Piezoelectric tube as resonant transducer for gas-phase photoacoustics

The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, re...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 1147; pp. 165 - 169
Main Authors Keeratirawee, Kanchalar, Hauser, Peter C.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 22.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested. [Display omitted] •First time use of piezoelectric tube for gas detection in photoacoustic spectroscopy is reported.•The piezoelectric tube served the dual purpose of resonator tube and acoustic signal detector.•A detection limit of 83 ppbV was obtained for NO2 as model analyte using a blue laser diode.
AbstractList The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO . The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r ) of 0.9998 up to the highest concentration of 15 ppmV tested.
The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested.The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested.
The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate titanate with 30 mm length and 5.35 mm internal diameter. Its inner and outer surfaces are coated with electrodes. The tube serves as both, resonance body and transducer. The design is thus simpler than the usual combination of resonance tube and microphone as the two functions are embodied in the same component. The main resonance frequency of the tube was found to be 5341 Hz. A blue laser diode emitting at 450 nm was employed as light source for the determination of NO2. The limit of detection was determined as 83 ppbV and the calibration curve was linear with a coefficient of determination (r2) of 0.9998 up to the highest concentration of 15 ppmV tested. [Display omitted] •First time use of piezoelectric tube for gas detection in photoacoustic spectroscopy is reported.•The piezoelectric tube served the dual purpose of resonator tube and acoustic signal detector.•A detection limit of 83 ppbV was obtained for NO2 as model analyte using a blue laser diode.
Author Hauser, Peter C.
Keeratirawee, Kanchalar
Author_xml – sequence: 1
  givenname: Kanchalar
  surname: Keeratirawee
  fullname: Keeratirawee, Kanchalar
  organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
– sequence: 2
  givenname: Peter C.
  surname: Hauser
  fullname: Hauser, Peter C.
  email: peter.hauser@unibas.ch
  organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33485575$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUtFV_gBfZo5et-dxd8SRiVRD0oOeQTmZtynZTk6ygv96U2ouHnoaB93mZeSZk1PseCTlndMooq66WUwNmyinPO5_SShyQMWtqUUrB5YiMKaWi5FVNj8kkxmVeOaPyiBwLIRulajUms1eHPx47hBQcFGmYY2FiETD63vSpSMH00Q6AoWh9KD5MLNcLE7FYL3zyBvwQk4N4Sg5b00U8-5sn5H12_3b3WD6_PDzd3T6XIK6rVDIjQIK13DLFpRKNQcEV1I2QQqFFbiuAuZxzVkvOGyWZBGVFK0VTKVm14oRcbnvXwX8OGJNeuQjYdabHfIrmsqG1YjXlOXrxFx3mK7R6HdzKhG-9-z0H6m0Ago8xYKvBJZOc7_PTrtOM6o1lvdTZst5Y1ozrbDmT7B-5K9_H3GwZzHq-HAYdwWEPaF3I8rX1bg_9C3L-k48
CitedBy_id crossref_primary_10_1021_acs_analchem_1c04309
crossref_primary_10_1109_TIM_2021_3123249
crossref_primary_10_3390_atmos14040704
crossref_primary_10_1142_S0217984924503123
crossref_primary_10_3390_s22030936
crossref_primary_10_3390_s22041691
crossref_primary_10_1002_mop_32830
Cites_doi 10.1016/S1010-6030(03)00061-3
10.5194/essd-5-365-2013
10.1080/05704928.2010.520178
10.1007/s10765-014-1715-0
10.1016/j.snb.2014.11.015
10.5541/ijot.5000155148
10.1063/1.2108147
10.1016/j.snb.2017.03.058
10.1006/jcht.1997.0331
10.1364/OE.19.00A725
10.1063/1.2173031
10.3390/s19030724
10.3390/s140406165
10.1016/j.snb.2010.09.007
10.1103/PhysRev.31.267
10.1016/j.ceramint.2018.09.055
10.1016/S0022-4073(97)00168-4
10.1016/j.snb.2017.09.039
10.1063/1.2778624
10.1016/j.sna.2017.03.024
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.aca.2020.12.063
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 169
ExternalDocumentID 33485575
10_1016_j_aca_2020_12_063
S000326702031271X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
RIG
SCB
SEW
SSH
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c396t-1a3c4cdd2d1524538ae325c783435ede2d6ccb4b21742285414c5d3f4386546f3
IEDL.DBID .~1
ISSN 0003-2670
1873-4324
IngestDate Mon Jul 21 09:54:22 EDT 2025
Wed Feb 19 02:29:52 EST 2025
Tue Jul 01 01:11:57 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Fri Feb 23 02:48:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric tube
Photoacoustic spectroscopy
Nitrogen dioxide (NO2)
Blue laser diode
Nitrogen dioxide (NO)
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-1a3c4cdd2d1524538ae325c783435ede2d6ccb4b21742285414c5d3f4386546f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S000326702031271X
PMID 33485575
PQID 2480751702
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2480751702
pubmed_primary_33485575
crossref_citationtrail_10_1016_j_aca_2020_12_063
crossref_primary_10_1016_j_aca_2020_12_063
elsevier_sciencedirect_doi_10_1016_j_aca_2020_12_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-22
PublicationDateYYYYMMDD 2021-02-22
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-22
  day: 22
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krout, Sohrab (bib25) 2016; 19
Keller-Rudek, Moortgat, Sander, Sörensen (bib27) 2013; 5
Vandaele, Hermans, Simon, Carleer, Colin, Fally, Mérienne, Jenouvrier, Coquart (bib6) 1998; 59
Zheng, Dong, Yin, Liu, Wu, Zhang, Ma, Yin, Jia (bib14) 2015; 208
Hodgkinson, Johnson, Dakin (bib3) 2005; 98
Chen, Bao, Wong, Cheng, Wu, Song, Ji, Wu (bib19) 2018; 44
Gomes, Trusler (bib26) 1998; 30
Rück, Bierl, Matysik (bib17) 2018; 255
Kapp, Weber, Schmitt, Pernau, Wollenstein (bib13) 2019; 19
Orphal (bib7) 2003; 157
Saarela, Sorvajarvi, Laurila, Toivonen (bib12) 2011; 19
Bozóki, Pogány, Szabó (bib5) 2011; 46
Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib15) 2017; 247
Horowitz, Hill (bib18) 2020
Santiago, González, Peuriot, González, Slezak (bib9) 2006; 77
Rück, Bierl, Matysik (bib16) 2017; 258
Kinsler, Frey, Coppens, Sanders (bib24) 2000
Rosencwaig (bib1) 1980
Upadhye, Agashe (bib20) 2017
Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib8) 2017; 247
Bernhardt, Santiago, Slezak, Peuriot, Gonzalez (bib11) 2010; 150
Hess (bib2) 1989
Patimisco, Scamarcio, Tittel, Spagnolo (bib4) 2014; 14
Starecki (bib21) 2014; 35
González, Santiago, Slezak, Peuriot (bib10) 2007; 78
Tipler (bib22) 1994
Anderson, Ostensen (bib23) 1928; 31
Hess (10.1016/j.aca.2020.12.063_bib2) 1989
Rück (10.1016/j.aca.2020.12.063_bib16) 2017; 258
Chen (10.1016/j.aca.2020.12.063_bib19) 2018; 44
Gomes (10.1016/j.aca.2020.12.063_bib26) 1998; 30
Saarela (10.1016/j.aca.2020.12.063_bib12) 2011; 19
Keller-Rudek (10.1016/j.aca.2020.12.063_bib27) 2013; 5
Starecki (10.1016/j.aca.2020.12.063_bib21) 2014; 35
Vandaele (10.1016/j.aca.2020.12.063_bib6) 1998; 59
Tipler (10.1016/j.aca.2020.12.063_bib22) 1994
Zheng (10.1016/j.aca.2020.12.063_bib14) 2015; 208
Horowitz (10.1016/j.aca.2020.12.063_bib18) 2020
Hodgkinson (10.1016/j.aca.2020.12.063_bib3) 2005; 98
Yin (10.1016/j.aca.2020.12.063_bib8) 2017; 247
Upadhye (10.1016/j.aca.2020.12.063_bib20) 2017
Bozóki (10.1016/j.aca.2020.12.063_bib5) 2011; 46
Yin (10.1016/j.aca.2020.12.063_bib15) 2017; 247
Kinsler (10.1016/j.aca.2020.12.063_bib24) 2000
Patimisco (10.1016/j.aca.2020.12.063_bib4) 2014; 14
Rück (10.1016/j.aca.2020.12.063_bib17) 2018; 255
Kapp (10.1016/j.aca.2020.12.063_bib13) 2019; 19
Anderson (10.1016/j.aca.2020.12.063_bib23) 1928; 31
Bernhardt (10.1016/j.aca.2020.12.063_bib11) 2010; 150
Rosencwaig (10.1016/j.aca.2020.12.063_bib1) 1980
González (10.1016/j.aca.2020.12.063_bib10) 2007; 78
Santiago (10.1016/j.aca.2020.12.063_bib9) 2006; 77
Orphal (10.1016/j.aca.2020.12.063_bib7) 2003; 157
Krout (10.1016/j.aca.2020.12.063_bib25) 2016; 19
References_xml – volume: 98
  start-page: 84908
  year: 2005
  ident: bib3
  article-title: Quantitative analysis of a closed photoacoustic cell that uses a high compliance piezoelectric transducer
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 527
  year: 1998
  end-page: 534
  ident: bib26
  article-title: The speed of sound in nitrogen at temperatures between T = 250 K and T = 350 K and at pressures up to 30 MPa,
  publication-title: J. Chem. Thermodyn.
– year: 1980
  ident: bib1
  article-title: Photoacoustics and Photoacoustic Spectroscopy
– volume: 19
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib13
  article-title: Resonant photoacoustic spectroscopy of NO
  publication-title: Sensors
– volume: 77
  start-page: 23108
  year: 2006
  ident: bib9
  article-title: Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO
  publication-title: Rev. Sci. Instrum.
– volume: 247
  start-page: 329
  year: 2017
  end-page: 335
  ident: bib15
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens
  publication-title: Actuators B
– volume: 35
  start-page: 2124
  year: 2014
  end-page: 2139
  ident: bib21
  article-title: Analog front-end circuitry in piezoelectric and microphone detection of photoacoustic signals
  publication-title: Int. J. Thermophys.
– volume: 208
  start-page: 173
  year: 2015
  end-page: 179
  ident: bib14
  article-title: Ppb-level QEPAS NO
  publication-title: Sens. Actuators, B
– volume: 14
  start-page: 6165
  year: 2014
  end-page: 6206
  ident: bib4
  article-title: Quartz-enhanced photoacoustic spectroscopy: a review,
  publication-title: Sensors
– volume: 19
  start-page: 29
  year: 2016
  end-page: 34
  ident: bib25
  article-title: On the speed of sound
  publication-title: Int. J. Therm.
– volume: 255
  start-page: 2462
  year: 2018
  end-page: 2471
  ident: bib17
  article-title: NO
  publication-title: Sens. Actuators, B
– volume: 44
  start-page: 22725
  year: 2018
  end-page: 22730
  ident: bib19
  article-title: PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application
  publication-title: Ceram. Int.
– volume: 157
  start-page: 185
  year: 2003
  end-page: 209
  ident: bib7
  article-title: A critical review of the absorption cross-sections of O
  publication-title: J. Photochem. Photobiol. Chem.
– year: 2020
  ident: bib18
  article-title: The Art of Electronics: the X-Chapters
– year: 1994
  ident: bib22
  article-title: Physik
– volume: 59
  start-page: 171
  year: 1998
  end-page: 184
  ident: bib6
  article-title: Measurements of the NO
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 150
  start-page: 513
  year: 2010
  end-page: 516
  ident: bib11
  article-title: Differential, LED-excited, resonant NO
  publication-title: Sens. Actuators, B
– year: 2000
  ident: bib24
  article-title: Fundamentals of Acoustics
– start-page: 12125
  year: 2017
  ident: bib20
  article-title: Effect of temperature and pressure on the thickness mode resonant spectra of piezoelectric ceramic
  publication-title: Iop. Conf. Ser-Mat. Sci
– year: 1989
  ident: bib2
  article-title: Principles of Photoacoustic and Photothermal Analysis, Springer
– volume: 46
  start-page: 1
  year: 2011
  end-page: 37
  ident: bib5
  article-title: Photoacoustic instruments for practical applications: present, potentials, and future challenges
  publication-title: Appl. Spectrosc. Rev.
– volume: 247
  start-page: 329
  year: 2017
  end-page: 335
  ident: bib8
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens
  publication-title: Actuators B
– volume: 78
  start-page: 84903
  year: 2007
  ident: bib10
  article-title: Novel optical method for background reduction in resonant photoacoustics
  publication-title: Rev. Sci. Instrum.
– volume: 5
  start-page: 365
  year: 2013
  end-page: 373
  ident: bib27
  article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,
  publication-title: Earth Syst. Sci. Data
– volume: 19
  start-page: A725
  year: 2011
  end-page: A732
  ident: bib12
  article-title: Phase-sensitive method for background-compensated photoacoustic detection of NO
  publication-title: Optic Express
– volume: 258
  start-page: 193
  year: 2017
  end-page: 200
  ident: bib16
  article-title: Development and characterization of a laboratory setup for photoacoustic NO
  publication-title: Actuators
– volume: 31
  start-page: 267
  year: 1928
  end-page: 274
  ident: bib23
  article-title: Effect of frequency on the end correction of pipes
  publication-title: Phys. Rev.
– volume: 157
  start-page: 185
  year: 2003
  ident: 10.1016/j.aca.2020.12.063_bib7
  article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible,
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/S1010-6030(03)00061-3
– volume: 5
  start-page: 365
  year: 2013
  ident: 10.1016/j.aca.2020.12.063_bib27
  article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-5-365-2013
– volume: 46
  start-page: 1
  year: 2011
  ident: 10.1016/j.aca.2020.12.063_bib5
  article-title: Photoacoustic instruments for practical applications: present, potentials, and future challenges
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2010.520178
– volume: 35
  start-page: 2124
  year: 2014
  ident: 10.1016/j.aca.2020.12.063_bib21
  article-title: Analog front-end circuitry in piezoelectric and microphone detection of photoacoustic signals
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-014-1715-0
– volume: 208
  start-page: 173
  year: 2015
  ident: 10.1016/j.aca.2020.12.063_bib14
  article-title: Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.11.015
– volume: 19
  start-page: 29
  year: 2016
  ident: 10.1016/j.aca.2020.12.063_bib25
  article-title: On the speed of sound
  publication-title: Int. J. Therm.
  doi: 10.5541/ijot.5000155148
– volume: 98
  start-page: 84908
  year: 2005
  ident: 10.1016/j.aca.2020.12.063_bib3
  article-title: Quantitative analysis of a closed photoacoustic cell that uses a high compliance piezoelectric transducer
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2108147
– year: 2000
  ident: 10.1016/j.aca.2020.12.063_bib24
– volume: 247
  start-page: 329
  year: 2017
  ident: 10.1016/j.aca.2020.12.063_bib15
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens
  publication-title: Actuators B
  doi: 10.1016/j.snb.2017.03.058
– volume: 30
  start-page: 527
  year: 1998
  ident: 10.1016/j.aca.2020.12.063_bib26
  article-title: The speed of sound in nitrogen at temperatures between T = 250 K and T = 350 K and at pressures up to 30 MPa,
  publication-title: J. Chem. Thermodyn.
  doi: 10.1006/jcht.1997.0331
– volume: 247
  start-page: 329
  year: 2017
  ident: 10.1016/j.aca.2020.12.063_bib8
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens
  publication-title: Actuators B
  doi: 10.1016/j.snb.2017.03.058
– year: 1989
  ident: 10.1016/j.aca.2020.12.063_bib2
– volume: 19
  start-page: A725
  year: 2011
  ident: 10.1016/j.aca.2020.12.063_bib12
  article-title: Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs
  publication-title: Optic Express
  doi: 10.1364/OE.19.00A725
– volume: 77
  start-page: 23108
  year: 2006
  ident: 10.1016/j.aca.2020.12.063_bib9
  article-title: Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2173031
– year: 1994
  ident: 10.1016/j.aca.2020.12.063_bib22
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.aca.2020.12.063_bib13
  article-title: Resonant photoacoustic spectroscopy of NO2 with a UV-LED based sensor
  publication-title: Sensors
  doi: 10.3390/s19030724
– start-page: 12125
  year: 2017
  ident: 10.1016/j.aca.2020.12.063_bib20
  article-title: Effect of temperature and pressure on the thickness mode resonant spectra of piezoelectric ceramic
  publication-title: Iop. Conf. Ser-Mat. Sci
– volume: 14
  start-page: 6165
  year: 2014
  ident: 10.1016/j.aca.2020.12.063_bib4
  article-title: Quartz-enhanced photoacoustic spectroscopy: a review,
  publication-title: Sensors
  doi: 10.3390/s140406165
– volume: 150
  start-page: 513
  year: 2010
  ident: 10.1016/j.aca.2020.12.063_bib11
  article-title: Differential, LED-excited, resonant NO2 photoacoustic system
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2010.09.007
– year: 1980
  ident: 10.1016/j.aca.2020.12.063_bib1
– volume: 31
  start-page: 267
  year: 1928
  ident: 10.1016/j.aca.2020.12.063_bib23
  article-title: Effect of frequency on the end correction of pipes
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.31.267
– year: 2020
  ident: 10.1016/j.aca.2020.12.063_bib18
– volume: 44
  start-page: 22725
  year: 2018
  ident: 10.1016/j.aca.2020.12.063_bib19
  article-title: PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.09.055
– volume: 59
  start-page: 171
  year: 1998
  ident: 10.1016/j.aca.2020.12.063_bib6
  article-title: Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/S0022-4073(97)00168-4
– volume: 255
  start-page: 2462
  year: 2018
  ident: 10.1016/j.aca.2020.12.063_bib17
  article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.09.039
– volume: 78
  start-page: 84903
  year: 2007
  ident: 10.1016/j.aca.2020.12.063_bib10
  article-title: Novel optical method for background reduction in resonant photoacoustics
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2778624
– volume: 258
  start-page: 193
  year: 2017
  ident: 10.1016/j.aca.2020.12.063_bib16
  article-title: Development and characterization of a laboratory setup for photoacoustic NO2 determination based on the excitation of electronic B-2(2) and B-2(1) states using a low-cost semiconductor laser, Sens
  publication-title: Actuators
  doi: 10.1016/j.sna.2017.03.024
SSID ssj0002104
Score 2.3944902
Snippet The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO2 as a model analyte is demonstrated. The tube is made from lead zirconate...
The use of a piezoelectric tube for the photoacoustic gas-phase determination of NO as a model analyte is demonstrated. The tube is made from lead zirconate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Blue laser diode
Nitrogen dioxide (NO2)
Photoacoustic spectroscopy
Piezoelectric tube
Title Piezoelectric tube as resonant transducer for gas-phase photoacoustics
URI https://dx.doi.org/10.1016/j.aca.2020.12.063
https://www.ncbi.nlm.nih.gov/pubmed/33485575
https://www.proquest.com/docview/2480751702
Volume 1147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KPehF3K1LGcGTEJtMJmlzLMVSFYsHC70Ns8VGpAltevHgb_e9LBUP7cFjQoYM3zzeMvO--Qi51VxLKaEs8XgcOTwwsdOLoXCF2CpVL4bnYiv7ZRyOJvxpGkwbZFBzYbCtsvL9pU8vvHX1plOh2cmSBDm-LuQeXTxK81jXmyKDnXfRyu-_f9s8oKThtWoefl2fbBY9XlLj1UPMLXYEQ39TbNqUexYxaHhA9qvkkfbL-R2Shp0fkd1Brdl2TIavif1KS2mbRNN8pSyVSwoldYoNLzTHyGRgNRcUklX6LpdONoM4RrNZmqfgHAttr-UJmQwf3gYjp1JKcLQfhbnjSR9AN4YZCMccfJi0Pgs0imj4gTWWmVBrxRXWHww5kx7XgfFjjoqfPIz9U9Kcp3N7TihTPLIQ12PPjbnqaqUgw4ug7EDKqWFRi7g1RkJX14ijmsWnqPvFPgTAKhBW4TEBsLbI3XpIVt6hse1jXgMv_hiCAB-_bdhNvUgCMMdTDzm3gJpgSJoPPLCTFjkrV289C6QhB5CwXvzvp5dkj2GLCzLc2RVp5ouVvYYcJVftwgjbZKf_-Dwa_wCWHeNG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWBBvClPI8GCFGgcJyUDAwKq8hQDSN2MX4Ei1FQ0FYKBP8Uf5C4PEAMMSIyJ4sT6fPF9Z9_5A9g0wiilMCzxRRJ7IrSJt5dg4Iq-Vem9BK_zpeyLy6h9I047YWcE3qtaGEqrLOf-Yk7PZ-vyzm6J5m6_26Ua3wZyjyZtpfm86XfKzMoz9_KMcdtg_-QIB3mL89bx9WHbK6UFPBPEUeb5KsBeWsst-i-BP71yAQ8NqU4EobOO28gYLTQRdk5Fhr4woQ0SQRKZIkoCfO8ojFFLkk3YefvKK8EYSlQyfdS9ais1TypThs464o18CTIKfnKGP5Hd3Om1pmCyZKvsoABkGkZcbwbGDyuRuFloXXXda1po6XQNy4baMTVgGMOnlGHDMnKFFs3niSE7Zndq4PXv0XGy_n2apTgb52Jigzm4-Rf85qHWS3tuERjXInZIJBK_kQjdNFojpYwxzqEaV8vjOjQqjKQpzy0n-YxHWSWoPUiEVRKs0ucSYa3D9meTfnFox28Piwp4-c3yJDqV35ptVIMkEXPaZlE9h6hJTlX6oY-GWYeFYvQ-e0F1zyEy5KW_fXQdxtvXF-fy_OTybBkmOOXXUHk9X4Fa9jR0q0iQMr2WGySD2__-Az4AE0Edjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+tube+as+resonant+transducer+for+gas-phase+photoacoustics&rft.jtitle=Analytica+chimica+acta&rft.au=Keeratirawee%2C+Kanchalar&rft.au=Hauser%2C+Peter+C&rft.date=2021-02-22&rft.eissn=1873-4324&rft.volume=1147&rft.spage=165&rft_id=info:doi/10.1016%2Fj.aca.2020.12.063&rft_id=info%3Apmid%2F33485575&rft.externalDocID=33485575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon