Evolutionary assembled neural networks for making medical decisions with minimal regret: Application for predicting advanced bladder cancer outcome
•A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of adva...
Saved in:
Published in | Expert systems with applications Vol. 41; no. 18; pp. 8092 - 8100 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
15.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2014.07.006 |
Cover
Abstract | •A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of advanced bladder cancer outcome soft-max activation functions and good calibration are the most important.•Compared to the alternatives better prognostic performances were achieved while user-dependency was significantly reduced.
Development of reliable medical decision support systems has been the subject of many studies among which Artificial Neural Networks (ANNs) gained increasing popularity and gave promising results. However, wider application of ANNs in clinical practice remains limited due to the lack of a standard and intuitive procedure for their configuration and evaluation which is traditionally a slow process depending on human experts. The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The only two user dependent tasks were selecting data (input and output variables) and evaluation of ANN threshold probability with respect to the Regret Theory (RT). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. The method is initially proposed for the prediction of advanced bladder cancer (BC) in patients undergoing radical cystectomy, due to the fact that it is clinically relevant problem with profound influence on health care. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. Extensive analysis and comparison with the solutions commonly used in literature showed that better prognostic performances were achieved while user-dependency was significantly reduced. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems. |
---|---|
AbstractList | The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems. •A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of advanced bladder cancer outcome soft-max activation functions and good calibration are the most important.•Compared to the alternatives better prognostic performances were achieved while user-dependency was significantly reduced. Development of reliable medical decision support systems has been the subject of many studies among which Artificial Neural Networks (ANNs) gained increasing popularity and gave promising results. However, wider application of ANNs in clinical practice remains limited due to the lack of a standard and intuitive procedure for their configuration and evaluation which is traditionally a slow process depending on human experts. The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The only two user dependent tasks were selecting data (input and output variables) and evaluation of ANN threshold probability with respect to the Regret Theory (RT). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. The method is initially proposed for the prediction of advanced bladder cancer (BC) in patients undergoing radical cystectomy, due to the fact that it is clinically relevant problem with profound influence on health care. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. Extensive analysis and comparison with the solutions commonly used in literature showed that better prognostic performances were achieved while user-dependency was significantly reduced. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems. |
Author | Vukicevic, Arso M. Filipovic, Nenad D. Prelevic, Rade I. Jovicic, Gordana R. Stojadinovic, Miroslav M. |
Author_xml | – sequence: 1 givenname: Arso M. surname: Vukicevic fullname: Vukicevic, Arso M. email: arso_kg@yahoo.com organization: Faculty of Engineering, University of Kragujevac, Serbia – sequence: 2 givenname: Gordana R. surname: Jovicic fullname: Jovicic, Gordana R. email: gjovicic.kg.ac.rs@gmail.com organization: Faculty of Engineering, University of Kragujevac, Serbia – sequence: 3 givenname: Miroslav M. surname: Stojadinovic fullname: Stojadinovic, Miroslav M. email: midinac@EUnet.rs organization: Clinic of Urology and Nephrology, Kragujevac, Serbia – sequence: 4 givenname: Rade I. surname: Prelevic fullname: Prelevic, Rade I. email: drrprelevic@hotmail.com organization: Military Medical Academy, Belgrade, Serbia – sequence: 5 givenname: Nenad D. surname: Filipovic fullname: Filipovic, Nenad D. email: fica@kg.ac.rs organization: Faculty of Engineering, University of Kragujevac, Serbia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28741839$$DView record in Pascal Francis |
BookMark | eNqFkc1u3CAUhVGVSp1M-wJdsanUjV2uGYxddRNF6Y8UKZvsEYbrlIltXMAzynPkhYsz6aaLhAUION9BnHNOziY_ISEfgZXAoP6yLzEedVkx2JVMlozVb8gGGsmLWrb8jGxYK2SxA7l7R85j3DMGkjG5IY9XBz8syflJhweqY8SxG9DSCZegh7ykow_3kfY-0FHfu-mOjmidyXcWjYsZjPTo0m86usmN-TjgXcD0lV7M85B1q_UTPYeVS6uDtgc9mfxKN2hrMVCzbgP1SzJ-xPfkba-HiB-e1y25_X51e_mzuL758evy4rowvK1TAbWtei5E19TCQG8EF5oLWXFjGVhTWWNE22kA6HgvuOZo2zxAGgmVQL4ln0-2c_B_FoxJjS4aHAY9oV-iglo2DNo6O74urVq-gybPW_LpWapjTqkP-WsuqjnkcMKDqhqZdXzVNSedCT7GgL0yLj2llYJ2gwKm1mbVXq3NqrVZxaTKzWa0-g_95_4i9O0EYU704DCoaByuLbiAJinr3Uv4X6ZFwj4 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2014_12_023 crossref_primary_10_1016_j_compbiomed_2015_05_015 crossref_primary_10_1016_j_compbiomed_2016_05_016 crossref_primary_10_1186_s12911_021_01585_9 crossref_primary_10_3390_math11194118 crossref_primary_10_1016_j_compbiomed_2019_103526 crossref_primary_10_1186_s13040_015_0046_4 crossref_primary_10_1007_s00414_025_03412_6 crossref_primary_10_1016_j_eswa_2015_03_018 crossref_primary_10_1109_JBHI_2019_2923773 crossref_primary_10_2298_TSCI201026084J crossref_primary_10_1016_j_forsciint_2024_111973 crossref_primary_10_1080_10255842_2018_1431220 |
Cites_doi | 10.1016/S0001-2998(78)80014-2 10.1016/j.ijpharm.2006.07.056 10.1016/j.neucom.2012.07.010 10.1177/0272989X06295361 10.1016/j.juro.2009.04.018 10.1016/j.mpdhp.2013.08.004 10.1093/jnci/djs491 10.1109/TSMCB.2005.847740 10.1016/j.eswa.2008.08.010 10.1016/j.eswa.2010.03.056 10.1100/tsw.2011.28 10.1016/j.eursup.2010.01.005 10.1016/S0096-3003(97)10005-4 10.1093/brain/122.12.2413-a 10.1016/S0090-4295(03)00409-6 10.1016/0957-4174(93)90003-O 10.1093/jnci/djp353 10.1016/j.neucom.2010.05.010 10.1016/j.neunet.2005.10.007 10.1016/S0004-3702(02)00190-X 10.1038/nrurol.2013.9 10.1371/journal.pmed.1001491 10.1016/S1532-0464(03)00034-0 10.1136/bmj.e3999 10.1111/j.1464-410X.2007.06755.x 10.1016/j.ejca.2008.10.026 10.1016/j.eswa.2010.07.028 10.1016/S0893-6080(96)00102-5 10.1016/j.neucom.2013.04.035 10.1007/s00345-009-0444-7 10.1016/j.eswa.2011.08.087 10.1186/1472-6947-10-51 10.1016/j.asoc.2012.10.023 10.1590/S1677-55382007000100005 10.1016/j.eururo.2010.07.034 10.1016/j.eswa.2014.01.011 10.1016/S0090-4295(00)00672-5 10.1186/1472-6947-12-94 10.1177/0272989X08315249 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2014.07.006 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-6793 |
EndPage | 8100 |
ExternalDocumentID | 28741839 10_1016_j_eswa_2014_07_006 S0957417414003996 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT IQODW 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c396t-16d2f355b865c1fc535a35723cd01dc2dcc59ba111b3f53a3ed999917c7125e3 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Fri Sep 05 04:28:12 EDT 2025 Fri Sep 05 05:42:13 EDT 2025 Wed Apr 02 07:18:31 EDT 2025 Tue Jul 01 03:12:23 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Fri Feb 23 02:29:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Artificial Neural Network Bladder cancer Expert systems Genetic Algorithms Regret Theory Measurement Input output Evolutionary algorithm Epidemiology Modeling Goal programming Urinary bladder Cohort study Medical application High performance Probabilistic approach Decision support system Health staff Decision making Calibration Neural network Decision analysis Experimental study Forecasting Standards Discrimination Genetic algorithm Follow up study Activation function |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-16d2f355b865c1fc535a35723cd01dc2dcc59ba111b3f53a3ed999917c7125e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1629341829 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1678019672 proquest_miscellaneous_1629341829 pascalfrancis_primary_28741839 crossref_citationtrail_10_1016_j_eswa_2014_07_006 crossref_primary_10_1016_j_eswa_2014_07_006 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-15 |
PublicationDateYYYYMMDD | 2014-12-15 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Expert systems with applications |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mukherjee, Routroy (b0170) 2012; 39 Tallón-Ballesteros, Hervás-Martínez (b0100) 2011; 38 Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford (b0215) 2009; 45 Ghaffari, Abdollahi, Khoshayand, Soltani Bozchalooi, Dadgar, Rafiee-Tehrani (b0165) 2006; 327 Bostrom, van Rhijn, Fleshner, Finelli, Jewett, Thoms, Hanna, Kuk, Zlott (b0020) 2010; 9 Askarzadeh, Rezazadeh (b0220) 2013; 13 Saritas, Ozkan, Sert (b0065) 2010; 37 Meijer, Gemen, van Onna, van der Linden, Beerlage, Kusters (b0075) 2009; 27 Rivero, Dorado, Rabuñal, Pazos (b0110) 2010; 73 Yu, Chen (b0155) 1997; 10 Djulbegovic, Hozo, Beckstead, Tsalatsanis, Pauker (b0190) 2012; 12 Baker, Kramer (b0120) 2012; 14 Finnea, Finneb, Auvinenc, Juuselae, Arof, Määttäneng (b0070) 2000; 56 Remzi, Anagnostou, Ravery (b0085) 2003; 62 Wallis (b0140) 1999; 122 Tsalatsanis, Hozo, Vickers, Djulbegovic (b0205) 2010; 10 Bassi, Sacco, De Marco, Aragona, Volpe (b0035) 2007; 99 Karlik, Olgac (b0145) 2010; 1 Hosmer, Lemeshow (b0185) 2000 Hu, Cammann, Meyer, Miller, Jung, Stephan (b0040) 2013; 10 Vickers, Elkin (b0200) 2006; 26 Castellani (b0105) 2013; 99 Esfandiari, Babavalian, Moghadam, Tabar (b0135) 2014; 41 El-Mekresh, Akl, Mosbah, Abdel-Latif, Abol-Enein, Ghoneim (b0080) 2009; 182 Dreiseitla, Ohno-Machadob (b0030) 2002; 35 Metz (b0180) 1978; 8 Lisboa, Taktak (b0050) 2006; 19 Lughezzani, Briganti, Karakiewicz, Kattan, Montorsi, Shariat, Vickers (b0025) 2010; 58 Ramy, Yair (b0010) 2011; 11 Yang (b0175) 2014 Lethaus, Baumann, Köster, Lemmer (b0160) 2013; 121 Çınar, Engin, Engin, Ateşçi (b0055) 2009; 36 Jemal, Simard, Dorell, Noone, Markowitz, Kohler (b0005) 2013; 105 Anagnostou, Remzi, Djavan (b0060) 2003; 5 Looney (b0045) 1993; 6 Castellani (b0095) 2013; 99 Hozo, Djulbegovic (b0195) 2008; 28 Cantú-Paz, Kamath (b0225) 2005; 35 Holmberg, Vickers (b0115) 2013; 10 McLaughlin, Shephard, Wallen, Maygarden, Carson, Pruthi (b0210) 2007; 33 Baker (b0125) 2009; 101 Mallett, Haligan, Thompson, Collins, Altman (b0130) 2012; 344 Yao, Liu (b0090) 1998; 91 Zhang (b0150) 2000; 30 Compérat, Van der Kwast (b0015) 2013; 19 Zhou, Wu, Tang (b0230) 2002; 137 Hozo (10.1016/j.eswa.2014.07.006_b0195) 2008; 28 Jemal (10.1016/j.eswa.2014.07.006_b0005) 2013; 105 Bostrom (10.1016/j.eswa.2014.07.006_b0020) 2010; 9 Mallett (10.1016/j.eswa.2014.07.006_b0130) 2012; 344 Baker (10.1016/j.eswa.2014.07.006_b0125) 2009; 101 Yao (10.1016/j.eswa.2014.07.006_b0090) 1998; 91 Djulbegovic (10.1016/j.eswa.2014.07.006_b0190) 2012; 12 Karlik (10.1016/j.eswa.2014.07.006_b0145) 2010; 1 Looney (10.1016/j.eswa.2014.07.006_b0045) 1993; 6 Saritas (10.1016/j.eswa.2014.07.006_b0065) 2010; 37 Finnea (10.1016/j.eswa.2014.07.006_b0070) 2000; 56 Remzi (10.1016/j.eswa.2014.07.006_b0085) 2003; 62 Wallis (10.1016/j.eswa.2014.07.006_b0140) 1999; 122 Rivero (10.1016/j.eswa.2014.07.006_b0110) 2010; 73 Lughezzani (10.1016/j.eswa.2014.07.006_b0025) 2010; 58 Esfandiari (10.1016/j.eswa.2014.07.006_b0135) 2014; 41 Lethaus (10.1016/j.eswa.2014.07.006_b0160) 2013; 121 Zhang (10.1016/j.eswa.2014.07.006_b0150) 2000; 30 Çınar (10.1016/j.eswa.2014.07.006_b0055) 2009; 36 Ghaffari (10.1016/j.eswa.2014.07.006_b0165) 2006; 327 Zhou (10.1016/j.eswa.2014.07.006_b0230) 2002; 137 Vickers (10.1016/j.eswa.2014.07.006_b0200) 2006; 26 Yang (10.1016/j.eswa.2014.07.006_b0175) 2014 Hosmer (10.1016/j.eswa.2014.07.006_b0185) 2000 McLaughlin (10.1016/j.eswa.2014.07.006_b0210) 2007; 33 El-Mekresh (10.1016/j.eswa.2014.07.006_b0080) 2009; 182 Eisenhauer (10.1016/j.eswa.2014.07.006_b0215) 2009; 45 Metz (10.1016/j.eswa.2014.07.006_b0180) 1978; 8 Bassi (10.1016/j.eswa.2014.07.006_b0035) 2007; 99 Meijer (10.1016/j.eswa.2014.07.006_b0075) 2009; 27 Ramy (10.1016/j.eswa.2014.07.006_b0010) 2011; 11 Baker (10.1016/j.eswa.2014.07.006_b0120) 2012; 14 Dreiseitla (10.1016/j.eswa.2014.07.006_b0030) 2002; 35 Castellani (10.1016/j.eswa.2014.07.006_b0095) 2013; 99 Hu (10.1016/j.eswa.2014.07.006_b0040) 2013; 10 Compérat (10.1016/j.eswa.2014.07.006_b0015) 2013; 19 Holmberg (10.1016/j.eswa.2014.07.006_b0115) 2013; 10 Anagnostou (10.1016/j.eswa.2014.07.006_b0060) 2003; 5 Askarzadeh (10.1016/j.eswa.2014.07.006_b0220) 2013; 13 Mukherjee (10.1016/j.eswa.2014.07.006_b0170) 2012; 39 Yu (10.1016/j.eswa.2014.07.006_b0155) 1997; 10 Lisboa (10.1016/j.eswa.2014.07.006_b0050) 2006; 19 Tallón-Ballesteros (10.1016/j.eswa.2014.07.006_b0100) 2011; 38 Tsalatsanis (10.1016/j.eswa.2014.07.006_b0205) 2010; 10 Castellani (10.1016/j.eswa.2014.07.006_b0105) 2013; 99 Cantú-Paz (10.1016/j.eswa.2014.07.006_b0225) 2005; 35 |
References_xml | – volume: 9 start-page: 2 year: 2010 end-page: 9 ident: b0020 article-title: Staging and staging errors in bladder cancer publication-title: European Urology Supplements – volume: 6 start-page: 129 year: 1993 end-page: 136 ident: b0045 article-title: Neural networks as expert systems publication-title: Expert Systems with Applications – volume: 45 start-page: 228 year: 2009 end-page: 247 ident: b0215 article-title: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) publication-title: European Journal of Cancer – year: 2014 ident: b0175 article-title: Nature-inspired optimization algorithms – volume: 13 start-page: 1206 year: 2013 end-page: 1213 ident: b0220 article-title: Artificial neural network training using a new efficient optimization algorithm publication-title: Applied Soft Computing – volume: 19 start-page: 366 year: 2013 end-page: 375 ident: b0015 article-title: Pathological staging of bladder cancer publication-title: Diagnostic Histopathology – volume: 56 start-page: 418 year: 2000 end-page: 422 ident: b0070 article-title: Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network publication-title: Urology – volume: 62 start-page: 456 year: 2003 end-page: 460 ident: b0085 article-title: An artificial neural network to predict the outcome of repeat prostate biopsies publication-title: Urology – volume: 38 start-page: 743 year: 2011 end-page: 754 ident: b0100 article-title: A two-stage algorithm in evolutionary product unit neural networks for classification publication-title: Expert Systems with Applications – volume: 39 start-page: 2397 year: 2012 end-page: 2407 ident: b0170 article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process publication-title: Expert Systems with Applications – volume: 10 start-page: 51 year: 2010 ident: b0205 article-title: A regret theory approach to decision curve analysis: A novel method for eliciting decision makers’ preferences and decision-making publication-title: BMC Medical Informatics and Decision Making – volume: 99 start-page: 1007 year: 2007 end-page: 1012 ident: b0035 article-title: Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: A comparison with logistic regression analysis publication-title: BJU International – volume: 10 start-page: 174 year: 2013 end-page: 182 ident: b0040 article-title: Artificial neural networks and prostate cancer-tools for diagnosis and management publication-title: Nature Reviews Urology – volume: 101 start-page: 1538 year: 2009 end-page: 1542 ident: b0125 article-title: Putting risk prediction in perspective: Relative utility curves publication-title: Journal of the National Cancer Institute – volume: 105 start-page: 175 year: 2013 end-page: 201 ident: b0005 article-title: Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels publication-title: Journal of the National Cancer Institute – volume: 99 start-page: 214 year: 2013 end-page: 229 ident: b0095 article-title: Evolutionary generation of neural network classifiers – an empirical comparison publication-title: Neurocomputing – volume: 36 start-page: 6357 year: 2009 end-page: 6361 ident: b0055 article-title: Early prostate cancer diagnosis by using artificial neural networks and support vector machines publication-title: Expert Systems with Applications – volume: 182 start-page: 466 year: 2009 end-page: 472 ident: b0080 article-title: Prediction of survival after radical cystectomy for invasive bladder carcinoma: Risk group stratification, nomograms or artificial neural networks? publication-title: The Journal of Urology – volume: 33 start-page: 25 year: 2007 end-page: 31 ident: b0210 article-title: Comparison of the clinical and pathologic staging in patients undergoing radical cystectomy for bladder cancer publication-title: International Brazilian Journal of Urology – volume: 27 start-page: 593 year: 2009 end-page: 598 ident: b0075 article-title: The value of an artificial neural network in the decision-making for prostate biopsies publication-title: World Journal of Urology – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b0030 article-title: Logistic regression and artificial neural network classification models: A methodology review publication-title: Journal of Biomedical Informatics – volume: 121 start-page: 108 year: 2013 end-page: 130 ident: b0160 article-title: A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data publication-title: Neurocomputing – volume: 12 start-page: 94 year: 2012 ident: b0190 article-title: Dual processing model of medical decision-making publication-title: BMC Medical Informatics and Decision Making – volume: 41 start-page: 4434 year: 2014 end-page: 4463 ident: b0135 article-title: Knowledge discovery in medicine: Current issue and future trend publication-title: Expert Systems with Applications – volume: 327 start-page: 126 year: 2006 end-page: 138 ident: b0165 article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery publication-title: International Journal of Pharmaceutics – year: 2000 ident: b0185 article-title: Applied logistic regression – volume: 37 start-page: 6646 year: 2010 end-page: 6650 ident: b0065 article-title: Prognosis of prostate cancer by artificial neural networks publication-title: Expert Systems with Applications – volume: 10 start-page: e1001491 year: 2013 ident: b0115 article-title: Evaluation of prediction models for decision-making:7 beyond calibration and discrimination publication-title: PLoS Medicine – volume: 122 start-page: 2413 year: 1999 end-page: 2416 ident: b0140 article-title: Fundamentals of neural network modeling: Neuropsychology and cognitive neuroscience publication-title: Brain – volume: 5 start-page: 15 year: 2003 end-page: 21 ident: b0060 article-title: Artificial neural networks for decision-making in urologic oncology publication-title: Reviews in Urology – volume: 344 start-page: e3999 year: 2012 ident: b0130 article-title: Interpreting diagnostic accuracy studies for patient care publication-title: BMJ – volume: 28 start-page: 540 year: 2008 end-page: 553 ident: b0195 article-title: When is diagnostic testing inappropriate or irrational? Acceptable regret approach publication-title: Medical Decision Making – volume: 1 start-page: 111 year: 2010 end-page: 122 ident: b0145 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: International Journal of Artificial Intelligence and Expert Systems – volume: 30 start-page: 451 year: 2000 end-page: 462 ident: b0150 article-title: Neural networks for classification: A survey publication-title: IEEE Transactions on Human–Machine Systems – volume: 8 start-page: 283 year: 1978 end-page: 298 ident: b0180 article-title: Basic principles of ROC analysis publication-title: Seminars in Nuclear Medicine – volume: 73 start-page: 3200 year: 2010 end-page: 3223 ident: b0110 article-title: Generation and simplification of artificial neural networks by means of genetic programming publication-title: Neurocomputing – volume: 99 start-page: 214 year: 2013 end-page: 229 ident: b0105 article-title: Evolutionary generation of neural network classifiers – an empirical comparison publication-title: Neurocomputing – volume: 26 start-page: 565 year: 2006 end-page: 574 ident: b0200 article-title: Decision curve analysis: A novel method for evaluating prediction models publication-title: Medical Decision Making – volume: 91 start-page: 83 year: 1998 end-page: 90 ident: b0090 article-title: Towards designing artificial neural networks by evolution publication-title: Applied Mathematics and Computation – volume: 11 start-page: 369 year: 2011 end-page: 381 ident: b0010 article-title: Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer publication-title: The Scientific World Journal – volume: 58 start-page: 687 year: 2010 end-page: 700 ident: b0025 article-title: Predictive and prognostic models in radical prostatectomy candidates: A critical analysis of the literature publication-title: European Urology – volume: 137 start-page: 239 year: 2002 end-page: 263 ident: b0230 article-title: Ensembling neural networks: Many could be better than all publication-title: Artificial Intelligence – volume: 14 start-page: 181 year: 2012 end-page: 188 ident: b0120 article-title: Evaluating a new marker for risk prediction: Decision analysis to the rescue publication-title: Discovery Medicine – volume: 35 start-page: 915 year: 2005 end-page: 927 ident: b0225 article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems publication-title: IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) – volume: 10 start-page: 517 year: 1997 end-page: 527 ident: b0155 article-title: Efficient backpropagation learning using optimal learning rate and momentum publication-title: Neural Networks – volume: 19 start-page: 408 year: 2006 end-page: 415 ident: b0050 article-title: The use of artificial neural networks in decision support in cancer: A systematic review publication-title: Neural Networks – volume: 8 start-page: 283 issue: 4 year: 1978 ident: 10.1016/j.eswa.2014.07.006_b0180 article-title: Basic principles of ROC analysis publication-title: Seminars in Nuclear Medicine doi: 10.1016/S0001-2998(78)80014-2 – volume: 327 start-page: 126 issue: 1–2 year: 2006 ident: 10.1016/j.eswa.2014.07.006_b0165 article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2006.07.056 – volume: 99 start-page: 214 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0095 article-title: Evolutionary generation of neural network classifiers – an empirical comparison publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.010 – volume: 26 start-page: 565 issue: 6 year: 2006 ident: 10.1016/j.eswa.2014.07.006_b0200 article-title: Decision curve analysis: A novel method for evaluating prediction models publication-title: Medical Decision Making doi: 10.1177/0272989X06295361 – volume: 182 start-page: 466 issue: 2 year: 2009 ident: 10.1016/j.eswa.2014.07.006_b0080 article-title: Prediction of survival after radical cystectomy for invasive bladder carcinoma: Risk group stratification, nomograms or artificial neural networks? publication-title: The Journal of Urology doi: 10.1016/j.juro.2009.04.018 – volume: 19 start-page: 366 issue: 10 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0015 article-title: Pathological staging of bladder cancer publication-title: Diagnostic Histopathology doi: 10.1016/j.mpdhp.2013.08.004 – volume: 105 start-page: 175 issue: 3 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0005 article-title: Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels publication-title: Journal of the National Cancer Institute doi: 10.1093/jnci/djs491 – volume: 35 start-page: 915 issue: 5 year: 2005 ident: 10.1016/j.eswa.2014.07.006_b0225 article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems publication-title: IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) doi: 10.1109/TSMCB.2005.847740 – volume: 36 start-page: 6357 issue: 3 year: 2009 ident: 10.1016/j.eswa.2014.07.006_b0055 article-title: Early prostate cancer diagnosis by using artificial neural networks and support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.08.010 – volume: 37 start-page: 6646 issue: 9 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0065 article-title: Prognosis of prostate cancer by artificial neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.03.056 – volume: 99 start-page: 214 issue: 1 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0105 article-title: Evolutionary generation of neural network classifiers – an empirical comparison publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.010 – volume: 11 start-page: 369 year: 2011 ident: 10.1016/j.eswa.2014.07.006_b0010 article-title: Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer publication-title: The Scientific World Journal doi: 10.1100/tsw.2011.28 – volume: 14 start-page: 181 issue: 76 year: 2012 ident: 10.1016/j.eswa.2014.07.006_b0120 article-title: Evaluating a new marker for risk prediction: Decision analysis to the rescue publication-title: Discovery Medicine – volume: 9 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0020 article-title: Staging and staging errors in bladder cancer publication-title: European Urology Supplements doi: 10.1016/j.eursup.2010.01.005 – volume: 30 start-page: 451 issue: 4 year: 2000 ident: 10.1016/j.eswa.2014.07.006_b0150 article-title: Neural networks for classification: A survey publication-title: IEEE Transactions on Human–Machine Systems – volume: 91 start-page: 83 issue: 1 year: 1998 ident: 10.1016/j.eswa.2014.07.006_b0090 article-title: Towards designing artificial neural networks by evolution publication-title: Applied Mathematics and Computation doi: 10.1016/S0096-3003(97)10005-4 – volume: 122 start-page: 2413 issue: 12 year: 1999 ident: 10.1016/j.eswa.2014.07.006_b0140 article-title: Fundamentals of neural network modeling: Neuropsychology and cognitive neuroscience publication-title: Brain doi: 10.1093/brain/122.12.2413-a – volume: 62 start-page: 456 year: 2003 ident: 10.1016/j.eswa.2014.07.006_b0085 article-title: An artificial neural network to predict the outcome of repeat prostate biopsies publication-title: Urology doi: 10.1016/S0090-4295(03)00409-6 – volume: 6 start-page: 129 issue: 2 year: 1993 ident: 10.1016/j.eswa.2014.07.006_b0045 article-title: Neural networks as expert systems publication-title: Expert Systems with Applications doi: 10.1016/0957-4174(93)90003-O – volume: 101 start-page: 1538 year: 2009 ident: 10.1016/j.eswa.2014.07.006_b0125 article-title: Putting risk prediction in perspective: Relative utility curves publication-title: Journal of the National Cancer Institute doi: 10.1093/jnci/djp353 – volume: 73 start-page: 3200 issue: 16–18 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0110 article-title: Generation and simplification of artificial neural networks by means of genetic programming publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.05.010 – volume: 19 start-page: 408 year: 2006 ident: 10.1016/j.eswa.2014.07.006_b0050 article-title: The use of artificial neural networks in decision support in cancer: A systematic review publication-title: Neural Networks doi: 10.1016/j.neunet.2005.10.007 – volume: 137 start-page: 239 issue: 1–2 year: 2002 ident: 10.1016/j.eswa.2014.07.006_b0230 article-title: Ensembling neural networks: Many could be better than all publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(02)00190-X – volume: 10 start-page: 174 issue: 3 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0040 article-title: Artificial neural networks and prostate cancer-tools for diagnosis and management publication-title: Nature Reviews Urology doi: 10.1038/nrurol.2013.9 – volume: 10 start-page: e1001491 issue: 7 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0115 article-title: Evaluation of prediction models for decision-making:7 beyond calibration and discrimination publication-title: PLoS Medicine doi: 10.1371/journal.pmed.1001491 – volume: 5 start-page: 15 issue: 1 year: 2003 ident: 10.1016/j.eswa.2014.07.006_b0060 article-title: Artificial neural networks for decision-making in urologic oncology publication-title: Reviews in Urology – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.eswa.2014.07.006_b0030 article-title: Logistic regression and artificial neural network classification models: A methodology review publication-title: Journal of Biomedical Informatics doi: 10.1016/S1532-0464(03)00034-0 – volume: 1 start-page: 111 issue: 4 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0145 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: International Journal of Artificial Intelligence and Expert Systems – volume: 344 start-page: e3999 year: 2012 ident: 10.1016/j.eswa.2014.07.006_b0130 article-title: Interpreting diagnostic accuracy studies for patient care publication-title: BMJ doi: 10.1136/bmj.e3999 – year: 2000 ident: 10.1016/j.eswa.2014.07.006_b0185 – volume: 99 start-page: 1007 issue: 5 year: 2007 ident: 10.1016/j.eswa.2014.07.006_b0035 article-title: Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: A comparison with logistic regression analysis publication-title: BJU International doi: 10.1111/j.1464-410X.2007.06755.x – volume: 45 start-page: 228 year: 2009 ident: 10.1016/j.eswa.2014.07.006_b0215 article-title: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) publication-title: European Journal of Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 38 start-page: 743 issue: 1 year: 2011 ident: 10.1016/j.eswa.2014.07.006_b0100 article-title: A two-stage algorithm in evolutionary product unit neural networks for classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.07.028 – volume: 10 start-page: 517 issue: 3 year: 1997 ident: 10.1016/j.eswa.2014.07.006_b0155 article-title: Efficient backpropagation learning using optimal learning rate and momentum publication-title: Neural Networks doi: 10.1016/S0893-6080(96)00102-5 – volume: 121 start-page: 108 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0160 article-title: A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.035 – volume: 27 start-page: 593 year: 2009 ident: 10.1016/j.eswa.2014.07.006_b0075 article-title: The value of an artificial neural network in the decision-making for prostate biopsies publication-title: World Journal of Urology doi: 10.1007/s00345-009-0444-7 – volume: 39 start-page: 2397 issue: 3 year: 2012 ident: 10.1016/j.eswa.2014.07.006_b0170 article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.087 – volume: 10 start-page: 51 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0205 article-title: A regret theory approach to decision curve analysis: A novel method for eliciting decision makers’ preferences and decision-making publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/1472-6947-10-51 – volume: 13 start-page: 1206 issue: 2 year: 2013 ident: 10.1016/j.eswa.2014.07.006_b0220 article-title: Artificial neural network training using a new efficient optimization algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.10.023 – volume: 33 start-page: 25 year: 2007 ident: 10.1016/j.eswa.2014.07.006_b0210 article-title: Comparison of the clinical and pathologic staging in patients undergoing radical cystectomy for bladder cancer publication-title: International Brazilian Journal of Urology doi: 10.1590/S1677-55382007000100005 – volume: 58 start-page: 687 issue: 5 year: 2010 ident: 10.1016/j.eswa.2014.07.006_b0025 article-title: Predictive and prognostic models in radical prostatectomy candidates: A critical analysis of the literature publication-title: European Urology doi: 10.1016/j.eururo.2010.07.034 – volume: 41 start-page: 4434 issue: 9 year: 2014 ident: 10.1016/j.eswa.2014.07.006_b0135 article-title: Knowledge discovery in medicine: Current issue and future trend publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.01.011 – volume: 56 start-page: 418 issue: 3 year: 2000 ident: 10.1016/j.eswa.2014.07.006_b0070 article-title: Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network publication-title: Urology doi: 10.1016/S0090-4295(00)00672-5 – year: 2014 ident: 10.1016/j.eswa.2014.07.006_b0175 – volume: 12 start-page: 94 year: 2012 ident: 10.1016/j.eswa.2014.07.006_b0190 article-title: Dual processing model of medical decision-making publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/1472-6947-12-94 – volume: 28 start-page: 540 issue: 4 year: 2008 ident: 10.1016/j.eswa.2014.07.006_b0195 article-title: When is diagnostic testing inappropriate or irrational? Acceptable regret approach publication-title: Medical Decision Making doi: 10.1177/0272989X08315249 |
SSID | ssj0017007 |
Score | 2.19848 |
Snippet | •A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic... The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8092 |
SubjectTerms | Animal tumors. Experimental tumors Applied sciences Artificial intelligence Artificial Neural Network Biological and medical sciences Bladder cancer Calibration Computer science; control theory; systems Computerized, statistical medical data processing and models in biomedicine Connectionism. Neural networks Decisions Evolutionary Exact sciences and technology Experimental renal and urinary tract tumors Expert systems Genetic Algorithms Information systems. Data bases Learning theory Mathematical models Medical management aid. Diagnosis aid Medical sciences Memory organisation. Data processing Neural networks Optimization Regret Theory Software Tumors |
Title | Evolutionary assembled neural networks for making medical decisions with minimal regret: Application for predicting advanced bladder cancer outcome |
URI | https://dx.doi.org/10.1016/j.eswa.2014.07.006 https://www.proquest.com/docview/1629341829 https://www.proquest.com/docview/1678019672 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5lIofZdsH4sKvRV3LevhVW9LSNg0JJemkJuQZBlSdr2L7W3ppX-if7gztrwltOwh4IuMxhaj0cxnz4uQ91KXXljYgaCZTIQTPtFlmSWCFameaeedxdzhyyu1-Co-38ibA3Iy5MJgWGXU_b1O77R1vDON3Jxubm-nXwAcgDmES2CCqVaH5CjjWskROZqfXyyuds6EPO2zpmF-ggQxd6YP8wrNDyw_xERXwxMbH_3fPj3c2Aa4VvbtLv7R3J05OntCHkUcSef9Up-Sg1A9I4-HHg00Htnn5Pfp9yhctv5JASmHlVuGgmIdS6Cv-ijwhgJ2pauuMxVd9b4bWsT2Ow3Fn7UUi5Cs4HYd4BO9_UTnf13fHfWmRjqMoqZDYAF1S1RsNfU4rOl62wKfwwtyfXZ6fbJIYiOGxAND24SpIisBmLiZkp6VXnJpucwz7ouUFT4rvJfaWVCbjpeSWx4KjcAz9zngp8BfklG1rsIxobnywqV5kBi8ym0540o4gAjwmBAAG40JG7hvfCxSjr0ylmaIRvtmcMcM7phJ0XeuxuTDjmbTl-jYO1sOm2ruCJoBG7KXbnJHAnavwoYBCDPH5N0gEgaOKPpdbBXW28YwBZgK5mR75-QzLFWUZ6_uucDX5AGOMNSGyTdk1Nbb8BYAU-sm5PDjLzaJx-IPQOEYsA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOYCEeCOWRzESNxR2Hb_W3Kqq1QJtLyxSb5btOFLRbnaVZFtx4U_wh5lJnEUVaA9IuSTxJJYf4y-Zz98Q8k6aMggHPRANk5nwImSmLPNMsGJipsYH73Dv8Nm5mn0Tny_kxR45GvbCIK0y-f7ep3feOl0Zp9Ycry8vx18BHMByCIfADaZG3SK3heQaeX0ffm55Hqg_p3vBPZ1h8bRzpid5xeYaxYeY6BQ8Me3Rv1ene2vXQJuVfbKLv_x2txidPCT3E4qkh31FH5G9WD0mD4YMDTRN2Cfk1_FVGlqu_kEBJ8elX8SCoool2Fc9B7yhgFzpsstLRZd95IYWKflOQ_FXLUUJkiVcriN8oLcf6eGfwHdnva7RDjnUdKAVUL9At1bTgKc1XW1aaOX4lMxPjudHsyylYcgCN6rNmCryEmCJnyoZWBkkl45LnfNQTFgR8iIEabwDp-l5KbnjsTAIO3XQgJ4if0b2q1UVnxOqVRB-oqNE6ip35ZQr4QEgwGNiBGQ0ImxofRuSRDlmyljYgYv23WKPWewxO8HIuRqR91ubdS_QsbO0HDrV3hhmFlaQnXYHN0bA9lWYLgBB5oi8HYaEhQmKURdXxdWmsUwBooIy-c4yeopCRTp_8Z8VfEPuzOZnp_b00_mXl-Qu3kHSDZOvyH5bb-JrgE6tP-imxm-qoxl7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+assembled+neural+networks+for+making+medical+decisions+with+minimal+regret%3A+Application+for+predicting+advanced+bladder+cancer+outcome&rft.jtitle=Expert+systems+with+applications&rft.au=VUKICEVIC%2C+Arso+M&rft.au=JOVICIC%2C+Gordana+R&rft.au=STOJADINOVIC%2C+Miroslav+M&rft.au=PRELEVIC%2C+Rade+I&rft.date=2014-12-15&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=41&rft.issue=18&rft.spage=8092&rft.epage=8100&rft_id=info:doi/10.1016%2Fj.eswa.2014.07.006&rft.externalDBID=n%2Fa&rft.externalDocID=28741839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |