Evolutionary assembled neural networks for making medical decisions with minimal regret: Application for predicting advanced bladder cancer outcome

•A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of adva...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 18; pp. 8092 - 8100
Main Authors Vukicevic, Arso M., Jovicic, Gordana R., Stojadinovic, Miroslav M., Prelevic, Rade I., Filipovic, Nenad D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.12.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.07.006

Cover

Abstract •A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of advanced bladder cancer outcome soft-max activation functions and good calibration are the most important.•Compared to the alternatives better prognostic performances were achieved while user-dependency was significantly reduced. Development of reliable medical decision support systems has been the subject of many studies among which Artificial Neural Networks (ANNs) gained increasing popularity and gave promising results. However, wider application of ANNs in clinical practice remains limited due to the lack of a standard and intuitive procedure for their configuration and evaluation which is traditionally a slow process depending on human experts. The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The only two user dependent tasks were selecting data (input and output variables) and evaluation of ANN threshold probability with respect to the Regret Theory (RT). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. The method is initially proposed for the prediction of advanced bladder cancer (BC) in patients undergoing radical cystectomy, due to the fact that it is clinically relevant problem with profound influence on health care. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. Extensive analysis and comparison with the solutions commonly used in literature showed that better prognostic performances were achieved while user-dependency was significantly reduced. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems.
AbstractList The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems.
•A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic Algorithms.•Clinical utility was estimated by integrating the Regret Theory Decision Curve Analysis into the procedure.•For predicting of advanced bladder cancer outcome soft-max activation functions and good calibration are the most important.•Compared to the alternatives better prognostic performances were achieved while user-dependency was significantly reduced. Development of reliable medical decision support systems has been the subject of many studies among which Artificial Neural Networks (ANNs) gained increasing popularity and gave promising results. However, wider application of ANNs in clinical practice remains limited due to the lack of a standard and intuitive procedure for their configuration and evaluation which is traditionally a slow process depending on human experts. The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The only two user dependent tasks were selecting data (input and output variables) and evaluation of ANN threshold probability with respect to the Regret Theory (RT). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. The method is initially proposed for the prediction of advanced bladder cancer (BC) in patients undergoing radical cystectomy, due to the fact that it is clinically relevant problem with profound influence on health care. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. Extensive analysis and comparison with the solutions commonly used in literature showed that better prognostic performances were achieved while user-dependency was significantly reduced. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems.
Author Vukicevic, Arso M.
Filipovic, Nenad D.
Prelevic, Rade I.
Jovicic, Gordana R.
Stojadinovic, Miroslav M.
Author_xml – sequence: 1
  givenname: Arso M.
  surname: Vukicevic
  fullname: Vukicevic, Arso M.
  email: arso_kg@yahoo.com
  organization: Faculty of Engineering, University of Kragujevac, Serbia
– sequence: 2
  givenname: Gordana R.
  surname: Jovicic
  fullname: Jovicic, Gordana R.
  email: gjovicic.kg.ac.rs@gmail.com
  organization: Faculty of Engineering, University of Kragujevac, Serbia
– sequence: 3
  givenname: Miroslav M.
  surname: Stojadinovic
  fullname: Stojadinovic, Miroslav M.
  email: midinac@EUnet.rs
  organization: Clinic of Urology and Nephrology, Kragujevac, Serbia
– sequence: 4
  givenname: Rade I.
  surname: Prelevic
  fullname: Prelevic, Rade I.
  email: drrprelevic@hotmail.com
  organization: Military Medical Academy, Belgrade, Serbia
– sequence: 5
  givenname: Nenad D.
  surname: Filipovic
  fullname: Filipovic, Nenad D.
  email: fica@kg.ac.rs
  organization: Faculty of Engineering, University of Kragujevac, Serbia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28741839$$DView record in Pascal Francis
BookMark eNqFkc1u3CAUhVGVSp1M-wJdsanUjV2uGYxddRNF6Y8UKZvsEYbrlIltXMAzynPkhYsz6aaLhAUION9BnHNOziY_ISEfgZXAoP6yLzEedVkx2JVMlozVb8gGGsmLWrb8jGxYK2SxA7l7R85j3DMGkjG5IY9XBz8syflJhweqY8SxG9DSCZegh7ykow_3kfY-0FHfu-mOjmidyXcWjYsZjPTo0m86usmN-TjgXcD0lV7M85B1q_UTPYeVS6uDtgc9mfxKN2hrMVCzbgP1SzJ-xPfkba-HiB-e1y25_X51e_mzuL758evy4rowvK1TAbWtei5E19TCQG8EF5oLWXFjGVhTWWNE22kA6HgvuOZo2zxAGgmVQL4ln0-2c_B_FoxJjS4aHAY9oV-iglo2DNo6O74urVq-gybPW_LpWapjTqkP-WsuqjnkcMKDqhqZdXzVNSedCT7GgL0yLj2llYJ2gwKm1mbVXq3NqrVZxaTKzWa0-g_95_4i9O0EYU704DCoaByuLbiAJinr3Uv4X6ZFwj4
CitedBy_id crossref_primary_10_1016_j_eswa_2014_12_023
crossref_primary_10_1016_j_compbiomed_2015_05_015
crossref_primary_10_1016_j_compbiomed_2016_05_016
crossref_primary_10_1186_s12911_021_01585_9
crossref_primary_10_3390_math11194118
crossref_primary_10_1016_j_compbiomed_2019_103526
crossref_primary_10_1186_s13040_015_0046_4
crossref_primary_10_1007_s00414_025_03412_6
crossref_primary_10_1016_j_eswa_2015_03_018
crossref_primary_10_1109_JBHI_2019_2923773
crossref_primary_10_2298_TSCI201026084J
crossref_primary_10_1016_j_forsciint_2024_111973
crossref_primary_10_1080_10255842_2018_1431220
Cites_doi 10.1016/S0001-2998(78)80014-2
10.1016/j.ijpharm.2006.07.056
10.1016/j.neucom.2012.07.010
10.1177/0272989X06295361
10.1016/j.juro.2009.04.018
10.1016/j.mpdhp.2013.08.004
10.1093/jnci/djs491
10.1109/TSMCB.2005.847740
10.1016/j.eswa.2008.08.010
10.1016/j.eswa.2010.03.056
10.1100/tsw.2011.28
10.1016/j.eursup.2010.01.005
10.1016/S0096-3003(97)10005-4
10.1093/brain/122.12.2413-a
10.1016/S0090-4295(03)00409-6
10.1016/0957-4174(93)90003-O
10.1093/jnci/djp353
10.1016/j.neucom.2010.05.010
10.1016/j.neunet.2005.10.007
10.1016/S0004-3702(02)00190-X
10.1038/nrurol.2013.9
10.1371/journal.pmed.1001491
10.1016/S1532-0464(03)00034-0
10.1136/bmj.e3999
10.1111/j.1464-410X.2007.06755.x
10.1016/j.ejca.2008.10.026
10.1016/j.eswa.2010.07.028
10.1016/S0893-6080(96)00102-5
10.1016/j.neucom.2013.04.035
10.1007/s00345-009-0444-7
10.1016/j.eswa.2011.08.087
10.1186/1472-6947-10-51
10.1016/j.asoc.2012.10.023
10.1590/S1677-55382007000100005
10.1016/j.eururo.2010.07.034
10.1016/j.eswa.2014.01.011
10.1016/S0090-4295(00)00672-5
10.1186/1472-6947-12-94
10.1177/0272989X08315249
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.07.006
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 8100
ExternalDocumentID 28741839
10_1016_j_eswa_2014_07_006
S0957417414003996
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
IQODW
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-16d2f355b865c1fc535a35723cd01dc2dcc59ba111b3f53a3ed999917c7125e3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Fri Sep 05 04:28:12 EDT 2025
Fri Sep 05 05:42:13 EDT 2025
Wed Apr 02 07:18:31 EDT 2025
Tue Jul 01 03:12:23 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Fri Feb 23 02:29:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Artificial Neural Network
Bladder cancer
Expert systems
Genetic Algorithms
Regret Theory
Measurement
Input output
Evolutionary algorithm
Epidemiology
Modeling
Goal programming
Urinary bladder
Cohort study
Medical application
High performance
Probabilistic approach
Decision support system
Health staff
Decision making
Calibration
Neural network
Decision analysis
Experimental study
Forecasting
Standards
Discrimination
Genetic algorithm
Follow up study
Activation function
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-16d2f355b865c1fc535a35723cd01dc2dcc59ba111b3f53a3ed999917c7125e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629341829
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1678019672
proquest_miscellaneous_1629341829
pascalfrancis_primary_28741839
crossref_citationtrail_10_1016_j_eswa_2014_07_006
crossref_primary_10_1016_j_eswa_2014_07_006
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-15
PublicationDateYYYYMMDD 2014-12-15
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mukherjee, Routroy (b0170) 2012; 39
Tallón-Ballesteros, Hervás-Martínez (b0100) 2011; 38
Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford (b0215) 2009; 45
Ghaffari, Abdollahi, Khoshayand, Soltani Bozchalooi, Dadgar, Rafiee-Tehrani (b0165) 2006; 327
Bostrom, van Rhijn, Fleshner, Finelli, Jewett, Thoms, Hanna, Kuk, Zlott (b0020) 2010; 9
Askarzadeh, Rezazadeh (b0220) 2013; 13
Saritas, Ozkan, Sert (b0065) 2010; 37
Meijer, Gemen, van Onna, van der Linden, Beerlage, Kusters (b0075) 2009; 27
Rivero, Dorado, Rabuñal, Pazos (b0110) 2010; 73
Yu, Chen (b0155) 1997; 10
Djulbegovic, Hozo, Beckstead, Tsalatsanis, Pauker (b0190) 2012; 12
Baker, Kramer (b0120) 2012; 14
Finnea, Finneb, Auvinenc, Juuselae, Arof, Määttäneng (b0070) 2000; 56
Remzi, Anagnostou, Ravery (b0085) 2003; 62
Wallis (b0140) 1999; 122
Tsalatsanis, Hozo, Vickers, Djulbegovic (b0205) 2010; 10
Bassi, Sacco, De Marco, Aragona, Volpe (b0035) 2007; 99
Karlik, Olgac (b0145) 2010; 1
Hosmer, Lemeshow (b0185) 2000
Hu, Cammann, Meyer, Miller, Jung, Stephan (b0040) 2013; 10
Vickers, Elkin (b0200) 2006; 26
Castellani (b0105) 2013; 99
Esfandiari, Babavalian, Moghadam, Tabar (b0135) 2014; 41
El-Mekresh, Akl, Mosbah, Abdel-Latif, Abol-Enein, Ghoneim (b0080) 2009; 182
Dreiseitla, Ohno-Machadob (b0030) 2002; 35
Metz (b0180) 1978; 8
Lisboa, Taktak (b0050) 2006; 19
Lughezzani, Briganti, Karakiewicz, Kattan, Montorsi, Shariat, Vickers (b0025) 2010; 58
Ramy, Yair (b0010) 2011; 11
Yang (b0175) 2014
Lethaus, Baumann, Köster, Lemmer (b0160) 2013; 121
Çınar, Engin, Engin, Ateşçi (b0055) 2009; 36
Jemal, Simard, Dorell, Noone, Markowitz, Kohler (b0005) 2013; 105
Anagnostou, Remzi, Djavan (b0060) 2003; 5
Looney (b0045) 1993; 6
Castellani (b0095) 2013; 99
Hozo, Djulbegovic (b0195) 2008; 28
Cantú-Paz, Kamath (b0225) 2005; 35
Holmberg, Vickers (b0115) 2013; 10
McLaughlin, Shephard, Wallen, Maygarden, Carson, Pruthi (b0210) 2007; 33
Baker (b0125) 2009; 101
Mallett, Haligan, Thompson, Collins, Altman (b0130) 2012; 344
Yao, Liu (b0090) 1998; 91
Zhang (b0150) 2000; 30
Compérat, Van der Kwast (b0015) 2013; 19
Zhou, Wu, Tang (b0230) 2002; 137
Hozo (10.1016/j.eswa.2014.07.006_b0195) 2008; 28
Jemal (10.1016/j.eswa.2014.07.006_b0005) 2013; 105
Bostrom (10.1016/j.eswa.2014.07.006_b0020) 2010; 9
Mallett (10.1016/j.eswa.2014.07.006_b0130) 2012; 344
Baker (10.1016/j.eswa.2014.07.006_b0125) 2009; 101
Yao (10.1016/j.eswa.2014.07.006_b0090) 1998; 91
Djulbegovic (10.1016/j.eswa.2014.07.006_b0190) 2012; 12
Karlik (10.1016/j.eswa.2014.07.006_b0145) 2010; 1
Looney (10.1016/j.eswa.2014.07.006_b0045) 1993; 6
Saritas (10.1016/j.eswa.2014.07.006_b0065) 2010; 37
Finnea (10.1016/j.eswa.2014.07.006_b0070) 2000; 56
Remzi (10.1016/j.eswa.2014.07.006_b0085) 2003; 62
Wallis (10.1016/j.eswa.2014.07.006_b0140) 1999; 122
Rivero (10.1016/j.eswa.2014.07.006_b0110) 2010; 73
Lughezzani (10.1016/j.eswa.2014.07.006_b0025) 2010; 58
Esfandiari (10.1016/j.eswa.2014.07.006_b0135) 2014; 41
Lethaus (10.1016/j.eswa.2014.07.006_b0160) 2013; 121
Zhang (10.1016/j.eswa.2014.07.006_b0150) 2000; 30
Çınar (10.1016/j.eswa.2014.07.006_b0055) 2009; 36
Ghaffari (10.1016/j.eswa.2014.07.006_b0165) 2006; 327
Zhou (10.1016/j.eswa.2014.07.006_b0230) 2002; 137
Vickers (10.1016/j.eswa.2014.07.006_b0200) 2006; 26
Yang (10.1016/j.eswa.2014.07.006_b0175) 2014
Hosmer (10.1016/j.eswa.2014.07.006_b0185) 2000
McLaughlin (10.1016/j.eswa.2014.07.006_b0210) 2007; 33
El-Mekresh (10.1016/j.eswa.2014.07.006_b0080) 2009; 182
Eisenhauer (10.1016/j.eswa.2014.07.006_b0215) 2009; 45
Metz (10.1016/j.eswa.2014.07.006_b0180) 1978; 8
Bassi (10.1016/j.eswa.2014.07.006_b0035) 2007; 99
Meijer (10.1016/j.eswa.2014.07.006_b0075) 2009; 27
Ramy (10.1016/j.eswa.2014.07.006_b0010) 2011; 11
Baker (10.1016/j.eswa.2014.07.006_b0120) 2012; 14
Dreiseitla (10.1016/j.eswa.2014.07.006_b0030) 2002; 35
Castellani (10.1016/j.eswa.2014.07.006_b0095) 2013; 99
Hu (10.1016/j.eswa.2014.07.006_b0040) 2013; 10
Compérat (10.1016/j.eswa.2014.07.006_b0015) 2013; 19
Holmberg (10.1016/j.eswa.2014.07.006_b0115) 2013; 10
Anagnostou (10.1016/j.eswa.2014.07.006_b0060) 2003; 5
Askarzadeh (10.1016/j.eswa.2014.07.006_b0220) 2013; 13
Mukherjee (10.1016/j.eswa.2014.07.006_b0170) 2012; 39
Yu (10.1016/j.eswa.2014.07.006_b0155) 1997; 10
Lisboa (10.1016/j.eswa.2014.07.006_b0050) 2006; 19
Tallón-Ballesteros (10.1016/j.eswa.2014.07.006_b0100) 2011; 38
Tsalatsanis (10.1016/j.eswa.2014.07.006_b0205) 2010; 10
Castellani (10.1016/j.eswa.2014.07.006_b0105) 2013; 99
Cantú-Paz (10.1016/j.eswa.2014.07.006_b0225) 2005; 35
References_xml – volume: 9
  start-page: 2
  year: 2010
  end-page: 9
  ident: b0020
  article-title: Staging and staging errors in bladder cancer
  publication-title: European Urology Supplements
– volume: 6
  start-page: 129
  year: 1993
  end-page: 136
  ident: b0045
  article-title: Neural networks as expert systems
  publication-title: Expert Systems with Applications
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  ident: b0215
  article-title: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)
  publication-title: European Journal of Cancer
– year: 2014
  ident: b0175
  article-title: Nature-inspired optimization algorithms
– volume: 13
  start-page: 1206
  year: 2013
  end-page: 1213
  ident: b0220
  article-title: Artificial neural network training using a new efficient optimization algorithm
  publication-title: Applied Soft Computing
– volume: 19
  start-page: 366
  year: 2013
  end-page: 375
  ident: b0015
  article-title: Pathological staging of bladder cancer
  publication-title: Diagnostic Histopathology
– volume: 56
  start-page: 418
  year: 2000
  end-page: 422
  ident: b0070
  article-title: Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network
  publication-title: Urology
– volume: 62
  start-page: 456
  year: 2003
  end-page: 460
  ident: b0085
  article-title: An artificial neural network to predict the outcome of repeat prostate biopsies
  publication-title: Urology
– volume: 38
  start-page: 743
  year: 2011
  end-page: 754
  ident: b0100
  article-title: A two-stage algorithm in evolutionary product unit neural networks for classification
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 2397
  year: 2012
  end-page: 2407
  ident: b0170
  article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 51
  year: 2010
  ident: b0205
  article-title: A regret theory approach to decision curve analysis: A novel method for eliciting decision makers’ preferences and decision-making
  publication-title: BMC Medical Informatics and Decision Making
– volume: 99
  start-page: 1007
  year: 2007
  end-page: 1012
  ident: b0035
  article-title: Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: A comparison with logistic regression analysis
  publication-title: BJU International
– volume: 10
  start-page: 174
  year: 2013
  end-page: 182
  ident: b0040
  article-title: Artificial neural networks and prostate cancer-tools for diagnosis and management
  publication-title: Nature Reviews Urology
– volume: 101
  start-page: 1538
  year: 2009
  end-page: 1542
  ident: b0125
  article-title: Putting risk prediction in perspective: Relative utility curves
  publication-title: Journal of the National Cancer Institute
– volume: 105
  start-page: 175
  year: 2013
  end-page: 201
  ident: b0005
  article-title: Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels
  publication-title: Journal of the National Cancer Institute
– volume: 99
  start-page: 214
  year: 2013
  end-page: 229
  ident: b0095
  article-title: Evolutionary generation of neural network classifiers – an empirical comparison
  publication-title: Neurocomputing
– volume: 36
  start-page: 6357
  year: 2009
  end-page: 6361
  ident: b0055
  article-title: Early prostate cancer diagnosis by using artificial neural networks and support vector machines
  publication-title: Expert Systems with Applications
– volume: 182
  start-page: 466
  year: 2009
  end-page: 472
  ident: b0080
  article-title: Prediction of survival after radical cystectomy for invasive bladder carcinoma: Risk group stratification, nomograms or artificial neural networks?
  publication-title: The Journal of Urology
– volume: 33
  start-page: 25
  year: 2007
  end-page: 31
  ident: b0210
  article-title: Comparison of the clinical and pathologic staging in patients undergoing radical cystectomy for bladder cancer
  publication-title: International Brazilian Journal of Urology
– volume: 27
  start-page: 593
  year: 2009
  end-page: 598
  ident: b0075
  article-title: The value of an artificial neural network in the decision-making for prostate biopsies
  publication-title: World Journal of Urology
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b0030
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: Journal of Biomedical Informatics
– volume: 121
  start-page: 108
  year: 2013
  end-page: 130
  ident: b0160
  article-title: A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data
  publication-title: Neurocomputing
– volume: 12
  start-page: 94
  year: 2012
  ident: b0190
  article-title: Dual processing model of medical decision-making
  publication-title: BMC Medical Informatics and Decision Making
– volume: 41
  start-page: 4434
  year: 2014
  end-page: 4463
  ident: b0135
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Systems with Applications
– volume: 327
  start-page: 126
  year: 2006
  end-page: 138
  ident: b0165
  article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery
  publication-title: International Journal of Pharmaceutics
– year: 2000
  ident: b0185
  article-title: Applied logistic regression
– volume: 37
  start-page: 6646
  year: 2010
  end-page: 6650
  ident: b0065
  article-title: Prognosis of prostate cancer by artificial neural networks
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: e1001491
  year: 2013
  ident: b0115
  article-title: Evaluation of prediction models for decision-making:7 beyond calibration and discrimination
  publication-title: PLoS Medicine
– volume: 122
  start-page: 2413
  year: 1999
  end-page: 2416
  ident: b0140
  article-title: Fundamentals of neural network modeling: Neuropsychology and cognitive neuroscience
  publication-title: Brain
– volume: 5
  start-page: 15
  year: 2003
  end-page: 21
  ident: b0060
  article-title: Artificial neural networks for decision-making in urologic oncology
  publication-title: Reviews in Urology
– volume: 344
  start-page: e3999
  year: 2012
  ident: b0130
  article-title: Interpreting diagnostic accuracy studies for patient care
  publication-title: BMJ
– volume: 28
  start-page: 540
  year: 2008
  end-page: 553
  ident: b0195
  article-title: When is diagnostic testing inappropriate or irrational? Acceptable regret approach
  publication-title: Medical Decision Making
– volume: 1
  start-page: 111
  year: 2010
  end-page: 122
  ident: b0145
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: International Journal of Artificial Intelligence and Expert Systems
– volume: 30
  start-page: 451
  year: 2000
  end-page: 462
  ident: b0150
  article-title: Neural networks for classification: A survey
  publication-title: IEEE Transactions on Human–Machine Systems
– volume: 8
  start-page: 283
  year: 1978
  end-page: 298
  ident: b0180
  article-title: Basic principles of ROC analysis
  publication-title: Seminars in Nuclear Medicine
– volume: 73
  start-page: 3200
  year: 2010
  end-page: 3223
  ident: b0110
  article-title: Generation and simplification of artificial neural networks by means of genetic programming
  publication-title: Neurocomputing
– volume: 99
  start-page: 214
  year: 2013
  end-page: 229
  ident: b0105
  article-title: Evolutionary generation of neural network classifiers – an empirical comparison
  publication-title: Neurocomputing
– volume: 26
  start-page: 565
  year: 2006
  end-page: 574
  ident: b0200
  article-title: Decision curve analysis: A novel method for evaluating prediction models
  publication-title: Medical Decision Making
– volume: 91
  start-page: 83
  year: 1998
  end-page: 90
  ident: b0090
  article-title: Towards designing artificial neural networks by evolution
  publication-title: Applied Mathematics and Computation
– volume: 11
  start-page: 369
  year: 2011
  end-page: 381
  ident: b0010
  article-title: Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer
  publication-title: The Scientific World Journal
– volume: 58
  start-page: 687
  year: 2010
  end-page: 700
  ident: b0025
  article-title: Predictive and prognostic models in radical prostatectomy candidates: A critical analysis of the literature
  publication-title: European Urology
– volume: 137
  start-page: 239
  year: 2002
  end-page: 263
  ident: b0230
  article-title: Ensembling neural networks: Many could be better than all
  publication-title: Artificial Intelligence
– volume: 14
  start-page: 181
  year: 2012
  end-page: 188
  ident: b0120
  article-title: Evaluating a new marker for risk prediction: Decision analysis to the rescue
  publication-title: Discovery Medicine
– volume: 35
  start-page: 915
  year: 2005
  end-page: 927
  ident: b0225
  article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics)
– volume: 10
  start-page: 517
  year: 1997
  end-page: 527
  ident: b0155
  article-title: Efficient backpropagation learning using optimal learning rate and momentum
  publication-title: Neural Networks
– volume: 19
  start-page: 408
  year: 2006
  end-page: 415
  ident: b0050
  article-title: The use of artificial neural networks in decision support in cancer: A systematic review
  publication-title: Neural Networks
– volume: 8
  start-page: 283
  issue: 4
  year: 1978
  ident: 10.1016/j.eswa.2014.07.006_b0180
  article-title: Basic principles of ROC analysis
  publication-title: Seminars in Nuclear Medicine
  doi: 10.1016/S0001-2998(78)80014-2
– volume: 327
  start-page: 126
  issue: 1–2
  year: 2006
  ident: 10.1016/j.eswa.2014.07.006_b0165
  article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2006.07.056
– volume: 99
  start-page: 214
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0095
  article-title: Evolutionary generation of neural network classifiers – an empirical comparison
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.010
– volume: 26
  start-page: 565
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2014.07.006_b0200
  article-title: Decision curve analysis: A novel method for evaluating prediction models
  publication-title: Medical Decision Making
  doi: 10.1177/0272989X06295361
– volume: 182
  start-page: 466
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2014.07.006_b0080
  article-title: Prediction of survival after radical cystectomy for invasive bladder carcinoma: Risk group stratification, nomograms or artificial neural networks?
  publication-title: The Journal of Urology
  doi: 10.1016/j.juro.2009.04.018
– volume: 19
  start-page: 366
  issue: 10
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0015
  article-title: Pathological staging of bladder cancer
  publication-title: Diagnostic Histopathology
  doi: 10.1016/j.mpdhp.2013.08.004
– volume: 105
  start-page: 175
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0005
  article-title: Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/djs491
– volume: 35
  start-page: 915
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2014.07.006_b0225
  article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics)
  doi: 10.1109/TSMCB.2005.847740
– volume: 36
  start-page: 6357
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2014.07.006_b0055
  article-title: Early prostate cancer diagnosis by using artificial neural networks and support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.010
– volume: 37
  start-page: 6646
  issue: 9
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0065
  article-title: Prognosis of prostate cancer by artificial neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.03.056
– volume: 99
  start-page: 214
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0105
  article-title: Evolutionary generation of neural network classifiers – an empirical comparison
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.010
– volume: 11
  start-page: 369
  year: 2011
  ident: 10.1016/j.eswa.2014.07.006_b0010
  article-title: Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer
  publication-title: The Scientific World Journal
  doi: 10.1100/tsw.2011.28
– volume: 14
  start-page: 181
  issue: 76
  year: 2012
  ident: 10.1016/j.eswa.2014.07.006_b0120
  article-title: Evaluating a new marker for risk prediction: Decision analysis to the rescue
  publication-title: Discovery Medicine
– volume: 9
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0020
  article-title: Staging and staging errors in bladder cancer
  publication-title: European Urology Supplements
  doi: 10.1016/j.eursup.2010.01.005
– volume: 30
  start-page: 451
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2014.07.006_b0150
  article-title: Neural networks for classification: A survey
  publication-title: IEEE Transactions on Human–Machine Systems
– volume: 91
  start-page: 83
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2014.07.006_b0090
  article-title: Towards designing artificial neural networks by evolution
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/S0096-3003(97)10005-4
– volume: 122
  start-page: 2413
  issue: 12
  year: 1999
  ident: 10.1016/j.eswa.2014.07.006_b0140
  article-title: Fundamentals of neural network modeling: Neuropsychology and cognitive neuroscience
  publication-title: Brain
  doi: 10.1093/brain/122.12.2413-a
– volume: 62
  start-page: 456
  year: 2003
  ident: 10.1016/j.eswa.2014.07.006_b0085
  article-title: An artificial neural network to predict the outcome of repeat prostate biopsies
  publication-title: Urology
  doi: 10.1016/S0090-4295(03)00409-6
– volume: 6
  start-page: 129
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2014.07.006_b0045
  article-title: Neural networks as expert systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/0957-4174(93)90003-O
– volume: 101
  start-page: 1538
  year: 2009
  ident: 10.1016/j.eswa.2014.07.006_b0125
  article-title: Putting risk prediction in perspective: Relative utility curves
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/djp353
– volume: 73
  start-page: 3200
  issue: 16–18
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0110
  article-title: Generation and simplification of artificial neural networks by means of genetic programming
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.05.010
– volume: 19
  start-page: 408
  year: 2006
  ident: 10.1016/j.eswa.2014.07.006_b0050
  article-title: The use of artificial neural networks in decision support in cancer: A systematic review
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.10.007
– volume: 137
  start-page: 239
  issue: 1–2
  year: 2002
  ident: 10.1016/j.eswa.2014.07.006_b0230
  article-title: Ensembling neural networks: Many could be better than all
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 10
  start-page: 174
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0040
  article-title: Artificial neural networks and prostate cancer-tools for diagnosis and management
  publication-title: Nature Reviews Urology
  doi: 10.1038/nrurol.2013.9
– volume: 10
  start-page: e1001491
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0115
  article-title: Evaluation of prediction models for decision-making:7 beyond calibration and discrimination
  publication-title: PLoS Medicine
  doi: 10.1371/journal.pmed.1001491
– volume: 5
  start-page: 15
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2014.07.006_b0060
  article-title: Artificial neural networks for decision-making in urologic oncology
  publication-title: Reviews in Urology
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.eswa.2014.07.006_b0030
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 1
  start-page: 111
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0145
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: International Journal of Artificial Intelligence and Expert Systems
– volume: 344
  start-page: e3999
  year: 2012
  ident: 10.1016/j.eswa.2014.07.006_b0130
  article-title: Interpreting diagnostic accuracy studies for patient care
  publication-title: BMJ
  doi: 10.1136/bmj.e3999
– year: 2000
  ident: 10.1016/j.eswa.2014.07.006_b0185
– volume: 99
  start-page: 1007
  issue: 5
  year: 2007
  ident: 10.1016/j.eswa.2014.07.006_b0035
  article-title: Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: A comparison with logistic regression analysis
  publication-title: BJU International
  doi: 10.1111/j.1464-410X.2007.06755.x
– volume: 45
  start-page: 228
  year: 2009
  ident: 10.1016/j.eswa.2014.07.006_b0215
  article-title: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)
  publication-title: European Journal of Cancer
  doi: 10.1016/j.ejca.2008.10.026
– volume: 38
  start-page: 743
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2014.07.006_b0100
  article-title: A two-stage algorithm in evolutionary product unit neural networks for classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.028
– volume: 10
  start-page: 517
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2014.07.006_b0155
  article-title: Efficient backpropagation learning using optimal learning rate and momentum
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00102-5
– volume: 121
  start-page: 108
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0160
  article-title: A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.035
– volume: 27
  start-page: 593
  year: 2009
  ident: 10.1016/j.eswa.2014.07.006_b0075
  article-title: The value of an artificial neural network in the decision-making for prostate biopsies
  publication-title: World Journal of Urology
  doi: 10.1007/s00345-009-0444-7
– volume: 39
  start-page: 2397
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2014.07.006_b0170
  article-title: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.087
– volume: 10
  start-page: 51
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0205
  article-title: A regret theory approach to decision curve analysis: A novel method for eliciting decision makers’ preferences and decision-making
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/1472-6947-10-51
– volume: 13
  start-page: 1206
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2014.07.006_b0220
  article-title: Artificial neural network training using a new efficient optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.10.023
– volume: 33
  start-page: 25
  year: 2007
  ident: 10.1016/j.eswa.2014.07.006_b0210
  article-title: Comparison of the clinical and pathologic staging in patients undergoing radical cystectomy for bladder cancer
  publication-title: International Brazilian Journal of Urology
  doi: 10.1590/S1677-55382007000100005
– volume: 58
  start-page: 687
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2014.07.006_b0025
  article-title: Predictive and prognostic models in radical prostatectomy candidates: A critical analysis of the literature
  publication-title: European Urology
  doi: 10.1016/j.eururo.2010.07.034
– volume: 41
  start-page: 4434
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2014.07.006_b0135
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.01.011
– volume: 56
  start-page: 418
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2014.07.006_b0070
  article-title: Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network
  publication-title: Urology
  doi: 10.1016/S0090-4295(00)00672-5
– year: 2014
  ident: 10.1016/j.eswa.2014.07.006_b0175
– volume: 12
  start-page: 94
  year: 2012
  ident: 10.1016/j.eswa.2014.07.006_b0190
  article-title: Dual processing model of medical decision-making
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/1472-6947-12-94
– volume: 28
  start-page: 540
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2014.07.006_b0195
  article-title: When is diagnostic testing inappropriate or irrational? Acceptable regret approach
  publication-title: Medical Decision Making
  doi: 10.1177/0272989X08315249
SSID ssj0017007
Score 2.19848
Snippet •A novel two-step procedure for obtaining reliable ANN predictive models is presented.•Optimal configuration of ANN was performed automatically using Genetic...
The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8092
SubjectTerms Animal tumors. Experimental tumors
Applied sciences
Artificial intelligence
Artificial Neural Network
Biological and medical sciences
Bladder cancer
Calibration
Computer science; control theory; systems
Computerized, statistical medical data processing and models in biomedicine
Connectionism. Neural networks
Decisions
Evolutionary
Exact sciences and technology
Experimental renal and urinary tract tumors
Expert systems
Genetic Algorithms
Information systems. Data bases
Learning theory
Mathematical models
Medical management aid. Diagnosis aid
Medical sciences
Memory organisation. Data processing
Neural networks
Optimization
Regret Theory
Software
Tumors
Title Evolutionary assembled neural networks for making medical decisions with minimal regret: Application for predicting advanced bladder cancer outcome
URI https://dx.doi.org/10.1016/j.eswa.2014.07.006
https://www.proquest.com/docview/1629341829
https://www.proquest.com/docview/1678019672
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5lIofZdsH4sKvRV3LevhVW9LSNg0JJemkJuQZBlSdr2L7W3ppX-if7gztrwltOwh4IuMxhaj0cxnz4uQ91KXXljYgaCZTIQTPtFlmSWCFameaeedxdzhyyu1-Co-38ibA3Iy5MJgWGXU_b1O77R1vDON3Jxubm-nXwAcgDmES2CCqVaH5CjjWskROZqfXyyuds6EPO2zpmF-ggQxd6YP8wrNDyw_xERXwxMbH_3fPj3c2Aa4VvbtLv7R3J05OntCHkUcSef9Up-Sg1A9I4-HHg00Htnn5Pfp9yhctv5JASmHlVuGgmIdS6Cv-ijwhgJ2pauuMxVd9b4bWsT2Ow3Fn7UUi5Cs4HYd4BO9_UTnf13fHfWmRjqMoqZDYAF1S1RsNfU4rOl62wKfwwtyfXZ6fbJIYiOGxAND24SpIisBmLiZkp6VXnJpucwz7ouUFT4rvJfaWVCbjpeSWx4KjcAz9zngp8BfklG1rsIxobnywqV5kBi8ym0540o4gAjwmBAAG40JG7hvfCxSjr0ylmaIRvtmcMcM7phJ0XeuxuTDjmbTl-jYO1sOm2ruCJoBG7KXbnJHAnavwoYBCDPH5N0gEgaOKPpdbBXW28YwBZgK5mR75-QzLFWUZ6_uucDX5AGOMNSGyTdk1Nbb8BYAU-sm5PDjLzaJx-IPQOEYsA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOYCEeCOWRzESNxR2Hb_W3Kqq1QJtLyxSb5btOFLRbnaVZFtx4U_wh5lJnEUVaA9IuSTxJJYf4y-Zz98Q8k6aMggHPRANk5nwImSmLPNMsGJipsYH73Dv8Nm5mn0Tny_kxR45GvbCIK0y-f7ep3feOl0Zp9Ycry8vx18BHMByCIfADaZG3SK3heQaeX0ffm55Hqg_p3vBPZ1h8bRzpid5xeYaxYeY6BQ8Me3Rv1ene2vXQJuVfbKLv_x2txidPCT3E4qkh31FH5G9WD0mD4YMDTRN2Cfk1_FVGlqu_kEBJ8elX8SCoool2Fc9B7yhgFzpsstLRZd95IYWKflOQ_FXLUUJkiVcriN8oLcf6eGfwHdnva7RDjnUdKAVUL9At1bTgKc1XW1aaOX4lMxPjudHsyylYcgCN6rNmCryEmCJnyoZWBkkl45LnfNQTFgR8iIEabwDp-l5KbnjsTAIO3XQgJ4if0b2q1UVnxOqVRB-oqNE6ip35ZQr4QEgwGNiBGQ0ImxofRuSRDlmyljYgYv23WKPWewxO8HIuRqR91ubdS_QsbO0HDrV3hhmFlaQnXYHN0bA9lWYLgBB5oi8HYaEhQmKURdXxdWmsUwBooIy-c4yeopCRTp_8Z8VfEPuzOZnp_b00_mXl-Qu3kHSDZOvyH5bb-JrgE6tP-imxm-qoxl7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+assembled+neural+networks+for+making+medical+decisions+with+minimal+regret%3A+Application+for+predicting+advanced+bladder+cancer+outcome&rft.jtitle=Expert+systems+with+applications&rft.au=VUKICEVIC%2C+Arso+M&rft.au=JOVICIC%2C+Gordana+R&rft.au=STOJADINOVIC%2C+Miroslav+M&rft.au=PRELEVIC%2C+Rade+I&rft.date=2014-12-15&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=41&rft.issue=18&rft.spage=8092&rft.epage=8100&rft_id=info:doi/10.1016%2Fj.eswa.2014.07.006&rft.externalDBID=n%2Fa&rft.externalDocID=28741839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon