harris, Philip
Noonan, Daniel
Miranda, Llovizna
Pierini, Maurizio
Hirschauer, James
Valentin, Manuel Blanco
Loncar, Vladimir
Author_xml – sequence: 1
  givenname: Giuseppe Di
  orcidid: 0000-0002-5749-1432
  surname: Guglielmo
  fullname: Guglielmo, Giuseppe Di
  organization: Computer Science Department, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Farah
  orcidid: 0000-0003-1252-1447
  surname: Fahim
  fullname: Fahim, Farah
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
– sequence: 3
  givenname: Christian
  orcidid: 0000-0002-4280-6382
  surname: Herwig
  fullname: Herwig, Christian
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
– sequence: 4
  givenname: Manuel Blanco
  surname: Valentin
  fullname: Valentin, Manuel Blanco
  organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA
– sequence: 5
  givenname: Javier
  orcidid: 0000-0002-5076-7096
  surname: Duarte
  fullname: Duarte, Javier
  organization: Physics Department, UC San Diego, La Jolla, CA, USA
– sequence: 6
  givenname: Cristian
  surname: Gingu
  fullname: Gingu, Cristian
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
– sequence: 7
  givenname: Philip
  surname: Harris
  fullname: Harris, Philip
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 8
  givenname: James
  orcidid: 0000-0002-8244-0805
  surname: Hirschauer
  fullname: Hirschauer, James
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
– sequence: 9
  givenname: Martin
  surname: Kwok
  fullname: Kwok, Martin
  organization: Physics Department, Brown University, Providence, RI, USA
– sequence: 10
  givenname: Vladimir
  surname: Loncar
  fullname: Loncar, Vladimir
  organization: CERN, Geneva, Switzerland
– sequence: 11
  givenname: Yingyi
  surname: Luo
  fullname: Luo, Yingyi
  organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA
– sequence: 12
  givenname: Llovizna
  surname: Miranda
  fullname: Miranda, Llovizna
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
– sequence: 13
  givenname: Jennifer
  surname: Ngadiuba
  fullname: Ngadiuba, Jennifer
  organization: California Institute of Technology, Pasadena, CA, USA
– sequence: 14
  givenname: Daniel
  surname: Noonan
  fullname: Noonan, Daniel
  organization: Florida Institute of Technology, Melbourne, FL, USA
– sequence: 15
  givenname: Seda
  surname: Ogrenci-Memik
  fullname: Ogrenci-Memik, Seda
  organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA
– sequence: 16
  givenname: Maurizio
  surname: Pierini
  fullname: Pierini, Maurizio
  organization: CERN, Geneva, Switzerland
– sequence: 17
  givenname: Sioni
  surname: Summers
  fullname: Summers, Sioni
  organization: CERN, Geneva, Switzerland
– sequence: 18
  givenname: Nhan
  orcidid: 0000-0002-8440-6854
  surname: Tran
  fullname: Tran, Nhan
  email: ntran@fnal.gov
  organization: Fermi National Accelerator Laboratory, Batavia, IL, USA
BackLink https://www.osti.gov/servlets/purl/1832789$$D View this record in Osti.gov
BookMark eNp9kM1LAzEQxYMoWD_ugpeg56352GySY1mrFYqCrRcvIbs70dW6qUmK-N8bqXjw4Glm4PeG994B2h38AAidUDKmlOiL5e1izAijY06UpITsoBEVQhVUSLWLRoRQVehS6310EONLPktBxAg9TvA9tH5w_dMm2GYF-BbyssojffjwiieLmxo7H_AlJGhTXq6CH1IxHTp8aZPFtX9bB4ix9wO2CadnwLN5MZ_VR2jP2VWE4595iB6upst6Vszvrm_qybxoua5SQV3TOCc01WBVI6WTZdN2rCqt7qhynYJWKwnMOsGg7JimTaugqRznQpeg-CE62_71MfUmtn32-ZwjDdmuoYozqXSGzrfQOvj3DcRkXvwmDNmXYaJinIpK8kxVW6oNPsYAzuRvNuVoKdh-ZSgx32WbXLb5Ltv8lJ2F5I9wHfo3Gz7_k5xuJT0A_OK6LKVkjH8BxDaKcw
CODEN IETNAE
CitedBy_id crossref_primary_10_1088_2632_2153_ad1139
crossref_primary_10_1109_ACCESS_2023_3349351
crossref_primary_10_1088_1402_4896_acc5bc
crossref_primary_10_1038_s41467_024_47704_8
crossref_primary_10_1109_TCSII_2023_3241154
crossref_primary_10_1007_s00502_023_01198_2
crossref_primary_10_1103_PhysRevD_105_076003
crossref_primary_10_1051_epjconf_202429509022
crossref_primary_10_1007_s41365_023_01359_0
crossref_primary_10_1109_TNS_2023_3320226
crossref_primary_10_1088_1748_0221_19_07_P07034
crossref_primary_10_1088_1748_0221_19_08_P08023
crossref_primary_10_1109_TNS_2022_3233895
crossref_primary_10_1088_1748_0221_19_03_C03050
crossref_primary_10_1109_ACCESS_2024_3392240
crossref_primary_10_1088_2632_2153_ad6a00
crossref_primary_10_1145_3662000
crossref_primary_10_1088_1361_6587_acc60f
crossref_primary_10_3389_fphy_2022_957128
crossref_primary_10_1088_2632_2153_acc0d7
crossref_primary_10_1364_AO_445798
crossref_primary_10_1007_JHEP09_2024_054
crossref_primary_10_3390_jimaging10120298
crossref_primary_10_1140_epjc_s10052_023_11633_5
crossref_primary_10_1109_JIOT_2024_3490893
crossref_primary_10_1145_3665334
crossref_primary_10_1088_1748_0221_17_06_P06016
Cites_doi 10.1147/rd.62.0200
10.1109/TNS.2017.2776107
10.3390/su13020717
10.1007/s10836-007-5029-z
10.1088/1748-0221/12/02/C02039
10.1088/1742-6596/1085/2/022008
10.1142/STES
10.1109/TCAD.2011.2110592
10.1088/1748-0221/13/07/P07027
10.1002/9781118084328
10.1103/RevModPhys.91.045002
10.1142/S0217751X19300199
10.1038/s41586-018-0361-2
10.1109/TNS.2017.2783239
10.1109/TNS.2010.2042613
10.1103/PhysRevLett.123.041801
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
CorporateAuthor Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
CorporateAuthor_xml – name: Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
OIOZB
OTOTI
DOI 10.1109/TNS.2021.3087100
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 2186
ExternalDocumentID 1832789
10_1109_TNS_2021_3087100
9447722
Genre orig-research
GrantInformation_xml – fundername: DOE, Office of Science, Office of High Energy Physics Early Career Research Program
  grantid: DE-SC0021187
– fundername: European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation Program
  grantid: 772369
  funderid: 10.13039/501100000781
– fundername: Massachusetts Institute of Technology University Grant
  funderid: 10.13039/100006919
– fundername: Fermi Research Alliance, LLC through the U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics
  grantid: DE-AC02-07CH11359
  funderid: 10.13039/100000015
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
RIG
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
ABPTK
OIOZB
OTOTI
ZA5
ID FETCH-LOGICAL-c396t-1fbbff5919ea8b77f74bcd264a9d18fd8ec987e2af52e4d291bc8eb6f33594e83
IEDL.DBID RIE
ISSN 0018-9499
IngestDate Mon Dec 12 02:20:37 EST 2022
Mon Jun 30 10:11:18 EDT 2025
Tue Jul 01 00:53:44 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Aug 27 02:25:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-1fbbff5919ea8b77f74bcd264a9d18fd8ec987e2af52e4d291bc8eb6f33594e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-07CH11359
USDOE Office of Science (SC), High Energy Physics (HEP)
FERMILAB-PUB-21-217-CMS-E-SCD; arXiv:2105.01683
ORCID 0000-0002-5076-7096
0000-0002-5749-1432
0000-0002-8440-6854
0000-0002-4280-6382
0000-0002-8244-0805
0000-0003-1252-1447
0000000242806382
0000000239323769
0000000342442061
0000000319394268
0000000257491432
0000000312521447
0000000250767096
0000000284406854
0000000296887587
0000000282440805
0000000336510232
0000000200552935
OpenAccessLink https://www.osti.gov/servlets/purl/1832789
PQID 2562315673
PQPubID 85457
PageCount 8
ParticipantIDs osti_scitechconnect_1832789
ieee_primary_9447722
crossref_primary_10_1109_TNS_2021_3087100
crossref_citationtrail_10_1109_TNS_2021_3087100
proquest_journals_2562315673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref31
ref30
ref11
(ref7) 2017
ref2
ref1
kuboyama (ref29) 2009
(ref17) 2020
ref24
ref23
ref26
(ref19) 2020
ref25
(ref12) 2020
ref21
glorot (ref15) 2011; 15
coelho (ref10) 2020
nair (ref14) 2010
fulkerson (ref28) 2006
ref27
habinc (ref32) 2002
(ref16) 2020
(ref20) 2020
ref9
ref4
ref3
(ref6) 2020
ref5
chatrchyan (ref8) 2008; 3
(ref18) 2020
huhtinen (ref22) 1996
References_xml – ident: ref31
  doi: 10.1147/rd.62.0200
– volume: 3
  year: 2008
  ident: ref8
  article-title: The CMS experiment at the CERN LHC
  publication-title: Proc JINST
– year: 2017
  ident: ref7
  article-title: The phase-2 upgrade of the CMS endcap calorimeter
– year: 2002
  ident: ref32
  article-title: Functional triple modular redundancy (FTMR). VHDL design methodology for redundancy in combinatorial and sequential logic
– ident: ref21
  doi: 10.1109/TNS.2017.2776107
– ident: ref11
  doi: 10.3390/su13020717
– ident: ref30
  doi: 10.1007/s10836-007-5029-z
– year: 2020
  ident: ref17
  publication-title: Catapult High-Level Synthesis
– year: 2020
  ident: ref16
  publication-title: Vivado High-Level Synthesis
– ident: ref26
  doi: 10.1088/1748-0221/12/02/C02039
– year: 2009
  ident: ref29
  article-title: Single-event-effect tolerant SOI-based inverter, NAND element, nor element, semiconductor memory device and data latch circuit
– ident: ref1
  doi: 10.1088/1742-6596/1085/2/022008
– year: 2020
  ident: ref10
  article-title: Automatic deep heterogeneous quantization of deep neural networks for ultra low-area, low-latency inference on the edge at particle colliders
  publication-title: arXiv 2006 10159
– ident: ref23
  doi: 10.1142/STES
– ident: ref9
  doi: 10.1109/TCAD.2011.2110592
– year: 2020
  ident: ref20
  publication-title: HLSLibs Open-Source High-Level Synthesis IP Libraries
– year: 2020
  ident: ref19
  publication-title: Catapult High-Level Synthesis-Verification
– ident: ref5
  doi: 10.1088/1748-0221/13/07/P07027
– year: 2006
  ident: ref28
  article-title: Single-event-effect hardened circuitry
– year: 2020
  ident: ref6
  article-title: The phase-2 upgrade of the CMS level-1 trigger
– year: 1996
  ident: ref22
  article-title: The radiation environment at the CMS experiment at the LHC
– ident: ref24
  doi: 10.1002/9781118084328
– ident: ref4
  doi: 10.1103/RevModPhys.91.045002
– year: 2020
  ident: ref12
  publication-title: CMSSW on GitHub
– ident: ref3
  doi: 10.1142/S0217751X19300199
– ident: ref2
  doi: 10.1038/s41586-018-0361-2
– start-page: 807
  year: 2010
  ident: ref14
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref27
  doi: 10.1109/TNS.2017.2783239
– year: 2020
  ident: ref18
  publication-title: A Resolution to Redefine SPI Signal Names
– volume: 15
  start-page: 315
  year: 2011
  ident: ref15
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref25
  doi: 10.1109/TNS.2010.2042613
– ident: ref13
  doi: 10.1103/PhysRevLett.123.041801
SSID ssj0014505
Score 2.5616772
Snippet Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2179
SubjectTerms Acidity
Algorithms
Application specific integrated circuits
application-specific integrate circuit (ASIC)
Application-specific integrated circuit (ASIC)
artificial intelligence (AI)
Artificial neural networks
autoencoder
CMOS
Compression
Computer architecture
Data compression
Data transmission
Design optimization
Detectors
Energy consumption
Field programmable gate arrays
Gates (circuits)
hardware accelerator
High level synthesis
high-level synthesis (HLS)
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Integrated circuits
Ionizing radiation
Large Hadron Collider
Large Hadron Collider (LHC)
Learning algorithms
Machine learning
machine learning (ML)
Neural networks
Particle physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Power consumption
Radiation
Sensors
single-event effect (SEE) mitigation
Sodium channels
Solenoids
Task analysis
Training
Title A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC
URI https://ieeexplore.ieee.org/document/9447722
https://www.proquest.com/docview/2562315673
https://www.osti.gov/servlets/purl/1832789
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6NPcEDsA1E2Zj8sBck0taJE9uPVbeqoK0v26SJF8t2zggNpWikL_x67pK0mgAhpEjJgx1bPvv8nX33HcCZkioWmoycSkWTqVDSkkpoMm8qI700tMdyvPPVqlreqk935d0efNjFwiBi53yGY_7s7vLrddzwUdnEKkVgkBTuEzLc-lit3Y2BKqdDtgJqjWD89kpyaic3q2syBHM5ZvY7ybFsj7agLqcKvda0ov7Qx90ms3gBV9vu9b4l9-NNG8bx52_Mjf_b_5fwfECbYtZPjwPYw-YQnj3iIDyCzzPBJmiTvn7ZPHAclWC-Dqq06h3Exez641wQtBXn2HZH_GLBpAfZRVOLc996wSql96ZthG8FIUqxvMwul_NXcLu4uJkvsyHhQhYLW7WZTCGkVFpp0ZugddIqxJogk7e1NKk2GK3RmPtU5qjq3MoQDYYqFUVpFZriNew36wbfgMBQ2jylCqsglcy1N6VWEaWnR1e6HsFkKwMXBzZyTorxzXVWydQ6kppjqblBaiN4v6vxvWfi-EfZIx79Xblh4EdwzGJ2BC6YITeyK1FsHWs1bewITrbSd8NC_uFyxodk4-ri7d__eQxPueXeJ_AE9tuHDb4jnNKG026C_gJxMeHN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axgE4jI-BKPvABy5IpK0TJ7aPVbcqg7aXddLExbIde0KgdBrphb-e95K0mhhCkyIlBztx_Ozn37Pf-z2Aj4ILn0k0cgrhVSJcjlMqBpVYVShuucI1luKdF8uivBJfrvPrPfi8i4UJIbTOZ2FIj-1ZfrX2G9oqG2khEAyiwn2C637Ou2it3ZmByMd9vgL8HgL57aHkWI9Wy0s0BVM-JP47TtFs9xahNqsK3tY4px5o5HaZmb2AxbaBnXfJj-GmcUP_-y_uxsf-wUs46PEmm3QD5BXshfo1PL_HQngI3yaMjNA6fr_Z3FEkFSPGDqy07FzE2eTyYsoQ3LKz0LSb_GxGtAfJeV2xM9tYRkql86etmW0YYkpWzpN5OX0DV7Pz1bRM-pQLic900SQ8OhdjrrkOVjkpoxTOVwiarK64ipUKXisZUhvzNIgq1dx5FVwRsyzXIqjsLezX6zq8AxZcrtMYi1A4Lngqrcql8IFbvGQhqwGMtjIwvucjp7QYP01rl4y1QakZkprppTaAT7satx0Xx3_KHlLv78r1HT-AIxKzQXhBHLmenIl8Y0ivSaUHcLyVvumn8i-TEkJEK1dm7__9zg_wtFwt5mZ-sfx6BM-oFZ2H4DHsN3ebcIKopXGn7WD9A2Ey5RY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reconfigurable+Neural+Network+ASIC+for+Detector+Front-End+Data+Compression+at+the+HL-LHC&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Di+Guglielmo%2C+Giuseppe&rft.au=Fahim%2C+Farah&rft.au=Herwig%2C+Christian&rft.au=Valentin%2C+Manuel+Blanco&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=68&rft.issue=8&rft_id=info:doi/10.1109%2FTNS.2021.3087100&rft.externalDocID=1832789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon