Piezoelectric tube as resonant transducer for gas-phase photoacoustics
The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, re...
Saved in:
Published in | Analytica chimica acta Vol. 1147; pp. 165 - 169 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
22.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested.
[Display omitted]
•First time use of piezoelectric tube for gas detection in photoacoustic spectroscopy is reported.•The piezoelectric tube served the dual purpose of resonator tube and acoustic signal detector.•A detection limit of 83 ppbV was obtained for NO2 as model analyte using a blue laser diode. |
---|---|
AbstractList | The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO
as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO
. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r
) of 0.9998 up to the highest concentration of 15 ppmV tested. The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested.The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested. The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested. [Display omitted] •First time use of piezoelectric tube for gas detection in photoacoustic spectroscopy is reported.•The piezoelectric tube served the dual purpose of resonator tube and acoustic signal detector.•A detection limit of 83 ppbV was obtained for NO2 as model analyte using a blue laser diode. |
Author | Hauser, Peter C. Keeratirawee, Kanchalar |
Author_xml | – sequence: 1 givenname: Kanchalar surname: Keeratirawee fullname: Keeratirawee, Kanchalar organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland – sequence: 2 givenname: Peter C. surname: Hauser fullname: Hauser, Peter C. email: peter.hauser@unibas.ch organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33485575$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUtFV_gBfZo5et-dxd8SRiVRD0oOeQTmZtynZTk6ygv96U2ouHnoaB93mZeSZk1PseCTlndMooq66WUwNmyinPO5_SShyQMWtqUUrB5YiMKaWi5FVNj8kkxmVeOaPyiBwLIRulajUms1eHPx47hBQcFGmYY2FiETD63vSpSMH00Q6AoWh9KD5MLNcLE7FYL3zyBvwQk4N4Sg5b00U8-5sn5H12_3b3WD6_PDzd3T6XIK6rVDIjQIK13DLFpRKNQcEV1I2QQqFFbiuAuZxzVkvOGyWZBGVFK0VTKVm14oRcbnvXwX8OGJNeuQjYdabHfIrmsqG1YjXlOXrxFx3mK7R6HdzKhG-9-z0H6m0Ago8xYKvBJZOc7_PTrtOM6o1lvdTZst5Y1ozrbDmT7B-5K9_H3GwZzHq-HAYdwWEPaF3I8rX1bg_9C3L-k48 |
CitedBy_id | crossref_primary_10_1021_acs_analchem_1c04309 crossref_primary_10_1109_TIM_2021_3123249 crossref_primary_10_3390_atmos14040704 crossref_primary_10_1142_S0217984924503123 crossref_primary_10_3390_s22030936 crossref_primary_10_3390_s22041691 crossref_primary_10_1002_mop_32830 |
Cites_doi | 10.1016/S1010-6030(03)00061-3 10.5194/essd-5-365-2013 10.1080/05704928.2010.520178 10.1007/s10765-014-1715-0 10.1016/j.snb.2014.11.015 10.5541/ijot.5000155148 10.1063/1.2108147 10.1016/j.snb.2017.03.058 10.1006/jcht.1997.0331 10.1364/OE.19.00A725 10.1063/1.2173031 10.3390/s19030724 10.3390/s140406165 10.1016/j.snb.2010.09.007 10.1103/PhysRev.31.267 10.1016/j.ceramint.2018.09.055 10.1016/S0022-4073(97)00168-4 10.1016/j.snb.2017.09.039 10.1063/1.2778624 10.1016/j.sna.2017.03.024 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.aca.2020.12.063 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-4324 |
EndPage | 169 |
ExternalDocumentID | 33485575 10_1016_j_aca_2020_12_063 S000326702031271X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 MVM NHB R2- RIG SCB SEW SSH T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c396t-1a3c4cdd2d1524538ae325c783435ede2d6ccb4b21742285414c5d3f4386546f3 |
IEDL.DBID | .~1 |
ISSN | 0003-2670 1873-4324 |
IngestDate | Mon Jul 21 09:54:22 EDT 2025 Wed Feb 19 02:29:52 EST 2025 Tue Jul 01 01:11:57 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Fri Feb 23 02:48:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric tube Photoacoustic spectroscopy Nitrogen dioxide (NO2) Blue laser diode Nitrogen dioxide (NO) |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-1a3c4cdd2d1524538ae325c783435ede2d6ccb4b21742285414c5d3f4386546f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S000326702031271X |
PMID | 33485575 |
PQID | 2480751702 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2480751702 pubmed_primary_33485575 crossref_citationtrail_10_1016_j_aca_2020_12_063 crossref_primary_10_1016_j_aca_2020_12_063 elsevier_sciencedirect_doi_10_1016_j_aca_2020_12_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-22 |
PublicationDateYYYYMMDD | 2021-02-22 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Analytica chimica acta |
PublicationTitleAlternate | Anal Chim Acta |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Krout, Sohrab (bib25) 2016; 19 Keller-Rudek, Moortgat, Sander, Sörensen (bib27) 2013; 5 Vandaele, Hermans, Simon, Carleer, Colin, Fally, Mérienne, Jenouvrier, Coquart (bib6) 1998; 59 Zheng, Dong, Yin, Liu, Wu, Zhang, Ma, Yin, Jia (bib14) 2015; 208 Hodgkinson, Johnson, Dakin (bib3) 2005; 98 Chen, Bao, Wong, Cheng, Wu, Song, Ji, Wu (bib19) 2018; 44 Gomes, Trusler (bib26) 1998; 30 Rück, Bierl, Matysik (bib17) 2018; 255 Kapp, Weber, Schmitt, Pernau, Wollenstein (bib13) 2019; 19 Orphal (bib7) 2003; 157 Saarela, Sorvajarvi, Laurila, Toivonen (bib12) 2011; 19 Bozóki, Pogány, Szabó (bib5) 2011; 46 Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib15) 2017; 247 Horowitz, Hill (bib18) 2020 Santiago, González, Peuriot, González, Slezak (bib9) 2006; 77 Rück, Bierl, Matysik (bib16) 2017; 258 Kinsler, Frey, Coppens, Sanders (bib24) 2000 Rosencwaig (bib1) 1980 Upadhye, Agashe (bib20) 2017 Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib8) 2017; 247 Bernhardt, Santiago, Slezak, Peuriot, Gonzalez (bib11) 2010; 150 Hess (bib2) 1989 Patimisco, Scamarcio, Tittel, Spagnolo (bib4) 2014; 14 Starecki (bib21) 2014; 35 González, Santiago, Slezak, Peuriot (bib10) 2007; 78 Tipler (bib22) 1994 Anderson, Ostensen (bib23) 1928; 31 Hess (10.1016/j.aca.2020.12.063_bib2) 1989 Rück (10.1016/j.aca.2020.12.063_bib16) 2017; 258 Chen (10.1016/j.aca.2020.12.063_bib19) 2018; 44 Gomes (10.1016/j.aca.2020.12.063_bib26) 1998; 30 Saarela (10.1016/j.aca.2020.12.063_bib12) 2011; 19 Keller-Rudek (10.1016/j.aca.2020.12.063_bib27) 2013; 5 Starecki (10.1016/j.aca.2020.12.063_bib21) 2014; 35 Vandaele (10.1016/j.aca.2020.12.063_bib6) 1998; 59 Tipler (10.1016/j.aca.2020.12.063_bib22) 1994 Zheng (10.1016/j.aca.2020.12.063_bib14) 2015; 208 Horowitz (10.1016/j.aca.2020.12.063_bib18) 2020 Hodgkinson (10.1016/j.aca.2020.12.063_bib3) 2005; 98 Yin (10.1016/j.aca.2020.12.063_bib8) 2017; 247 Upadhye (10.1016/j.aca.2020.12.063_bib20) 2017 Bozóki (10.1016/j.aca.2020.12.063_bib5) 2011; 46 Yin (10.1016/j.aca.2020.12.063_bib15) 2017; 247 Kinsler (10.1016/j.aca.2020.12.063_bib24) 2000 Patimisco (10.1016/j.aca.2020.12.063_bib4) 2014; 14 Rück (10.1016/j.aca.2020.12.063_bib17) 2018; 255 Kapp (10.1016/j.aca.2020.12.063_bib13) 2019; 19 Anderson (10.1016/j.aca.2020.12.063_bib23) 1928; 31 Bernhardt (10.1016/j.aca.2020.12.063_bib11) 2010; 150 Rosencwaig (10.1016/j.aca.2020.12.063_bib1) 1980 González (10.1016/j.aca.2020.12.063_bib10) 2007; 78 Santiago (10.1016/j.aca.2020.12.063_bib9) 2006; 77 Orphal (10.1016/j.aca.2020.12.063_bib7) 2003; 157 Krout (10.1016/j.aca.2020.12.063_bib25) 2016; 19 |
References_xml | – volume: 98 start-page: 84908 year: 2005 ident: bib3 article-title: Quantitative analysis of a closed photoacoustic cell that uses a high compliance piezoelectric transducer publication-title: J. Appl. Phys. – volume: 30 start-page: 527 year: 1998 end-page: 534 ident: bib26 article-title: The speed of sound in nitrogen at temperatures between T = 250 K and T = 350 K and at pressures up to 30 MPa, publication-title: J. Chem. Thermodyn. – year: 1980 ident: bib1 article-title: Photoacoustics and Photoacoustic Spectroscopy – volume: 19 start-page: 1 year: 2019 end-page: 10 ident: bib13 article-title: Resonant photoacoustic spectroscopy of NO publication-title: Sensors – volume: 77 start-page: 23108 year: 2006 ident: bib9 article-title: Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO publication-title: Rev. Sci. Instrum. – volume: 247 start-page: 329 year: 2017 end-page: 335 ident: bib15 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens publication-title: Actuators B – volume: 35 start-page: 2124 year: 2014 end-page: 2139 ident: bib21 article-title: Analog front-end circuitry in piezoelectric and microphone detection of photoacoustic signals publication-title: Int. J. Thermophys. – volume: 208 start-page: 173 year: 2015 end-page: 179 ident: bib14 article-title: Ppb-level QEPAS NO publication-title: Sens. Actuators, B – volume: 14 start-page: 6165 year: 2014 end-page: 6206 ident: bib4 article-title: Quartz-enhanced photoacoustic spectroscopy: a review, publication-title: Sensors – volume: 19 start-page: 29 year: 2016 end-page: 34 ident: bib25 article-title: On the speed of sound publication-title: Int. J. Therm. – volume: 255 start-page: 2462 year: 2018 end-page: 2471 ident: bib17 article-title: NO publication-title: Sens. Actuators, B – volume: 44 start-page: 22725 year: 2018 end-page: 22730 ident: bib19 article-title: PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application publication-title: Ceram. Int. – volume: 157 start-page: 185 year: 2003 end-page: 209 ident: bib7 article-title: A critical review of the absorption cross-sections of O publication-title: J. Photochem. Photobiol. Chem. – year: 2020 ident: bib18 article-title: The Art of Electronics: the X-Chapters – year: 1994 ident: bib22 article-title: Physik – volume: 59 start-page: 171 year: 1998 end-page: 184 ident: bib6 article-title: Measurements of the NO publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 150 start-page: 513 year: 2010 end-page: 516 ident: bib11 article-title: Differential, LED-excited, resonant NO publication-title: Sens. Actuators, B – year: 2000 ident: bib24 article-title: Fundamentals of Acoustics – start-page: 12125 year: 2017 ident: bib20 article-title: Effect of temperature and pressure on the thickness mode resonant spectra of piezoelectric ceramic publication-title: Iop. Conf. Ser-Mat. Sci – year: 1989 ident: bib2 article-title: Principles of Photoacoustic and Photothermal Analysis, Springer – volume: 46 start-page: 1 year: 2011 end-page: 37 ident: bib5 article-title: Photoacoustic instruments for practical applications: present, potentials, and future challenges publication-title: Appl. Spectrosc. Rev. – volume: 247 start-page: 329 year: 2017 end-page: 335 ident: bib8 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens publication-title: Actuators B – volume: 78 start-page: 84903 year: 2007 ident: bib10 article-title: Novel optical method for background reduction in resonant photoacoustics publication-title: Rev. Sci. Instrum. – volume: 5 start-page: 365 year: 2013 end-page: 373 ident: bib27 article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest, publication-title: Earth Syst. Sci. Data – volume: 19 start-page: A725 year: 2011 end-page: A732 ident: bib12 article-title: Phase-sensitive method for background-compensated photoacoustic detection of NO publication-title: Optic Express – volume: 258 start-page: 193 year: 2017 end-page: 200 ident: bib16 article-title: Development and characterization of a laboratory setup for photoacoustic NO publication-title: Actuators – volume: 31 start-page: 267 year: 1928 end-page: 274 ident: bib23 article-title: Effect of frequency on the end correction of pipes publication-title: Phys. Rev. – volume: 157 start-page: 185 year: 2003 ident: 10.1016/j.aca.2020.12.063_bib7 article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible, publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/S1010-6030(03)00061-3 – volume: 5 start-page: 365 year: 2013 ident: 10.1016/j.aca.2020.12.063_bib27 article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest, publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-5-365-2013 – volume: 46 start-page: 1 year: 2011 ident: 10.1016/j.aca.2020.12.063_bib5 article-title: Photoacoustic instruments for practical applications: present, potentials, and future challenges publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2010.520178 – volume: 35 start-page: 2124 year: 2014 ident: 10.1016/j.aca.2020.12.063_bib21 article-title: Analog front-end circuitry in piezoelectric and microphone detection of photoacoustic signals publication-title: Int. J. Thermophys. doi: 10.1007/s10765-014-1715-0 – volume: 208 start-page: 173 year: 2015 ident: 10.1016/j.aca.2020.12.063_bib14 article-title: Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.11.015 – volume: 19 start-page: 29 year: 2016 ident: 10.1016/j.aca.2020.12.063_bib25 article-title: On the speed of sound publication-title: Int. J. Therm. doi: 10.5541/ijot.5000155148 – volume: 98 start-page: 84908 year: 2005 ident: 10.1016/j.aca.2020.12.063_bib3 article-title: Quantitative analysis of a closed photoacoustic cell that uses a high compliance piezoelectric transducer publication-title: J. Appl. Phys. doi: 10.1063/1.2108147 – year: 2000 ident: 10.1016/j.aca.2020.12.063_bib24 – volume: 247 start-page: 329 year: 2017 ident: 10.1016/j.aca.2020.12.063_bib15 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens publication-title: Actuators B doi: 10.1016/j.snb.2017.03.058 – volume: 30 start-page: 527 year: 1998 ident: 10.1016/j.aca.2020.12.063_bib26 article-title: The speed of sound in nitrogen at temperatures between T = 250 K and T = 350 K and at pressures up to 30 MPa, publication-title: J. Chem. Thermodyn. doi: 10.1006/jcht.1997.0331 – volume: 247 start-page: 329 year: 2017 ident: 10.1016/j.aca.2020.12.063_bib8 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens publication-title: Actuators B doi: 10.1016/j.snb.2017.03.058 – year: 1989 ident: 10.1016/j.aca.2020.12.063_bib2 – volume: 19 start-page: A725 year: 2011 ident: 10.1016/j.aca.2020.12.063_bib12 article-title: Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs publication-title: Optic Express doi: 10.1364/OE.19.00A725 – volume: 77 start-page: 23108 year: 2006 ident: 10.1016/j.aca.2020.12.063_bib9 article-title: Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2173031 – year: 1994 ident: 10.1016/j.aca.2020.12.063_bib22 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.aca.2020.12.063_bib13 article-title: Resonant photoacoustic spectroscopy of NO2 with a UV-LED based sensor publication-title: Sensors doi: 10.3390/s19030724 – start-page: 12125 year: 2017 ident: 10.1016/j.aca.2020.12.063_bib20 article-title: Effect of temperature and pressure on the thickness mode resonant spectra of piezoelectric ceramic publication-title: Iop. Conf. Ser-Mat. Sci – volume: 14 start-page: 6165 year: 2014 ident: 10.1016/j.aca.2020.12.063_bib4 article-title: Quartz-enhanced photoacoustic spectroscopy: a review, publication-title: Sensors doi: 10.3390/s140406165 – volume: 150 start-page: 513 year: 2010 ident: 10.1016/j.aca.2020.12.063_bib11 article-title: Differential, LED-excited, resonant NO2 photoacoustic system publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2010.09.007 – year: 1980 ident: 10.1016/j.aca.2020.12.063_bib1 – volume: 31 start-page: 267 year: 1928 ident: 10.1016/j.aca.2020.12.063_bib23 article-title: Effect of frequency on the end correction of pipes publication-title: Phys. Rev. doi: 10.1103/PhysRev.31.267 – year: 2020 ident: 10.1016/j.aca.2020.12.063_bib18 – volume: 44 start-page: 22725 year: 2018 ident: 10.1016/j.aca.2020.12.063_bib19 article-title: PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.09.055 – volume: 59 start-page: 171 year: 1998 ident: 10.1016/j.aca.2020.12.063_bib6 article-title: Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/S0022-4073(97)00168-4 – volume: 255 start-page: 2462 year: 2018 ident: 10.1016/j.aca.2020.12.063_bib17 article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.09.039 – volume: 78 start-page: 84903 year: 2007 ident: 10.1016/j.aca.2020.12.063_bib10 article-title: Novel optical method for background reduction in resonant photoacoustics publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2778624 – volume: 258 start-page: 193 year: 2017 ident: 10.1016/j.aca.2020.12.063_bib16 article-title: Development and characterization of a laboratory setup for photoacoustic NO2 determination based on the excitation of electronic B-2(2) and B-2(1) states using a low-cost semiconductor laser, Sens publication-title: Actuators doi: 10.1016/j.sna.2017.03.024 |
SSID | ssj0002104 |
Score | 2.3944902 |
Snippet | The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate... The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO as a model analyte is demonstrated. The tube is made from lead zirconate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | Blue laser diode Nitrogen dioxide (NO2) Photoacoustic spectroscopy Piezoelectric tube |
Title | Piezoelectric tube as resonant transducer for gas-phase photoacoustics |
URI | https://dx.doi.org/10.1016/j.aca.2020.12.063 https://www.ncbi.nlm.nih.gov/pubmed/33485575 https://www.proquest.com/docview/2480751702 |
Volume | 1147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KPehF3K1LGcGTEJtMJmlzLMVSFYsHC70Ns8VGpAltevHgb_e9LBUP7cFjQoYM3zzeMvO--Qi51VxLKaEs8XgcOTwwsdOLoXCF2CpVL4bnYiv7ZRyOJvxpGkwbZFBzYbCtsvL9pU8vvHX1plOh2cmSBDm-LuQeXTxK81jXmyKDnXfRyu-_f9s8oKThtWoefl2fbBY9XlLj1UPMLXYEQ39TbNqUexYxaHhA9qvkkfbL-R2Shp0fkd1Brdl2TIavif1KS2mbRNN8pSyVSwoldYoNLzTHyGRgNRcUklX6LpdONoM4RrNZmqfgHAttr-UJmQwf3gYjp1JKcLQfhbnjSR9AN4YZCMccfJi0Pgs0imj4gTWWmVBrxRXWHww5kx7XgfFjjoqfPIz9U9Kcp3N7TihTPLIQ12PPjbnqaqUgw4ug7EDKqWFRi7g1RkJX14ijmsWnqPvFPgTAKhBW4TEBsLbI3XpIVt6hse1jXgMv_hiCAB-_bdhNvUgCMMdTDzm3gJpgSJoPPLCTFjkrV289C6QhB5CwXvzvp5dkj2GLCzLc2RVp5ouVvYYcJVftwgjbZKf_-Dwa_wCWHeNG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWBBvClPI8GCFGgcJyUDAwKq8hQDSN2MX4Ei1FQ0FYKBP8Uf5C4PEAMMSIyJ4sT6fPF9Z9_5A9g0wiilMCzxRRJ7IrSJt5dg4Iq-Vem9BK_zpeyLy6h9I047YWcE3qtaGEqrLOf-Yk7PZ-vyzm6J5m6_26Ua3wZyjyZtpfm86XfKzMoz9_KMcdtg_-QIB3mL89bx9WHbK6UFPBPEUeb5KsBeWsst-i-BP71yAQ8NqU4EobOO28gYLTQRdk5Fhr4woQ0SQRKZIkoCfO8ojFFLkk3YefvKK8EYSlQyfdS9ais1TypThs464o18CTIKfnKGP5Hd3Om1pmCyZKvsoABkGkZcbwbGDyuRuFloXXXda1po6XQNy4baMTVgGMOnlGHDMnKFFs3niSE7Zndq4PXv0XGy_n2apTgb52Jigzm4-Rf85qHWS3tuERjXInZIJBK_kQjdNFojpYwxzqEaV8vjOjQqjKQpzy0n-YxHWSWoPUiEVRKs0ucSYa3D9meTfnFox28Piwp4-c3yJDqV35ptVIMkEXPaZlE9h6hJTlX6oY-GWYeFYvQ-e0F1zyEy5KW_fXQdxtvXF-fy_OTybBkmOOXXUHk9X4Fa9jR0q0iQMr2WGySD2__-Az4AE0Edjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+tube+as+resonant+transducer+for+gas-phase+photoacoustics&rft.jtitle=Analytica+chimica+acta&rft.au=Keeratirawee%2C+Kanchalar&rft.au=Hauser%2C+Peter+C&rft.date=2021-02-22&rft.eissn=1873-4324&rft.volume=1147&rft.spage=165&rft_id=info:doi/10.1016%2Fj.aca.2020.12.063&rft_id=info%3Apmid%2F33485575&rft.externalDocID=33485575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |