A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...
Saved in:
Published in | IEEE transactions on nuclear science Vol. 68; no. 8; pp. 2179 - 2186 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9499 1558-1578 |
DOI | 10.1109/TNS.2021.3087100 |
Cover
Loading…
Abstract | Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications. |
---|---|
AbstractList | Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. Furthermore, this is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications. Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications. Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm 2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications. |
Author | Fahim, Farah Luo, Yingyi Summers, Sioni Tran, Nhan Guglielmo, Giuseppe Di Kwok, Martin Ogrenci-Memik, Seda Gingu, Cristian Herwig, Christian Ngadiuba, Jennifer Duarte, Javier Harris, Philip Noonan, Daniel Miranda, Llovizna Pierini, Maurizio Hirschauer, James Valentin, Manuel Blanco Loncar, Vladimir |
Author_xml | – sequence: 1 givenname: Giuseppe Di orcidid: 0000-0002-5749-1432 surname: Guglielmo fullname: Guglielmo, Giuseppe Di organization: Computer Science Department, Columbia University, New York, NY, USA – sequence: 2 givenname: Farah orcidid: 0000-0003-1252-1447 surname: Fahim fullname: Fahim, Farah organization: Fermi National Accelerator Laboratory, Batavia, IL, USA – sequence: 3 givenname: Christian orcidid: 0000-0002-4280-6382 surname: Herwig fullname: Herwig, Christian organization: Fermi National Accelerator Laboratory, Batavia, IL, USA – sequence: 4 givenname: Manuel Blanco surname: Valentin fullname: Valentin, Manuel Blanco organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA – sequence: 5 givenname: Javier orcidid: 0000-0002-5076-7096 surname: Duarte fullname: Duarte, Javier organization: Physics Department, UC San Diego, La Jolla, CA, USA – sequence: 6 givenname: Cristian surname: Gingu fullname: Gingu, Cristian organization: Fermi National Accelerator Laboratory, Batavia, IL, USA – sequence: 7 givenname: Philip surname: Harris fullname: Harris, Philip organization: Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 8 givenname: James orcidid: 0000-0002-8244-0805 surname: Hirschauer fullname: Hirschauer, James organization: Fermi National Accelerator Laboratory, Batavia, IL, USA – sequence: 9 givenname: Martin surname: Kwok fullname: Kwok, Martin organization: Physics Department, Brown University, Providence, RI, USA – sequence: 10 givenname: Vladimir surname: Loncar fullname: Loncar, Vladimir organization: CERN, Geneva, Switzerland – sequence: 11 givenname: Yingyi surname: Luo fullname: Luo, Yingyi organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA – sequence: 12 givenname: Llovizna surname: Miranda fullname: Miranda, Llovizna organization: Fermi National Accelerator Laboratory, Batavia, IL, USA – sequence: 13 givenname: Jennifer surname: Ngadiuba fullname: Ngadiuba, Jennifer organization: California Institute of Technology, Pasadena, CA, USA – sequence: 14 givenname: Daniel surname: Noonan fullname: Noonan, Daniel organization: Florida Institute of Technology, Melbourne, FL, USA – sequence: 15 givenname: Seda surname: Ogrenci-Memik fullname: Ogrenci-Memik, Seda organization: Electrical and Computer Engineering Department, Northwestern University, Evanston, IL, USA – sequence: 16 givenname: Maurizio surname: Pierini fullname: Pierini, Maurizio organization: CERN, Geneva, Switzerland – sequence: 17 givenname: Sioni surname: Summers fullname: Summers, Sioni organization: CERN, Geneva, Switzerland – sequence: 18 givenname: Nhan orcidid: 0000-0002-8440-6854 surname: Tran fullname: Tran, Nhan email: ntran@fnal.gov organization: Fermi National Accelerator Laboratory, Batavia, IL, USA |
BackLink | https://www.osti.gov/servlets/purl/1832789$$D View this record in Osti.gov |
BookMark | eNp9kM1LAzEQxYMoWD_ugpeg56352GySY1mrFYqCrRcvIbs70dW6qUmK-N8bqXjw4Glm4PeG994B2h38AAidUDKmlOiL5e1izAijY06UpITsoBEVQhVUSLWLRoRQVehS6310EONLPktBxAg9TvA9tH5w_dMm2GYF-BbyssojffjwiieLmxo7H_AlJGhTXq6CH1IxHTp8aZPFtX9bB4ix9wO2CadnwLN5MZ_VR2jP2VWE4595iB6upst6Vszvrm_qybxoua5SQV3TOCc01WBVI6WTZdN2rCqt7qhynYJWKwnMOsGg7JimTaugqRznQpeg-CE62_71MfUmtn32-ZwjDdmuoYozqXSGzrfQOvj3DcRkXvwmDNmXYaJinIpK8kxVW6oNPsYAzuRvNuVoKdh-ZSgx32WbXLb5Ltv8lJ2F5I9wHfo3Gz7_k5xuJT0A_OK6LKVkjH8BxDaKcw |
CODEN | IETNAE |
CitedBy_id | crossref_primary_10_1088_2632_2153_ad1139 crossref_primary_10_1109_ACCESS_2023_3349351 crossref_primary_10_1088_1402_4896_acc5bc crossref_primary_10_1038_s41467_024_47704_8 crossref_primary_10_1109_TCSII_2023_3241154 crossref_primary_10_1007_s00502_023_01198_2 crossref_primary_10_1103_PhysRevD_105_076003 crossref_primary_10_1051_epjconf_202429509022 crossref_primary_10_1007_s41365_023_01359_0 crossref_primary_10_1109_TNS_2023_3320226 crossref_primary_10_1088_1748_0221_19_07_P07034 crossref_primary_10_1088_1748_0221_19_08_P08023 crossref_primary_10_1109_TNS_2022_3233895 crossref_primary_10_1088_1748_0221_19_03_C03050 crossref_primary_10_1109_ACCESS_2024_3392240 crossref_primary_10_1088_2632_2153_ad6a00 crossref_primary_10_1145_3662000 crossref_primary_10_1088_1361_6587_acc60f crossref_primary_10_3389_fphy_2022_957128 crossref_primary_10_1088_2632_2153_acc0d7 crossref_primary_10_1364_AO_445798 crossref_primary_10_1007_JHEP09_2024_054 crossref_primary_10_3390_jimaging10120298 crossref_primary_10_1140_epjc_s10052_023_11633_5 crossref_primary_10_1109_JIOT_2024_3490893 crossref_primary_10_1145_3665334 crossref_primary_10_1088_1748_0221_17_06_P06016 |
Cites_doi | 10.1147/rd.62.0200 10.1109/TNS.2017.2776107 10.3390/su13020717 10.1007/s10836-007-5029-z 10.1088/1748-0221/12/02/C02039 10.1088/1742-6596/1085/2/022008 10.1142/STES 10.1109/TCAD.2011.2110592 10.1088/1748-0221/13/07/P07027 10.1002/9781118084328 10.1103/RevModPhys.91.045002 10.1142/S0217751X19300199 10.1038/s41586-018-0361-2 10.1109/TNS.2017.2783239 10.1109/TNS.2010.2042613 10.1103/PhysRevLett.123.041801 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
CorporateAuthor | Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) |
CorporateAuthor_xml | – name: Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 OIOZB OTOTI |
DOI | 10.1109/TNS.2021.3087100 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1578 |
EndPage | 2186 |
ExternalDocumentID | 1832789 10_1109_TNS_2021_3087100 9447722 |
Genre | orig-research |
GrantInformation_xml | – fundername: DOE, Office of Science, Office of High Energy Physics Early Career Research Program grantid: DE-SC0021187 – fundername: European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation Program grantid: 772369 funderid: 10.13039/501100000781 – fundername: Massachusetts Institute of Technology University Grant funderid: 10.13039/100006919 – fundername: Fermi Research Alliance, LLC through the U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics grantid: DE-AC02-07CH11359 funderid: 10.13039/100000015 |
GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION RIG 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 ABPTK OIOZB OTOTI ZA5 |
ID | FETCH-LOGICAL-c396t-1fbbff5919ea8b77f74bcd264a9d18fd8ec987e2af52e4d291bc8eb6f33594e83 |
IEDL.DBID | RIE |
ISSN | 0018-9499 |
IngestDate | Mon Dec 12 02:20:37 EST 2022 Mon Jun 30 10:11:18 EDT 2025 Tue Jul 01 00:53:44 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Aug 27 02:25:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-1fbbff5919ea8b77f74bcd264a9d18fd8ec987e2af52e4d291bc8eb6f33594e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-07CH11359 USDOE Office of Science (SC), High Energy Physics (HEP) FERMILAB-PUB-21-217-CMS-E-SCD; arXiv:2105.01683 |
ORCID | 0000-0002-5076-7096 0000-0002-5749-1432 0000-0002-8440-6854 0000-0002-4280-6382 0000-0002-8244-0805 0000-0003-1252-1447 0000000242806382 0000000239323769 0000000342442061 0000000319394268 0000000257491432 0000000312521447 0000000250767096 0000000284406854 0000000296887587 0000000282440805 0000000336510232 0000000200552935 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1832789 |
PQID | 2562315673 |
PQPubID | 85457 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1832789 ieee_primary_9447722 crossref_primary_10_1109_TNS_2021_3087100 crossref_citationtrail_10_1109_TNS_2021_3087100 proquest_journals_2562315673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | IEEE transactions on nuclear science |
PublicationTitleAbbrev | TNS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref31 ref30 ref11 (ref7) 2017 ref2 ref1 kuboyama (ref29) 2009 (ref17) 2020 ref24 ref23 ref26 (ref19) 2020 ref25 (ref12) 2020 ref21 glorot (ref15) 2011; 15 coelho (ref10) 2020 nair (ref14) 2010 fulkerson (ref28) 2006 ref27 habinc (ref32) 2002 (ref16) 2020 (ref20) 2020 ref9 ref4 ref3 (ref6) 2020 ref5 chatrchyan (ref8) 2008; 3 (ref18) 2020 huhtinen (ref22) 1996 |
References_xml | – ident: ref31 doi: 10.1147/rd.62.0200 – volume: 3 year: 2008 ident: ref8 article-title: The CMS experiment at the CERN LHC publication-title: Proc JINST – year: 2017 ident: ref7 article-title: The phase-2 upgrade of the CMS endcap calorimeter – year: 2002 ident: ref32 article-title: Functional triple modular redundancy (FTMR). VHDL design methodology for redundancy in combinatorial and sequential logic – ident: ref21 doi: 10.1109/TNS.2017.2776107 – ident: ref11 doi: 10.3390/su13020717 – ident: ref30 doi: 10.1007/s10836-007-5029-z – year: 2020 ident: ref17 publication-title: Catapult High-Level Synthesis – year: 2020 ident: ref16 publication-title: Vivado High-Level Synthesis – ident: ref26 doi: 10.1088/1748-0221/12/02/C02039 – year: 2009 ident: ref29 article-title: Single-event-effect tolerant SOI-based inverter, NAND element, nor element, semiconductor memory device and data latch circuit – ident: ref1 doi: 10.1088/1742-6596/1085/2/022008 – year: 2020 ident: ref10 article-title: Automatic deep heterogeneous quantization of deep neural networks for ultra low-area, low-latency inference on the edge at particle colliders publication-title: arXiv 2006 10159 – ident: ref23 doi: 10.1142/STES – ident: ref9 doi: 10.1109/TCAD.2011.2110592 – year: 2020 ident: ref20 publication-title: HLSLibs Open-Source High-Level Synthesis IP Libraries – year: 2020 ident: ref19 publication-title: Catapult High-Level Synthesis-Verification – ident: ref5 doi: 10.1088/1748-0221/13/07/P07027 – year: 2006 ident: ref28 article-title: Single-event-effect hardened circuitry – year: 2020 ident: ref6 article-title: The phase-2 upgrade of the CMS level-1 trigger – year: 1996 ident: ref22 article-title: The radiation environment at the CMS experiment at the LHC – ident: ref24 doi: 10.1002/9781118084328 – ident: ref4 doi: 10.1103/RevModPhys.91.045002 – year: 2020 ident: ref12 publication-title: CMSSW on GitHub – ident: ref3 doi: 10.1142/S0217751X19300199 – ident: ref2 doi: 10.1038/s41586-018-0361-2 – start-page: 807 year: 2010 ident: ref14 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn (ICML) – ident: ref27 doi: 10.1109/TNS.2017.2783239 – year: 2020 ident: ref18 publication-title: A Resolution to Redefine SPI Signal Names – volume: 15 start-page: 315 year: 2011 ident: ref15 article-title: Deep sparse rectifier neural networks publication-title: Proc 14th Int Conf Artif Intell Statist – ident: ref25 doi: 10.1109/TNS.2010.2042613 – ident: ref13 doi: 10.1103/PhysRevLett.123.041801 |
SSID | ssj0014505 |
Score | 2.5616772 |
Snippet | Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported... |
SourceID | osti proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2179 |
SubjectTerms | Acidity Algorithms Application specific integrated circuits application-specific integrate circuit (ASIC) Application-specific integrated circuit (ASIC) artificial intelligence (AI) Artificial neural networks autoencoder CMOS Compression Computer architecture Data compression Data transmission Design optimization Detectors Energy consumption Field programmable gate arrays Gates (circuits) hardware accelerator High level synthesis high-level synthesis (HLS) INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Integrated circuits Ionizing radiation Large Hadron Collider Large Hadron Collider (LHC) Learning algorithms Machine learning machine learning (ML) Neural networks Particle physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Power consumption Radiation Sensors single-event effect (SEE) mitigation Sodium channels Solenoids Task analysis Training |
Title | A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC |
URI | https://ieeexplore.ieee.org/document/9447722 https://www.proquest.com/docview/2562315673 https://www.osti.gov/servlets/purl/1832789 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6NPcEDsA1E2Zj8sBck0taJE9uPVbeqoK0v26SJF8t2zggNpWikL_x67pK0mgAhpEjJgx1bPvv8nX33HcCZkioWmoycSkWTqVDSkkpoMm8qI700tMdyvPPVqlreqk935d0efNjFwiBi53yGY_7s7vLrddzwUdnEKkVgkBTuEzLc-lit3Y2BKqdDtgJqjWD89kpyaic3q2syBHM5ZvY7ybFsj7agLqcKvda0ov7Qx90ms3gBV9vu9b4l9-NNG8bx52_Mjf_b_5fwfECbYtZPjwPYw-YQnj3iIDyCzzPBJmiTvn7ZPHAclWC-Dqq06h3Exez641wQtBXn2HZH_GLBpAfZRVOLc996wSql96ZthG8FIUqxvMwul_NXcLu4uJkvsyHhQhYLW7WZTCGkVFpp0ZugddIqxJogk7e1NKk2GK3RmPtU5qjq3MoQDYYqFUVpFZriNew36wbfgMBQ2jylCqsglcy1N6VWEaWnR1e6HsFkKwMXBzZyTorxzXVWydQ6kppjqblBaiN4v6vxvWfi-EfZIx79Xblh4EdwzGJ2BC6YITeyK1FsHWs1bewITrbSd8NC_uFyxodk4-ri7d__eQxPueXeJ_AE9tuHDb4jnNKG026C_gJxMeHN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axgE4jI-BKPvABy5IpK0TJ7aPVbcqg7aXddLExbIde0KgdBrphb-e95K0mhhCkyIlBztx_Ozn37Pf-z2Aj4ILn0k0cgrhVSJcjlMqBpVYVShuucI1luKdF8uivBJfrvPrPfi8i4UJIbTOZ2FIj-1ZfrX2G9oqG2khEAyiwn2C637Ou2it3ZmByMd9vgL8HgL57aHkWI9Wy0s0BVM-JP47TtFs9xahNqsK3tY4px5o5HaZmb2AxbaBnXfJj-GmcUP_-y_uxsf-wUs46PEmm3QD5BXshfo1PL_HQngI3yaMjNA6fr_Z3FEkFSPGDqy07FzE2eTyYsoQ3LKz0LSb_GxGtAfJeV2xM9tYRkql86etmW0YYkpWzpN5OX0DV7Pz1bRM-pQLic900SQ8OhdjrrkOVjkpoxTOVwiarK64ipUKXisZUhvzNIgq1dx5FVwRsyzXIqjsLezX6zq8AxZcrtMYi1A4Lngqrcql8IFbvGQhqwGMtjIwvucjp7QYP01rl4y1QakZkprppTaAT7satx0Xx3_KHlLv78r1HT-AIxKzQXhBHLmenIl8Y0ivSaUHcLyVvumn8i-TEkJEK1dm7__9zg_wtFwt5mZ-sfx6BM-oFZ2H4DHsN3ebcIKopXGn7WD9A2Ey5RY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reconfigurable+Neural+Network+ASIC+for+Detector+Front-End+Data+Compression+at+the+HL-LHC&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Di+Guglielmo%2C+Giuseppe&rft.au=Fahim%2C+Farah&rft.au=Herwig%2C+Christian&rft.au=Valentin%2C+Manuel+Blanco&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=68&rft.issue=8&rft_id=info:doi/10.1109%2FTNS.2021.3087100&rft.externalDocID=1832789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |