An active learning paradigm based on a priori data reduction and organization

•A novel active learning paradigm, called DROP, based on a priori data reduction and organization.•DROP does not require classification and reorganization of all non-annotated samples in the dataset at each iteration.•The proposed paradigm allows to achieve high accuracy quickly with minimum user in...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 14; pp. 6086 - 6097
Main Authors Saito, Priscila T.M., de Rezende, Pedro J., Falcão, Alexandre X., Suzuki, Celso T.N., Gomes, Jancarlo F.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.10.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel active learning paradigm, called DROP, based on a priori data reduction and organization.•DROP does not require classification and reorganization of all non-annotated samples in the dataset at each iteration.•The proposed paradigm allows to achieve high accuracy quickly with minimum user interaction.•Results are shown with different clustering and classification strategies, and on a variety of real-world datasets. In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused on strategies in which a large unlabeled dataset has to be reprocessed at each learning iteration. As the datasets grow, these strategies become inefficient or even a tremendous computational challenge. In order to address these issues, we propose an effective and efficient active learning paradigm which attains a significant reduction in the size of the learning set by applying an a priori process of identification and organization of a small relevant subset. Furthermore, the concomitant classification and selection processes enable the classification of a very small number of samples, while selecting the informative ones. Experimental results showed that the proposed paradigm allows to achieve high accuracy quickly with minimum user interaction, further improving its efficiency.
AbstractList •A novel active learning paradigm, called DROP, based on a priori data reduction and organization.•DROP does not require classification and reorganization of all non-annotated samples in the dataset at each iteration.•The proposed paradigm allows to achieve high accuracy quickly with minimum user interaction.•Results are shown with different clustering and classification strategies, and on a variety of real-world datasets. In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused on strategies in which a large unlabeled dataset has to be reprocessed at each learning iteration. As the datasets grow, these strategies become inefficient or even a tremendous computational challenge. In order to address these issues, we propose an effective and efficient active learning paradigm which attains a significant reduction in the size of the learning set by applying an a priori process of identification and organization of a small relevant subset. Furthermore, the concomitant classification and selection processes enable the classification of a very small number of samples, while selecting the informative ones. Experimental results showed that the proposed paradigm allows to achieve high accuracy quickly with minimum user interaction, further improving its efficiency.
In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused on strategies in which a large unlabeled dataset has to be reprocessed at each learning iteration. As the datasets grow, these strategies become inefficient or even a tremendous computational challenge. In order to address these issues, we propose an effective and efficient active learning paradigm which attains a significant reduction in the size of the learning set by applying an a priori process of identification and organization of a small relevant subset. Furthermore, the concomitant classification and selection processes enable the classification of a very small number of samples, while selecting the informative ones. Experimental results showed that the proposed paradigm allows to achieve high accuracy quickly with minimum user interaction, further improving its efficiency.
Author de Rezende, Pedro J.
Suzuki, Celso T.N.
Saito, Priscila T.M.
Gomes, Jancarlo F.
Falcão, Alexandre X.
Author_xml – sequence: 1
  givenname: Priscila T.M.
  surname: Saito
  fullname: Saito, Priscila T.M.
  email: maeda@ic.unicamp.br
  organization: Institute of Computing, University of Campinas, SP, Brazil
– sequence: 2
  givenname: Pedro J.
  surname: de Rezende
  fullname: de Rezende, Pedro J.
  email: rezende@ic.unicamp.br
  organization: Institute of Computing, University of Campinas, SP, Brazil
– sequence: 3
  givenname: Alexandre X.
  surname: Falcão
  fullname: Falcão, Alexandre X.
  email: afalcao@ic.unicamp.br
  organization: Institute of Computing, University of Campinas, SP, Brazil
– sequence: 4
  givenname: Celso T.N.
  surname: Suzuki
  fullname: Suzuki, Celso T.N.
  email: celso.suzuki@ic.unicamp.br
  organization: Institute of Computing, University of Campinas, SP, Brazil
– sequence: 5
  givenname: Jancarlo F.
  surname: Gomes
  fullname: Gomes, Jancarlo F.
  email: jgomes@ic.unicamp.br
  organization: Institute of Computing, University of Campinas, SP, Brazil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28534576$$DView record in Pascal Francis
BookMark eNqFkE9rGzEQxUVwIHaSL5DTXgK9rDvaP9IKejGhaQsOuTRnMSuNjMxa60jrlPbTR4tDjy0MDMz83gzvrdgijIEYu-Ow5sDF5_2a0i9cV8CbNeQCecGWvJN1KaSqF2wJqpVlw2VzxVYp7QG4zNCSPW1CgWbyb1QMhDH4sCuOGNH63aHoMZEtxkwUx-jH6AuLExaR7ClL5nnI67jD4P_gPLhhlw6HRLcf_Zq9PH79-fC93D5_-_Gw2ZamVmIqueW1MVI11okOOpLouqaVFhSnummx7RX20Ju-Ms7ZrrOC945L5WoL4BTV1-zT-e4xjq8nSpM--GRoGDDQeEqaC5lttx2H_6OtkBxULaqMVmfUxDGlSE5n1weMvzUHPces93qOWc8xa8gFMovuP-5jMji4iMH49FdZdW12JEXmvpw5yrm8eYo6GU_BkPWRzKTt6P_15h3yCZT2
CitedBy_id crossref_primary_10_1016_j_eswa_2014_09_038
crossref_primary_10_1186_s12982_023_00120_7
crossref_primary_10_1016_j_asoc_2016_05_041
crossref_primary_10_3390_computers5010001
crossref_primary_10_1016_j_patcog_2015_05_020
crossref_primary_10_1016_j_asoc_2016_06_008
crossref_primary_10_1016_j_cmpb_2022_107122
crossref_primary_10_1016_j_ins_2017_08_012
crossref_primary_10_1109_TIE_2020_2969106
Cites_doi 10.1016/j.eswa.2012.03.023
10.1016/j.patcog.2011.05.013
10.1609/aaai.v25i1.8028
10.1016/j.patcog.2009.03.009
10.1016/j.patcog.2008.04.012
10.1109/TGRS.2007.892009
10.1109/TPAMI.2007.61
10.1145/1645953.1646229
10.1016/j.patcog.2011.07.013
10.1109/TKDE.2005.170
10.1016/j.neucom.2011.07.012
10.1007/BF00993277
10.1109/TPAMI.2007.70847
10.1016/j.patrec.2013.12.018
10.1016/j.patcog.2011.08.009
10.1002/ima.20191
10.1109/TPAMI.2008.125
10.1016/j.cviu.2012.06.002
10.1145/1015330.1015385
10.1007/s10994-008-5077-3
10.1109/TSMCA.2009.2025025
10.1016/j.patcog.2007.12.003
10.1613/jair.295
10.1109/ICME.2002.1035755
10.1016/j.patcog.2011.03.026
10.1007/s11263-009-0268-3
10.1007/s12530-012-9060-7
10.1109/ICME.2006.262442
10.1145/1244002.1244189
10.1016/j.patcog.2006.06.005
10.1145/2480362.2480374
10.1145/2245276.2245318
10.1016/j.eswa.2013.09.023
10.1109/34.400568
10.1561/2200000006
10.1613/jair.2005
10.1016/j.patrec.2003.10.015
10.1016/j.patcog.2006.04.042
10.1145/2063576.2063916
10.1016/j.patcog.2011.04.026
10.1109/CVPR.2009.5206651
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.04.007
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 6097
ExternalDocumentID 10_1016_j_eswa_2014_04_007
28534576
S0957417414002012
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
08R
29G
AAAKG
AALMO
AAPBV
AAQXK
ABKBG
ABPIF
ABPTK
ACNNM
ADALY
ADJOM
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
IPNFZ
IQODW
PQEST
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
AAXKI
AAYXX
ACRPL
ADMUD
ADNMO
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-1d13cc794df6808e7af8457d091e345a5b9ab0bcb2cffd88d61bf179f3d00f9e3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Oct 25 04:45:08 EDT 2024
Fri Oct 25 08:41:43 EDT 2024
Fri Dec 06 02:19:55 EST 2024
Fri Nov 25 01:11:51 EST 2022
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Pattern recognition
Data mining
Active learning
Image annotation
Machine learning
Image processing
High precision
Very large databases
Active system
Efficiency
User interface
Classification
Learning algorithm
Small medium sized firm
Data analysis
Process selection
Data reduction
Interactive system
Dimension reduction
Experimental result
Supervised learning
Learning (artificial intelligence)
Small sample
Artificial intelligence
Indexing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-1d13cc794df6808e7af8457d091e345a5b9ab0bcb2cffd88d61bf179f3d00f9e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567109362
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1677935810
proquest_miscellaneous_1567109362
crossref_primary_10_1016_j_eswa_2014_04_007
pascalfrancis_primary_28534576
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_04_007
PublicationCentury 2000
PublicationDate 2014-10-15
PublicationDateYYYYMMDD 2014-10-15
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (pp. 1783–1786). New York, NY, USA.
Zhong, Liu, Liu (b0340) 2011
Lee, Y. J. & Mangasarian, O. L. (2000). RSVM: Reduced support vector machines, Technical Report 00-07 (First SIAM ICDM, Chicago, 2001), Computer Science, Univ. of Wisconsin.
Papa, Falcão, de Albuquerque, Tavares (b0210) 2012; 45
da Silva, Falcão, Magalhães (b0070) 2010
Saito, P. T. M., de Rezende, P. J., Falcão, A. X., Suzuki, C. T. N., & Gomes, J. F. (2012). Improving active learning with sharp data reduction. In
Liu, Zhang, Lu (b0160) 2008; 41
Iwashita, Papa, Souza, Falcão, Lotufo, Oliveira (b0120) 2014; 40
(pp. 216–219). New York, NY, USA.
(pp. 529–532).
Vens, Struyf, Schietgat, Džeroski, Blockeel (b0305) 2008; 73
Garg, P., & Sundararajan, S. (2009). Active learning in partially supervised classification. In
Fu, Y., & Zhu, X. (2011). Optimal subset selection for active learning. In
Xu, Yu, Tresp, Xu, Wang (b0325) 2003
Thompson, Califf, Mooney (b0280) 1999
Tang, Hong, Yan, Chua, Qi, Jain (b0270) 2011; 2
Nogueira, B. M., Jorge, A. M., & Rezende, S. O. (2012). Hierarchical confidence-based active clustering. In
Fu, Y., Li, B., Zhu, X., & Zhang, C. (2011). Do they belong to the same class: Active learning by querying pairwise label homogeneity. In
UND, 2011. Biometrics database distribution. The Computer Vision Laboratory, University of Notre Dame.
Ertekin, S., Huang, J., Bottou, L., & Giles, L. (2007). Learning on the border: Active learning in imbalanced data classification. In
(pp. 74–). New York, NY, USA.
Zhang, Islam, Lu (b0330) 2012; 45
Cheng, Wang (b0035) 2007; 40
Cheng (b0030) 1995; 17
.
Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problems. In
(pp. 662–666).
Shen, Ju, Jiang, Ren, Zheng, Yao (b0260) 2011
Zhang, Li, Xue (b0335) 2010; 43
Pendigits, 2011. Pen-based recognition of handwritten digits dataset. uci – machine learning repository.
(pp. 127–136). New York, NY, USA.
Cohn, Ghahramani, Jordan (b0055) 1996; 4
Tang, Yan, Zhao, Chua, Jain (b0275) 2012
Cohn, Atlas, Ladner (b0050) 1994; 15
Escalante, Montes, Sucar (b0095) 2012; 39
(pp. 762–769).
Chien, Chang, Lee (b0045) 2010
Wu, Y., Kozintsev, I., Bouguet, J.-Y., & Dulong, C. (2006). Sampling strategies for active learning in personal photo retrieval. In
Rocha, Cappabianco, Falcão (b0235) 2009; 19
MacQueen (b0185) 1967; Vol. 1
(pp. 27–34). Plzen, Czech Republic.
Del Frate, Pacifici, Schiavon, Solimini (b0080) 2007; 45
da Silva, Falcão, Magalhães (b0075) 2011; 44
(pp. 1–6).
Körner, Wrobel (b0145) 2006
Wong, Leung (b0315) 2008; 30
Sychay, G., Chang, E. Y., & Goh, K. (2002). Effective image annotation via active learning. In
Carneiro, Chan, Moreno, Vasconcelos (b0025) 2007; 29
Goh, Chang, Li (b0115) 2005; 17
Park, Lee, Kim (b0215) 2004; 25
(pp. 844–851). New York, NY, USA.
Covertype, 2011. Covertype dataset. uci – machine learning repository.
Liu, Li, Liu, Lu, Ma (b0155) 2009; 42
Jeon, Lavrenko, Manmatha (b0130) 2003
Li, Wang (b0165) 2008; 30
Lughofer (b0170) 2012; 45
Lughofer, Smith, Tahir, Caleb-Solly, Eitzinger, Sannen (b0180) 2009; 39
Muslea, Minton, Knoblock (b0195) 2006; 27
Rebbapragada, U., & Wagstaff, K. L. (2011). Using ensemble decisions and active selection to improve low-cost labeling for multi-view data. In
Nguyen, Smeulders (b0200) 2004
(pp. 53–57). Coimbra, Portugal.
Joshi, Porikli, Papanikolopoulos (b0135) 2012
Saito, P. T. M., de Rezende, P. J., Falcão, A. X., Suzuki, C. T. N., & Gomes, J. F. (2013). A data reduction and organization approach for efficient image annotation. In
Qi, Han (b0225) 2007; 40
Dimitrovski, Kocev, Loskovska, Deroski (b0085) 2011; 44
Lughofer (b0175) 2012; 3
(Vol. 1, pp. 209–212).
(pp. 2161–2164). New York, NY, USA.
Shen, X. & Zhai, C. (2003). Active feedback - uiuc trec-2003 hard experiments. In
Chiang (b0040) 2012
Tian, A., & Lease, M. (2011). Active learning to maximize accuracy vs. effort in interactive information retrieval. In
Kapoor, Grauman, Urtasun, Darrell (b0140) 2010; 88
(pp. 145–154). New York, NY, USA.
Rodrigues, Pereira, Nakamura, Costa, Yang, Souza (b0240) 2014; 41
Tong, Chang (b0290) 2001
Bengio (b0005) 2009; 2
Tong, Koller (b0295) 2002; 2
Cardoso-Cachopo, A. & Oliveira, A. L. (2007). Semi-supervised single-label text categorization using centroid-based classifiers. In
Wang, Xia, Chang (b0310) 2010
Bugatti, Ribeiro, Traina, Traina (b0010) 2011
Dagan, Engelson (b0065) 1995
Melville, P., & Mooney, R. J. (2004). Diverse ensembles for active learning. In
Cappabianco, Falcão, Yasuda, Udupa (b0015) 2012; 116
Cheng (10.1016/j.eswa.2014.04.007_b0035) 2007; 40
Lughofer (10.1016/j.eswa.2014.04.007_b0175) 2012; 3
Chiang (10.1016/j.eswa.2014.04.007_b0040) 2012
Escalante (10.1016/j.eswa.2014.04.007_b0095) 2012; 39
Carneiro (10.1016/j.eswa.2014.04.007_b0025) 2007; 29
10.1016/j.eswa.2014.04.007_b0190
Dimitrovski (10.1016/j.eswa.2014.04.007_b0085) 2011; 44
Tong (10.1016/j.eswa.2014.04.007_b0290) 2001
Joshi (10.1016/j.eswa.2014.04.007_b0135) 2012
Zhang (10.1016/j.eswa.2014.04.007_b0330) 2012; 45
da Silva (10.1016/j.eswa.2014.04.007_b0070) 2010
da Silva (10.1016/j.eswa.2014.04.007_b0075) 2011; 44
10.1016/j.eswa.2014.04.007_b0220
Dagan (10.1016/j.eswa.2014.04.007_b0065) 1995
10.1016/j.eswa.2014.04.007_b0020
Cohn (10.1016/j.eswa.2014.04.007_b0050) 1994; 15
Iwashita (10.1016/j.eswa.2014.04.007_b0120) 2014; 40
Park (10.1016/j.eswa.2014.04.007_b0215) 2004; 25
10.1016/j.eswa.2014.04.007_b0060
Xu (10.1016/j.eswa.2014.04.007_b0325) 2003
10.1016/j.eswa.2014.04.007_b0105
10.1016/j.eswa.2014.04.007_b0300
10.1016/j.eswa.2014.04.007_b0100
10.1016/j.eswa.2014.04.007_b0265
Rocha (10.1016/j.eswa.2014.04.007_b0235) 2009; 19
Qi (10.1016/j.eswa.2014.04.007_b0225) 2007; 40
Vens (10.1016/j.eswa.2014.04.007_b0305) 2008; 73
Tang (10.1016/j.eswa.2014.04.007_b0270) 2011; 2
MacQueen (10.1016/j.eswa.2014.04.007_b0185) 1967; Vol. 1
Wong (10.1016/j.eswa.2014.04.007_b0315) 2008; 30
10.1016/j.eswa.2014.04.007_b0230
10.1016/j.eswa.2014.04.007_b0110
Liu (10.1016/j.eswa.2014.04.007_b0155) 2009; 42
10.1016/j.eswa.2014.04.007_b0150
Jeon (10.1016/j.eswa.2014.04.007_b0130) 2003
Lughofer (10.1016/j.eswa.2014.04.007_b0180) 2009; 39
Del Frate (10.1016/j.eswa.2014.04.007_b0080) 2007; 45
Lughofer (10.1016/j.eswa.2014.04.007_b0170) 2012; 45
Liu (10.1016/j.eswa.2014.04.007_b0160) 2008; 41
Rodrigues (10.1016/j.eswa.2014.04.007_b0240) 2014; 41
10.1016/j.eswa.2014.04.007_b0090
Wang (10.1016/j.eswa.2014.04.007_b0310) 2010
Papa (10.1016/j.eswa.2014.04.007_b0210) 2012; 45
Chien (10.1016/j.eswa.2014.04.007_b0045) 2010
Shen (10.1016/j.eswa.2014.04.007_b0260) 2011
10.1016/j.eswa.2014.04.007_b0285
Körner (10.1016/j.eswa.2014.04.007_b0145) 2006
10.1016/j.eswa.2014.04.007_b0205
Bengio (10.1016/j.eswa.2014.04.007_b0005) 2009; 2
10.1016/j.eswa.2014.04.007_b0245
10.1016/j.eswa.2014.04.007_b0125
10.1016/j.eswa.2014.04.007_b0320
Bugatti (10.1016/j.eswa.2014.04.007_b0010) 2011
Tong (10.1016/j.eswa.2014.04.007_b0295) 2002; 2
Goh (10.1016/j.eswa.2014.04.007_b0115) 2005; 17
Tang (10.1016/j.eswa.2014.04.007_b0275) 2012
Zhong (10.1016/j.eswa.2014.04.007_b0340) 2011
Li (10.1016/j.eswa.2014.04.007_b0165) 2008; 30
Cheng (10.1016/j.eswa.2014.04.007_b0030) 1995; 17
Muslea (10.1016/j.eswa.2014.04.007_b0195) 2006; 27
Zhang (10.1016/j.eswa.2014.04.007_b0335) 2010; 43
10.1016/j.eswa.2014.04.007_b0250
Nguyen (10.1016/j.eswa.2014.04.007_b0200) 2004
Cappabianco (10.1016/j.eswa.2014.04.007_b0015) 2012; 116
Kapoor (10.1016/j.eswa.2014.04.007_b0140) 2010; 88
Thompson (10.1016/j.eswa.2014.04.007_b0280) 1999
Cohn (10.1016/j.eswa.2014.04.007_b0055) 1996; 4
10.1016/j.eswa.2014.04.007_b0255
References_xml – start-page: 1
  year: 2012
  end-page: 6
  ident: b0275
  article-title: Label-specific training set construction from web resource for image annotation
  publication-title: Signal Processing
  contributor:
    fullname: Jain
– start-page: 1
  year: 2012
  end-page: 9
  ident: b0040
  article-title: Interactive tool for image annotation using a semi-supervised and hierarchical approach
  publication-title: Computer Standards & Interfaces
  contributor:
    fullname: Chiang
– volume: 44
  start-page: 2436
  year: 2011
  end-page: 2449
  ident: b0085
  article-title: Hierarchical annotation of medical images
  publication-title: Pattern Recognition
  contributor:
    fullname: Deroski
– volume: Vol. 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: b0185
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: 5th Berkeley symposium on mathematical statistics and probability
  contributor:
    fullname: MacQueen
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: b0030
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Cheng
– volume: 73
  start-page: 185
  year: 2008
  end-page: 214
  ident: b0305
  article-title: Decision trees for hierarchical multi-label classification
  publication-title: Machine Learning
  contributor:
    fullname: Blockeel
– start-page: 343
  year: 2011
  end-page: 352
  ident: b0340
  article-title: Bilinear deep learning for image classification
  publication-title: Proceedings of the 19th ACM international conference on multimedia
  contributor:
    fullname: Liu
– volume: 19
  start-page: 50
  year: 2009
  end-page: 68
  ident: b0235
  article-title: Data clustering as an optimum-path forest problem with applications in image analysis
  publication-title: International Journal of Imaging Systems and Technology (IJIST)
  contributor:
    fullname: Falcão
– start-page: 107
  year: 2001
  end-page: 118
  ident: b0290
  article-title: Support vector machine active learning for image retrieval
  publication-title: ACM international conference on multimedia (MULTIMEDIA)
  contributor:
    fullname: Chang
– volume: 2
  start-page: 45
  year: 2002
  end-page: 66
  ident: b0295
  article-title: Support vector machine active learning with applications to text classification
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Koller
– volume: 45
  start-page: 346
  year: 2012
  end-page: 362
  ident: b0330
  article-title: A review on automatic image annotation techniques
  publication-title: Pattern Recognition
  contributor:
    fullname: Lu
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b0005
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
  contributor:
    fullname: Bengio
– volume: 88
  start-page: 169
  year: 2010
  end-page: 188
  ident: b0140
  article-title: Gaussian Processes for Object Categorization
  publication-title: International Journal of Computer Vision
  contributor:
    fullname: Darrell
– start-page: 687
  year: 2006
  end-page: 694
  ident: b0145
  article-title: Multi-class ensemble-based active learning
  publication-title: European Conference on Machine Learning (ECML)
  contributor:
    fullname: Wrobel
– volume: 29
  start-page: 394
  year: 2007
  end-page: 410
  ident: b0025
  article-title: Supervised learning of semantic classes for image annotation and retrieval
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Vasconcelos
– volume: 15
  start-page: 201
  year: 1994
  end-page: 221
  ident: b0050
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
  contributor:
    fullname: Ladner
– start-page: 3785
  year: 2011
  end-page: 3792
  ident: b0260
  article-title: Column subset selection for active learning in image classification
  publication-title: Neurocomputing
  contributor:
    fullname: Yao
– volume: 116
  start-page: 1047
  year: 2012
  end-page: 1059
  ident: b0015
  article-title: Brain tissue mr-image segmentation via optimum-path forest clustering
  publication-title: Computer Vision and Image Understanding
  contributor:
    fullname: Udupa
– volume: 27
  start-page: 203
  year: 2006
  end-page: 233
  ident: b0195
  article-title: Active learning with multiple views
  publication-title: Journal of Artificial Intelligence Research
  contributor:
    fullname: Knoblock
– volume: 43
  start-page: 470
  year: 2010
  end-page: 477
  ident: b0335
  article-title: Semi-automatic dynamic auxiliary-tag-aided image annotation
  publication-title: Pattern Recognition
  contributor:
    fullname: Xue
– volume: 30
  start-page: 985
  year: 2008
  end-page: 1002
  ident: b0165
  article-title: Real-time computerized annotation of pictures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Wang
– start-page: 1
  year: 2012
  end-page: 14
  ident: b0135
  article-title: Scalable active learning for multi-class image classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Papanikolopoulos
– start-page: 183
  year: 2010
  end-page: 196
  ident: b0045
  article-title: Variant methods of reduced set selection for reduced support vector machines
  publication-title: Journal of Information Science and Engineering
  contributor:
    fullname: Lee
– volume: 39
  start-page: 960
  year: 2009
  end-page: 971
  ident: b0180
  article-title: Human-machine interaction issues in quality control based on online image classification
  publication-title: IEEE transactions on systems, man, and cybernetics, part A: Systems and humans
  contributor:
    fullname: Sannen
– volume: 39
  start-page: 11011
  year: 2012
  end-page: 11021
  ident: b0095
  article-title: Multi-class particle swarm model selection for automatic image annotation
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Sucar
– volume: 3
  start-page: 251
  year: 2012
  end-page: 271
  ident: b0175
  article-title: Single-pass active learning with conflict and ignorance
  publication-title: Evolving Systems
  contributor:
    fullname: Lughofer
– start-page: 393
  year: 2003
  end-page: 407
  ident: b0325
  article-title: Representative sampling for text classification using support vector machines
  publication-title: European Conference on IR Research (ECIR)
  contributor:
    fullname: Wang
– volume: 45
  start-page: 512
  year: 2012
  end-page: 520
  ident: b0210
  article-title: Efficient supervised optimum-path forest classification for large datasets
  publication-title: Pattern Recognition
  contributor:
    fullname: Tavares
– volume: 42
  start-page: 218
  year: 2009
  end-page: 228
  ident: b0155
  article-title: Image annotation via graph learning
  publication-title: Pattern Recognition
  contributor:
    fullname: Ma
– volume: 44
  start-page: 2971
  year: 2011
  end-page: 2978
  ident: b0075
  article-title: Active learning paradigms for CBIR systems based on optimum-path forest classification
  publication-title: Pattern Recognition
  contributor:
    fullname: Magalhães
– start-page: 150
  year: 1995
  end-page: 157
  ident: b0065
  article-title: Committee-based sampling for training probabilistic classifiers
  publication-title: Proceedings of the twelfth international conference on machine learning
  contributor:
    fullname: Engelson
– start-page: 13
  year: 2010
  end-page: 18
  ident: b0310
  article-title: A deep-learning model-based and data-driven hybrid architecture for image annotation
  publication-title: Proceedings of the international workshop on very-large-scale multimedia corpus, mining and retrieval
  contributor:
    fullname: Chang
– volume: 17
  start-page: 1333
  year: 2005
  end-page: 1346
  ident: b0115
  article-title: Using one-class and two-class svms for multiclass image annotation
  publication-title: IEEE Transactions on Knowledge and Data Engineering (TKDE)
  contributor:
    fullname: Li
– volume: 45
  start-page: 800
  year: 2007
  end-page: 809
  ident: b0080
  article-title: Use of neural networks for automatic classification from high-resolution images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  contributor:
    fullname: Solimini
– start-page: 73
  year: 2010
  end-page: 80
  ident: b0070
  article-title: A new CBIR approach based on relevance feedback and optimum-path forest classification
  publication-title: Journal of WSCG
  contributor:
    fullname: Magalhães
– volume: 41
  start-page: 2554
  year: 2008
  end-page: 2570
  ident: b0160
  article-title: Region-based image retrieval with high-level semantics using decision tree learning
  publication-title: Pattern Recognition
  contributor:
    fullname: Lu
– volume: 25
  start-page: 287
  year: 2004
  end-page: 300
  ident: b0215
  article-title: Content-based image classification using a neural network
  publication-title: Pattern Recognition Letters
  contributor:
    fullname: Kim
– volume: 40
  start-page: 330
  year: 2007
  end-page: 334
  ident: b0035
  article-title: Active learning for image retrieval with co-svm
  publication-title: Pattern Recognition
  contributor:
    fullname: Wang
– volume: 2
  start-page: 14:1
  year: 2011
  end-page: 14:15
  ident: b0270
  article-title: Image annotation by knn-sparse graph-based label propagation over noisily tagged web images
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  contributor:
    fullname: Jain
– volume: 40
  start-page: 121
  year: 2014
  end-page: 127
  ident: b0120
  article-title: A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
  publication-title: Pattern Recognition Letters
  contributor:
    fullname: Oliveira
– start-page: 323
  year: 2011
  end-page: 330
  ident: b0010
  article-title: Feature selection guided by perception in medical cbir systems
  publication-title: IEEE International conference on healthcare informatics, imaging and systems biology
  contributor:
    fullname: Traina
– volume: 41
  start-page: 2250
  year: 2014
  end-page: 2258
  ident: b0240
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Souza
– start-page: 119
  year: 2003
  end-page: 126
  ident: b0130
  article-title: Automatic image annotation and retrieval using cross-media relevance models
  publication-title: Proceedings of the 26th annual international ACM conference on research and development in informaion retrieval (SIGIR)
  contributor:
    fullname: Manmatha
– volume: 45
  start-page: 884
  year: 2012
  end-page: 896
  ident: b0170
  article-title: Hybrid active learning for reducing the annotation effort of operators in classification systems
  publication-title: Pattern Recognition
  contributor:
    fullname: Lughofer
– volume: 40
  start-page: 728
  year: 2007
  end-page: 741
  ident: b0225
  article-title: Incorporating multiple svms for automatic image annotation
  publication-title: Pattern Recognition
  contributor:
    fullname: Han
– volume: 30
  start-page: 1933
  year: 2008
  end-page: 1944
  ident: b0315
  article-title: Automatic semantic annotation of real-world web images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Leung
– start-page: 406
  year: 1999
  end-page: 414
  ident: b0280
  article-title: Active learning for natural language parsing and information extraction
  publication-title: Proceedings of the Sixteenth International Conference on Machine Learning
  contributor:
    fullname: Mooney
– start-page: 79
  year: 2004
  end-page: 86
  ident: b0200
  article-title: Active learning using pre-clustering
  publication-title: International Conference on Machine Learning (ICML)
  contributor:
    fullname: Smeulders
– volume: 4
  start-page: 129
  year: 1996
  end-page: 145
  ident: b0055
  article-title: Active learning with statistical models
  publication-title: Journal of Artificial Intelligence Research
  contributor:
    fullname: Jordan
– volume: 39
  start-page: 11011
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0095
  article-title: Multi-class particle swarm model selection for automatic image annotation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.03.023
  contributor:
    fullname: Escalante
– start-page: 393
  year: 2003
  ident: 10.1016/j.eswa.2014.04.007_b0325
  article-title: Representative sampling for text classification using support vector machines
  contributor:
    fullname: Xu
– ident: 10.1016/j.eswa.2014.04.007_b0245
– start-page: 406
  year: 1999
  ident: 10.1016/j.eswa.2014.04.007_b0280
  article-title: Active learning for natural language parsing and information extraction
  contributor:
    fullname: Thompson
– ident: 10.1016/j.eswa.2014.04.007_b0090
– volume: 45
  start-page: 346
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0330
  article-title: A review on automatic image annotation techniques
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.05.013
  contributor:
    fullname: Zhang
– ident: 10.1016/j.eswa.2014.04.007_b0100
  doi: 10.1609/aaai.v25i1.8028
– volume: 43
  start-page: 470
  year: 2010
  ident: 10.1016/j.eswa.2014.04.007_b0335
  article-title: Semi-automatic dynamic auxiliary-tag-aided image annotation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.03.009
  contributor:
    fullname: Zhang
– ident: 10.1016/j.eswa.2014.04.007_b0255
– volume: 42
  start-page: 218
  year: 2009
  ident: 10.1016/j.eswa.2014.04.007_b0155
  article-title: Image annotation via graph learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.04.012
  contributor:
    fullname: Liu
– volume: 45
  start-page: 800
  year: 2007
  ident: 10.1016/j.eswa.2014.04.007_b0080
  article-title: Use of neural networks for automatic classification from high-resolution images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2007.892009
  contributor:
    fullname: Del Frate
– start-page: 107
  year: 2001
  ident: 10.1016/j.eswa.2014.04.007_b0290
  article-title: Support vector machine active learning for image retrieval
  contributor:
    fullname: Tong
– volume: 29
  start-page: 394
  year: 2007
  ident: 10.1016/j.eswa.2014.04.007_b0025
  article-title: Supervised learning of semantic classes for image annotation and retrieval
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2007.61
  contributor:
    fullname: Carneiro
– ident: 10.1016/j.eswa.2014.04.007_b0110
  doi: 10.1145/1645953.1646229
– volume: 45
  start-page: 512
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0210
  article-title: Efficient supervised optimum-path forest classification for large datasets
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.07.013
  contributor:
    fullname: Papa
– volume: 17
  start-page: 1333
  year: 2005
  ident: 10.1016/j.eswa.2014.04.007_b0115
  article-title: Using one-class and two-class svms for multiclass image annotation
  publication-title: IEEE Transactions on Knowledge and Data Engineering (TKDE)
  doi: 10.1109/TKDE.2005.170
  contributor:
    fullname: Goh
– start-page: 3785
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0260
  article-title: Column subset selection for active learning in image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.012
  contributor:
    fullname: Shen
– ident: 10.1016/j.eswa.2014.04.007_b0150
– volume: 15
  start-page: 201
  year: 1994
  ident: 10.1016/j.eswa.2014.04.007_b0050
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
  doi: 10.1007/BF00993277
  contributor:
    fullname: Cohn
– start-page: 150
  year: 1995
  ident: 10.1016/j.eswa.2014.04.007_b0065
  article-title: Committee-based sampling for training probabilistic classifiers
  contributor:
    fullname: Dagan
– volume: 30
  start-page: 985
  year: 2008
  ident: 10.1016/j.eswa.2014.04.007_b0165
  article-title: Real-time computerized annotation of pictures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2007.70847
  contributor:
    fullname: Li
– start-page: 183
  year: 2010
  ident: 10.1016/j.eswa.2014.04.007_b0045
  article-title: Variant methods of reduced set selection for reduced support vector machines
  publication-title: Journal of Information Science and Engineering
  contributor:
    fullname: Chien
– volume: 40
  start-page: 121
  year: 2014
  ident: 10.1016/j.eswa.2014.04.007_b0120
  article-title: A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.12.018
  contributor:
    fullname: Iwashita
– volume: 45
  start-page: 884
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0170
  article-title: Hybrid active learning for reducing the annotation effort of operators in classification systems
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.08.009
  contributor:
    fullname: Lughofer
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0135
  article-title: Scalable active learning for multi-class image classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  contributor:
    fullname: Joshi
– volume: 19
  start-page: 50
  year: 2009
  ident: 10.1016/j.eswa.2014.04.007_b0235
  article-title: Data clustering as an optimum-path forest problem with applications in image analysis
  publication-title: International Journal of Imaging Systems and Technology (IJIST)
  doi: 10.1002/ima.20191
  contributor:
    fullname: Rocha
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0275
  article-title: Label-specific training set construction from web resource for image annotation
  publication-title: Signal Processing
  contributor:
    fullname: Tang
– volume: Vol. 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.eswa.2014.04.007_b0185
  article-title: Some methods for classification and analysis of multivariate observations
  contributor:
    fullname: MacQueen
– start-page: 13
  year: 2010
  ident: 10.1016/j.eswa.2014.04.007_b0310
  article-title: A deep-learning model-based and data-driven hybrid architecture for image annotation
  contributor:
    fullname: Wang
– volume: 30
  start-page: 1933
  year: 2008
  ident: 10.1016/j.eswa.2014.04.007_b0315
  article-title: Automatic semantic annotation of real-world web images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2008.125
  contributor:
    fullname: Wong
– start-page: 343
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0340
  article-title: Bilinear deep learning for image classification
  contributor:
    fullname: Zhong
– start-page: 323
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0010
  article-title: Feature selection guided by perception in medical cbir systems
  contributor:
    fullname: Bugatti
– volume: 116
  start-page: 1047
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0015
  article-title: Brain tissue mr-image segmentation via optimum-path forest clustering
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2012.06.002
  contributor:
    fullname: Cappabianco
– ident: 10.1016/j.eswa.2014.04.007_b0190
  doi: 10.1145/1015330.1015385
– ident: 10.1016/j.eswa.2014.04.007_b0285
– ident: 10.1016/j.eswa.2014.04.007_b0300
– volume: 73
  start-page: 185
  year: 2008
  ident: 10.1016/j.eswa.2014.04.007_b0305
  article-title: Decision trees for hierarchical multi-label classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5077-3
  contributor:
    fullname: Vens
– start-page: 119
  year: 2003
  ident: 10.1016/j.eswa.2014.04.007_b0130
  article-title: Automatic image annotation and retrieval using cross-media relevance models
  contributor:
    fullname: Jeon
– ident: 10.1016/j.eswa.2014.04.007_b0220
– volume: 39
  start-page: 960
  year: 2009
  ident: 10.1016/j.eswa.2014.04.007_b0180
  article-title: Human-machine interaction issues in quality control based on online image classification
  publication-title: IEEE transactions on systems, man, and cybernetics, part A: Systems and humans
  doi: 10.1109/TSMCA.2009.2025025
  contributor:
    fullname: Lughofer
– volume: 41
  start-page: 2554
  year: 2008
  ident: 10.1016/j.eswa.2014.04.007_b0160
  article-title: Region-based image retrieval with high-level semantics using decision tree learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.12.003
  contributor:
    fullname: Liu
– start-page: 79
  year: 2004
  ident: 10.1016/j.eswa.2014.04.007_b0200
  article-title: Active learning using pre-clustering
  contributor:
    fullname: Nguyen
– volume: 4
  start-page: 129
  year: 1996
  ident: 10.1016/j.eswa.2014.04.007_b0055
  article-title: Active learning with statistical models
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.295
  contributor:
    fullname: Cohn
– ident: 10.1016/j.eswa.2014.04.007_b0265
  doi: 10.1109/ICME.2002.1035755
– volume: 44
  start-page: 2436
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0085
  article-title: Hierarchical annotation of medical images
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.03.026
  contributor:
    fullname: Dimitrovski
– start-page: 687
  year: 2006
  ident: 10.1016/j.eswa.2014.04.007_b0145
  article-title: Multi-class ensemble-based active learning
  contributor:
    fullname: Körner
– ident: 10.1016/j.eswa.2014.04.007_b0060
– volume: 88
  start-page: 169
  year: 2010
  ident: 10.1016/j.eswa.2014.04.007_b0140
  article-title: Gaussian Processes for Object Categorization
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0268-3
  contributor:
    fullname: Kapoor
– volume: 3
  start-page: 251
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0175
  article-title: Single-pass active learning with conflict and ignorance
  publication-title: Evolving Systems
  doi: 10.1007/s12530-012-9060-7
  contributor:
    fullname: Lughofer
– ident: 10.1016/j.eswa.2014.04.007_b0320
  doi: 10.1109/ICME.2006.262442
– volume: 2
  start-page: 45
  year: 2002
  ident: 10.1016/j.eswa.2014.04.007_b0295
  article-title: Support vector machine active learning with applications to text classification
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Tong
– ident: 10.1016/j.eswa.2014.04.007_b0020
  doi: 10.1145/1244002.1244189
– volume: 40
  start-page: 330
  year: 2007
  ident: 10.1016/j.eswa.2014.04.007_b0035
  article-title: Active learning for image retrieval with co-svm
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.06.005
  contributor:
    fullname: Cheng
– start-page: 73
  year: 2010
  ident: 10.1016/j.eswa.2014.04.007_b0070
  article-title: A new CBIR approach based on relevance feedback and optimum-path forest classification
  publication-title: Journal of WSCG
  contributor:
    fullname: da Silva
– ident: 10.1016/j.eswa.2014.04.007_b0230
– ident: 10.1016/j.eswa.2014.04.007_b0250
  doi: 10.1145/2480362.2480374
– ident: 10.1016/j.eswa.2014.04.007_b0205
  doi: 10.1145/2245276.2245318
– volume: 41
  start-page: 2250
  year: 2014
  ident: 10.1016/j.eswa.2014.04.007_b0240
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.023
  contributor:
    fullname: Rodrigues
– volume: 17
  start-page: 790
  year: 1995
  ident: 10.1016/j.eswa.2014.04.007_b0030
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/34.400568
  contributor:
    fullname: Cheng
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.04.007_b0005
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000006
  contributor:
    fullname: Bengio
– volume: 27
  start-page: 203
  year: 2006
  ident: 10.1016/j.eswa.2014.04.007_b0195
  article-title: Active learning with multiple views
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2005
  contributor:
    fullname: Muslea
– volume: 25
  start-page: 287
  year: 2004
  ident: 10.1016/j.eswa.2014.04.007_b0215
  article-title: Content-based image classification using a neural network
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2003.10.015
  contributor:
    fullname: Park
– volume: 40
  start-page: 728
  year: 2007
  ident: 10.1016/j.eswa.2014.04.007_b0225
  article-title: Incorporating multiple svms for automatic image annotation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.04.042
  contributor:
    fullname: Qi
– ident: 10.1016/j.eswa.2014.04.007_b0105
  doi: 10.1145/2063576.2063916
– volume: 44
  start-page: 2971
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0075
  article-title: Active learning paradigms for CBIR systems based on optimum-path forest classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.04.026
  contributor:
    fullname: da Silva
– volume: 2
  start-page: 14:1
  year: 2011
  ident: 10.1016/j.eswa.2014.04.007_b0270
  article-title: Image annotation by knn-sparse graph-based label propagation over noisily tagged web images
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  contributor:
    fullname: Tang
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.04.007_b0040
  article-title: Interactive tool for image annotation using a semi-supervised and hierarchical approach
  publication-title: Computer Standards & Interfaces
  contributor:
    fullname: Chiang
– ident: 10.1016/j.eswa.2014.04.007_b0125
  doi: 10.1109/CVPR.2009.5206651
SSID ssj0017007
Score 2.244185
Snippet •A novel active learning paradigm, called DROP, based on a priori data reduction and organization.•DROP does not require classification and reorganization of...
In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 6086
SubjectTerms Active learning
Applied sciences
Artificial intelligence
Classification
Computation
Computer science; control theory; systems
Data mining
Data processing. List processing. Character string processing
Data reduction
Exact sciences and technology
Expert systems
Image annotation
Information systems. Data bases
Iterative methods
Learning
Machine learning
Memory organisation. Data processing
Organizations
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Software
Strategy
Title An active learning paradigm based on a priori data reduction and organization
URI https://dx.doi.org/10.1016/j.eswa.2014.04.007
https://search.proquest.com/docview/1567109362
https://search.proquest.com/docview/1677935810
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXgTxLdZHWcGbpN08tzkWsVSlvWiht2WfEsG09IE3f7szeRSL6EHYS5IN2cxkZr4hs98QcuNS3xpmIs8ESkKCIp3XNUHqBU6HiJgDqTBRHI6SwTh6nMSTBrmr98JgWWXl-0ufXnjr6kynkmZnlmWdZwAHEA5hRIh5ik7DUcywi0H7c13mgfRzvOTb4x7OrjbOlDVedvGB3EN-1C5JtH8LTrszuQCRubLXxQ-3XcSi_gHZq0Ak7ZXrPCQNmx-R_bpBA63s9ZgMezmVhUOjVXeIV4pc3yZ7facYvwydwgw6m2fTeUaxWpTOkcsVtUVlDpe_bdU8IeP-_cvdwKv6J3g6TJOl5xs_1BoMzjhssGG5dN0o5gYggg2jWMYqlYoprQLtnOl2TeIrBwbqQsOYS214SrbyaW7PCAVQmCZpYDQoL4pDowzYrtZOIts-56xJbmvBiVlJkyHq-rE3gWIWKGbBYDDeJHEtW7GhbAF-_M_7WhuKWD8qANABb5Y0yXWtGQFmgv8-ZG6nq4WANBWrTiFc_zEn4bzgg2Pn_1zgBdnBI4xtfnxJtpbzlb0C0LJUreKrbJHt3sPTYPQFvZzsPg
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SDwriW6zPCN5k232neyxFqY_2Ygu9hTzLCm5LH3jztzuzD7GIPQg5bbJsdiYz84VMviHk1iae0a4OHe1LARsUYZ2W9hPHtypAxOwLiRvFXj_uDsOnUTTaIJ3qLgymVZa-v_DpubcunzRLaTanadp8BXAA4RBaiJgHKw1vhhGgX1jUjc_vPA_kn2MF4R5zcHh5c6ZI8jLzDyQf8sJGwaL9V3TamYo5yMwWxS5--e08GD3sk90SRdJ2MdEDsmGyQ7JXVWigpcEekV47oyL3aLQsDzGmSPat0_E7xQCm6QRG0OksncxSiumidIZkrqguKjLo_nFX85gMH-4Hna5TFlBwVJDEC8fTXqAUWJy2WGHDMGFbYcQ0YAQThJGIZCKkK5X0lbW61dKxJy1YqA2069rEBCeklk0yc0oooMIkTnytQHthFGipwXiVsgLp9hlz6-SuEhyfFjwZvEoge-MoZo5i5i40l9VJVMmWr2ibgyNf-97ViiK-P-UD6oA_i-vkptIMBzvBww-RmclyzmGfimmnEK_XjIkZywnh3LN_TvCabHUHvRf-8th_Pifb2IOBzosuSG0xW5pLQDALeZWv0C9Vhu3b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+learning+paradigm+based+on+a+priori+data+reduction+and+organization&rft.jtitle=Expert+systems+with+applications&rft.au=SAITO%2C+Priscila+T.+M&rft.au=DE+REZENDE%2C+Pedro+J&rft.au=FALCAO%2C+Alexandre+X&rft.au=SUZUKI%2C+Celso+T.+N&rft.date=2014-10-15&rft.pub=Elsevier&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=41&rft.issue=14&rft.spage=6086&rft.epage=6097&rft_id=info:doi/10.1016%2Fj.eswa.2014.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=28534576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon