Generalized flow calculation of the gas flow in a network of capillaries used in gas chromatography

A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromat...

Full description

Saved in:
Bibliographic Details
Published inJournal of separation science Vol. 47; no. 16; pp. e2400419 - n/a
Main Authors Leppert, Jan, Brehmer, Tillman, Boeker, Peter, Wüst, Matthias
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow‐modulated or thermal‐modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic ion using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold‐up times are compared with measured values. In addition, two complex systems (4‐Way‐Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold‐up times and a defined split ratio between different paths of these systems. Using a numeric non‐linear solver, configurations of these systems were found, that fulfill these conditions.
AbstractList A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow-modulated or thermal-modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic abstraction using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold-up times are compared with measured values. In addition, two complex systems (4-Way-Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold-up times and a defined split ratio between different paths of these systems. Using a numeric non-linear solver, configurations of these systems were found, that fulfill these conditions.A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow-modulated or thermal-modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic abstraction using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold-up times are compared with measured values. In addition, two complex systems (4-Way-Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold-up times and a defined split ratio between different paths of these systems. Using a numeric non-linear solver, configurations of these systems were found, that fulfill these conditions.
A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow‐modulated or thermal‐modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic abstraction using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold‐up times are compared with measured values. In addition, two complex systems (4‐Way‐Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold‐up times and a defined split ratio between different paths of these systems. Using a numeric non‐linear solver, configurations of these systems were found, that fulfill these conditions.
A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow‐modulated or thermal‐modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic ion using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold‐up times are compared with measured values. In addition, two complex systems (4‐Way‐Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold‐up times and a defined split ratio between different paths of these systems. Using a numeric non‐linear solver, configurations of these systems were found, that fulfill these conditions.
Author Leppert, Jan
Brehmer, Tillman
Wüst, Matthias
Boeker, Peter
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0001-8857-8103
  surname: Leppert
  fullname: Leppert, Jan
  email: jleppert@uni-bonn.de
  organization: University of Bonn
– sequence: 2
  givenname: Tillman
  surname: Brehmer
  fullname: Brehmer, Tillman
  organization: University of Bonn
– sequence: 3
  givenname: Peter
  surname: Boeker
  fullname: Boeker, Peter
  organization: Hyperchrom GmbH Germany
– sequence: 4
  givenname: Matthias
  surname: Wüst
  fullname: Wüst, Matthias
  organization: University of Bonn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39178022$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAQAGALFUELrIwoEgtLy_mVOCOqoICQGApz5DhnmpLGxU5UlV9PopYOLEw-6b47n30jMqhdjYRcUphQAHa7DMFMGDABIGh6RIY0pnKccioGhxjiUzIKYQlAE5XCCTnlaRcBY0NiZlij11X5jUVkK7eJjK5MW-mmdHXkbNQsMPrQYZcr60hHNTYb5z_7pNHrsqq0LzFEbeg6dKDHZuHdSjfuw-v1YntOjq2uAl7szzPy_nD_Nn0cv7zOnqZ3L2PD01iMtSwQpeTGorIQM8YLmuZKUEsLo6hBZnOlUOa5jXlhBUojQGshi5wbxRJ-Rm52fdfefbUYmmxVBoPdgDW6NmScSp5Q4KD-p5DGTImUy45e_6FL1_q6e0ivklgmCfR3X-1Vm6-wyNa-XGm_zX5_ugOTHTDeheDRHgiFrF9l1q8yO6yyKxC7gk1Z4fYfnT3P51PFueA_RZWhBQ
Cites_doi 10.1021/acs.analchem.2c03107
10.1016/j.foodchem.2020.128224
10.1021/acs.analchem.8b00900
10.1016/j.chroma.2005.06.008
10.1016/j.jfca.2022.104790
10.1016/j.trac.2018.04.016
10.1016/j.chroma.2020.460985
10.1016/j.jcoa.2022.100059
10.1002/9783527632145
10.1016/j.chroma.2004.01.015
10.1016/1044-0305(96)80519-8
10.1016/j.chroma.2015.09.027
10.1016/j.chroma.2019.460696
10.1137/141000671
10.1007/BF02257297
10.1016/j.chroma.2023.464467
10.1016/j.chroma.2020.461311
10.1109/JRPROC.1953.274449
10.1109/TCST.2021.3071316
10.21105/joss.04565
10.1007/BF02687994
10.1145/3511528.3511535
10.1021/acs.analchem.2c04710
10.1093/chromsci/45.10.650
10.1021/ac401419j
10.1021/acs.jced.1c00161
10.1016/j.chroma.2023.464301
10.1016/S0021-9673(01)80403-9
10.1016/j.chroma.2023.464369
10.1016/j.chroma.2021.462300
10.1016/j.chroma.2011.06.039
10.1007/978-3-662-53622-3
10.1007/s00216-018-1286-1
10.1016/S0021-9673(00)80278-2
10.1021/acs.jafc.6b04747
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024 The Author(s). Journal of Separation Science published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024 The Author(s). Journal of Separation Science published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7U5
8FD
L7M
7X8
7S9
L.6
DOI 10.1002/jssc.202400419
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
AGRICOLA
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1615-9314
EndPage n/a
ExternalDocumentID 39178022
10_1002_jssc_202400419
JSSC8334
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 452897652
– fundername: German Research Foundation (DFG)
  funderid: 452897652
– fundername: German Research Foundation (DFG)
  grantid: 452897652
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 452897652
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TUS
UB1
UPT
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XG1
XPP
XV2
YQT
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
1OB
7U5
8FD
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c3964-a5dee553cfe8f06223d19b841f1dc81ce2fb88e5bbf63df4e5c40aa45db3c8273
IEDL.DBID DR2
ISSN 1615-9306
1615-9314
IngestDate Fri Jul 11 18:33:15 EDT 2025
Fri Jul 11 01:41:28 EDT 2025
Wed Aug 13 07:20:08 EDT 2025
Mon Jul 21 05:56:14 EDT 2025
Tue Jul 01 01:27:01 EDT 2025
Sun Jul 06 04:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords hold‐up time calculation
pressure calculation
graph theory
gas chromatography
flow calculation
Language English
License Attribution
2024 The Author(s). Journal of Separation Science published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3964-a5dee553cfe8f06223d19b841f1dc81ce2fb88e5bbf63df4e5c40aa45db3c8273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8857-8103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202400419
PMID 39178022
PQID 3097657707
PQPubID 105495
PageCount 12
ParticipantIDs proquest_miscellaneous_3153710308
proquest_miscellaneous_3096284935
proquest_journals_3097657707
pubmed_primary_39178022
crossref_primary_10_1002_jssc_202400419
wiley_primary_10_1002_jssc_202400419_JSSC8334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Journal of separation science
PublicationTitleAlternate J Sep Sci
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 95
2021; 1651
2023; 1711
2021; 66
2012
2015; 1417
2022; 94
2010
1981; 203
2013; 85
1993
2021; 342
2024
2018; 66
1965; 18
2020; 1612
2022; 114
1995; 41
2021; 55
2017; 59
2020
1986; 22
2022; 7
2018; 410
2020; 1626
1965
2019; 113
2005; 1086
2018; 90
2017
2011; 1218
2022; 30
2022; 2
2007; 45
2004; 1037
2023; 1707
2020; 1620
1953; 41
1996; 7
2023; 1708
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Shannon CE (e_1_2_9_18_1) 1993
Abrahams JR (e_1_2_9_17_1) 1965
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
Poole CF (e_1_2_9_2_1) 2012
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 203
  start-page: 19
  year: 1981
  end-page: 28
  article-title: Use of heart cutting in gas chromatography: a review
  publication-title: J Chromatogr A
– volume: 55
  start-page: 92
  year: 2021
  end-page: 96
  article-title: High‐performance symbolic‐numerics via multiple dispatch
  publication-title: ACM Commun Comput Algebra
– volume: 1218
  start-page: 7487
  year: 2011
  end-page: 7498
  article-title: Identification of potent odourants in wine and brewed coffee using gas chromatography‐olfactometry and comprehensive two‐dimensional gas chromatography
  publication-title: J Chromatogr A
– volume: 1612
  year: 2020
  article-title: Retention time prediction of hydrocarbons in cryogenically modulated comprehensive two‐dimensional gas chromatography: a method development and translation application
  publication-title: J Chromatogr A
– volume: 1037
  start-page: 147
  year: 2004
  end-page: 189
  article-title: Determination of diffusion coefficients by gas chromatography
  publication-title: J Chromatogr A
– volume: 1417
  start-page: 79
  year: 2015
  end-page: 95
  article-title: Potential of the reversed‐inject differential flow modulator for comprehensive two‐dimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity
  publication-title: J Chromatogr A
– volume: 95
  start-page: 9437
  year: 2023
  end-page: 9444
  article-title: Development and application of a novel multiloop splitter‐based non‐cryogenic artificial trapping modulation system in comprehensive two‐dimensional gas chromatography
  publication-title: Anal Chem.
– volume: 113
  start-page: 379
  year: 2019
  end-page: 391
  article-title: Recent advances in modulator technology for comprehensive two dimensional gas chromatography
  publication-title: TrAC Trends Anal Chem
– volume: 1086
  start-page: 135
  year: 2005
  end-page: 140
  article-title: Flow model for coupled‐column gas chromatography systems
  publication-title: J Chromatogr A
– year: 2024
– volume: 1626
  year: 2020
  article-title: Comprehensive two‐dimensional gas chromatography thermodynamic modeling and selectivity evaluation for the separation of polychlorinated dibenzo‐p‐dioxins and dibenzofurans in fish tissue matrix
  publication-title: J Chromatogr A
– volume: 1707
  year: 2023
  article-title: Relation between characteristic temperature and elution temperature in temperature programmed gas chromatography—part I: Influence of initial temperature and heating rate
  publication-title: J Chromatogr A
– volume: 1651
  year: 2021
  article-title: Modeling approaches for temperature‐programmed gas chromatographic retention times under vacuum outlet conditions
  publication-title: J Chromatogr A
– year: 2010
– volume: 41
  start-page: 15
  year: 1995
  end-page: 22
  article-title: Relations between pneumatic parameters of ideal gas in a column with uniform permeability
  publication-title: Chromatographia
– year: 2012
– volume: 2
  year: 2022
  article-title: Splitter‐based non‐cryogenic artificial trapping (SNAT): novel modulation mechanism in comprehensive two dimensional gas chromatography
  publication-title: J Chromatogr Open
– volume: 66
  start-page: 2403
  year: 2018
  end-page: 2409
  article-title: Comparative aroma extract dilution analysis (cAEDA) of fat from tainted boars, castrated male pigs, and female pigs
  publication-title: J Agric Food Chem
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev
– volume: 22
  start-page: 51
  year: 1986
  end-page: 54
  article-title: A variable effluent splitter for simultaneous sniffing‐MS‐monitoring
  publication-title: Chromatographia
– volume: 1711
  year: 2023
  article-title: Theoretical modeling and machine learning‐based data processing workflows in comprehensive two‐dimensional gas chromatography—a review
  publication-title: J Chromatogr A
– volume: 30
  start-page: 667
  year: 2022
  end-page: 679
  article-title: Operation of natural gas pipeline networks with storage under transient flow conditions
  publication-title: IEEE Trans Contr Syst Technol.
– year: 1965
– volume: 41
  start-page: 1144
  year: 1953
  end-page: 1156
  article-title: Feedback theory‐some properties of signal flow graphs
  publication-title: Proc IRE
– volume: 90
  start-page: 8404
  year: 2018
  end-page: 8411
  article-title: Hyperfast Flow‐Field Thermal Gradient GC/MS of Explosives with Reduced Elution Temperatures
  publication-title: Anal Chem
– volume: 114
  year: 2022
  article-title: Research progress in comprehensive two‐dimensional gas chromatography‐mass spectrometry and its combination with olfactometry systems in the flavor analysis field
  publication-title: J Food Compos Anal
– volume: 1708
  year: 2023
  article-title: Exploring thermal isomerisation in gas chromatography analyses using natural pyrethrins: Comparison of comprehensive two‐dimensional and one‐dimensional gas chromatography
  publication-title: J Chromatogr A
– volume: 18
  start-page: 477
  year: 1965
  end-page: 481
  article-title: An improved technique for back‐flushing gas chromatographic columns
  publication-title: J Chromatogr A
– volume: 45
  start-page: 650
  year: 2007
  end-page: 656
  article-title: Analysis of biodiesel/petroleum diesel blends with comprehensive two‐dimensional gas chromatography
  publication-title: J Chromatogr Sci
– year: 2020
– volume: 66
  start-page: 3047
  year: 2021
  end-page: 3056
  article-title: Binary diffusion coefficients for methane and fluoromethanes in nitrogen
  publication-title: J Chem Eng Data
– volume: 7
  start-page: 4565
  year: 2022
  article-title: GasChromatographySimulator.jl
  publication-title: JOSS
– volume: 342
  year: 2021
  article-title: Characterization of key odor‐active compounds in commercial high‐salt liquid‐state soy sauce by switchable GC/GC × GC–olfactometry–MS and sensory evaluation
  publication-title: Food Chem
– volume: 7
  start-page: 737
  year: 1996
  end-page: 752
  article-title: Fast, very fast, and ultra‐fast gas chromatography‐mass spectrometry of thermally labile steroids, carbamates, and drugs in supersonic molecular beams
  publication-title: J Am Soc Mass Spectrom.
– year: 2017
– volume: 410
  start-page: 6861
  year: 2018
  end-page: 6871
  article-title: Analysis of thermally labile pesticides by on‐column injection gas chromatography in fruit and vegetables
  publication-title: Anal Bioanal Chem
– volume: 94
  start-page: 17081
  year: 2022
  end-page: 17089
  article-title: Top‐down approach to retention time prediction in comprehensive two‐dimensional gas chromatography–mass spectrometry
  publication-title: Anal. Chem.
– volume: 1620
  year: 2020
  article-title: Simulation of spatial thermal gradient gas chromatography
  publication-title: J Chromatogr A
– year: 1993
– volume: 85
  start-page: 9021
  year: 2013
  end-page: 9030
  article-title: Comprehensive theory of the Deans’ switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior
  publication-title: Anal Chem
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.analchem.2c03107
– ident: e_1_2_9_3_1
  doi: 10.1016/j.foodchem.2020.128224
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.analchem.8b00900
– volume-title: Gas chromatography
  year: 2012
  ident: e_1_2_9_2_1
– ident: e_1_2_9_9_1
  doi: 10.1016/j.chroma.2005.06.008
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jfca.2022.104790
– ident: e_1_2_9_7_1
  doi: 10.1016/j.trac.2018.04.016
– ident: e_1_2_9_28_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.chroma.2020.460985
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jcoa.2022.100059
– ident: e_1_2_9_22_1
  doi: 10.1002/9783527632145
– ident: e_1_2_9_36_1
  doi: 10.1016/j.chroma.2004.01.015
– volume-title: Signal flow analysis
  year: 1965
  ident: e_1_2_9_17_1
– ident: e_1_2_9_33_1
  doi: 10.1016/1044-0305(96)80519-8
– ident: e_1_2_9_6_1
  doi: 10.1016/j.chroma.2015.09.027
– ident: e_1_2_9_13_1
  doi: 10.1016/j.chroma.2019.460696
– ident: e_1_2_9_26_1
  doi: 10.1137/141000671
– ident: e_1_2_9_40_1
  doi: 10.1007/BF02257297
– ident: e_1_2_9_12_1
  doi: 10.1016/j.chroma.2023.464467
– ident: e_1_2_9_14_1
  doi: 10.1016/j.chroma.2020.461311
– ident: e_1_2_9_16_1
– ident: e_1_2_9_19_1
  doi: 10.1109/JRPROC.1953.274449
– ident: e_1_2_9_20_1
  doi: 10.1109/TCST.2021.3071316
– ident: e_1_2_9_15_1
  doi: 10.21105/joss.04565
– ident: e_1_2_9_25_1
  doi: 10.1007/BF02687994
– ident: e_1_2_9_27_1
  doi: 10.1145/3511528.3511535
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.analchem.2c04710
– ident: e_1_2_9_5_1
  doi: 10.1093/chromsci/45.10.650
– ident: e_1_2_9_30_1
  doi: 10.1021/ac401419j
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.jced.1c00161
– ident: e_1_2_9_24_1
  doi: 10.1016/j.chroma.2023.464301
– ident: e_1_2_9_38_1
  doi: 10.1016/S0021-9673(01)80403-9
– ident: e_1_2_9_35_1
  doi: 10.1016/j.chroma.2023.464369
– ident: e_1_2_9_10_1
  doi: 10.1016/j.chroma.2021.462300
– ident: e_1_2_9_4_1
  doi: 10.1016/j.chroma.2011.06.039
– volume-title: Claude Elwood Shannon: collected papers
  year: 1993
  ident: e_1_2_9_18_1
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-662-53622-3
– ident: e_1_2_9_34_1
  doi: 10.1007/s00216-018-1286-1
– ident: e_1_2_9_39_1
  doi: 10.1016/S0021-9673(00)80278-2
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.jafc.6b04747
SSID ssj0017890
Score 2.413529
Snippet A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2400419
SubjectTerms Algebra
Blood vessels
Capillaries
Chromatography
Complex systems
Computer algebra
computers
flow calculation
Gas chromatography
Gas flow
Graph theory
Graphs
hold‐up time calculation
mathematical theory
pressure calculation
separation
Title Generalized flow calculation of the gas flow in a network of capillaries used in gas chromatography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202400419
https://www.ncbi.nlm.nih.gov/pubmed/39178022
https://www.proquest.com/docview/3097657707
https://www.proquest.com/docview/3096284935
https://www.proquest.com/docview/3153710308
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOQAHPgqFtGVlJCROaZP4M8d2YVVVAiFKpd4i27GhBSVVsyuk_nrGcRK6IIEQ1_glcjyezLMzfgPwSllflo7nqc4ymzLEoEsVIqXUKKUxYnkX9iHfvRdHp-z4jJ_dOMUf9SGmDbfgGf33Oji4Nt3-T9HQi64LEoQhB5L1up8hYSuwoo-TflQeTnmGFReG7bREcjyqNmbF_vrt61HpN6q5zlz70LN4CHrsdMw4-bq3Wpo9e_2LnuP_vNUjeDDwUnIQJ9JjuOWaTbg7H8vBbcL9G8qFT8AOctXn164m_lv7naCt7VAKjLSeIK8kn3UX284bokkTE85Do9WXodhRWKWTVYdPQEAA2y9XLTLoQUX7KZwu3n6aH6VDvYbU0lKwVPPaOc6p9U75TCDxqPPSKJb7vLYqt67wOAEcN8YLWnvmuGWZ1ozXhlqFPGoLNpq2cc-ByMI5vF0IJzWTCLJ1rmVmqVBOGuUTeD3aq7qMshxVFGAuqjCE1TSECeyO5qwG9-wqmiEL41JmMoGXUzMOaPhbohvXrnqMwNhdUv4HDMYLGQq1qQSexakydYfiQjicY04g7Q3-l35Wxycnc0Up2_5H_A7cCxdjUuIubCyvVu4FEqWlmcHtgn2YwZ2DwzeHi1nvGj8AkLEPPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hcigcCpSPhhYwEhKntEn8EeeIVq2W0vZAW4lb5Dg2FFBSNbtC6q_vTJwEtkggxNnPkePxZJ6d8RuAN9r6onAyjU2S2FggBl0qUzHnldYGI5Z3dA55fKLm5-LwkxyzCekuTNCHmA7cyDP67zU5OB1I7_1UDf3adaRBSEmQgoQ_71JZ735X9XFSkErpniftuTBwxwXS41G3Mcn2VvuvxqXfyOYqd-2Dz8EDqMZhh5yTb7vLRbVrr28pOv7Xez2EjYGasndhLT2CO67ZhPXZWBFuE-7_Il74GOygWH1x7Wrmv7c_GJrbDtXAWOsZUkv22XSh7aJhhjUh55warbmkeke0UWfLDp-AAALbL1ctkuhBSPsJnB_sn83m8VCyIba8UCI2snZOSm690z5RyD3qtKi0SH1aW51al3lcA05WlVe89sJJKxJjhKwrbjVSqaew1rSN2wKWZ85hd6VcbkSOIFunJk8sV9rllfYRvB0NVl4GZY4yaDBnJU1hOU1hBDujPcvBQ7uSJ0jEZJ4neQSvp2acUPphYhrXLnuMwvBdcPkHDIaMnGq16QiehbUyDYfjXpiuMkcQ9xb_yzjLw9PTmeZcPP9H_CtYn58dH5VH708-bMM9AoQcxR1YW1wt3QvkTYvqZe8ZN45BEQ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgE98ChQAgWMhMQprRM_c0RbVqVAhSiVeoscx4YCSlbNrpD66xnHSeiCBEKcZxw5npnMZ2f8DcBzbX1ROJGlhlKbctTBkMplyliltcGM5V04h3x3JA9O-OGpOL10iz_yQ0wHbiEy-u91CPBF7fd-koZ-6bpAQRhqIHng_bzKJdXBr_c_TARSWbjmGbZcmLfTAtHxSNtI87318etp6TesuQ5d-9wzvwVmnHUsOfm6u1pWu_biF0LH_3mt23BzAKbkZfSkO3DFNVtwfTb2g9uCzUvUhXfBDnzVZxeuJv5b-52gse3QC4y0niCwJJ9MF2VnDTGkiRXnQWjNInQ7Ctt0surwCagQlO3n8xYh9ECjfQ9O5q8-zg7SoWFDalkheWpE7ZwQzHqnPZWIPOqsqDTPfFZbnVmXe_QAJ6rKS1Z77oTl1Bgu6opZjUDqPmw0beMeAFG5czhcSqcMV6hk68woapnUTlXaJ_BitFe5iLwcZWRgzsuwhOW0hAnsjOYsh_jsSkYRhgmlqErg2STGBQ2_S0zj2lWvIzF5F0z8QQcThgqd2nQC29FVpukw3AmHi8wJpL3B_zLP8vD4eKYZ4w__Uf8pXHu_Py_fvj568whuBHksUNyBjeX5yj1G0LSsnvRx8QNr-Q_G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+flow+calculation+of+the+gas+flow+in+a+network+of+capillaries+used+in+gas+chromatography&rft.jtitle=Journal+of+separation+science&rft.au=Leppert%2C+Jan&rft.au=Brehmer%2C+Tillman&rft.au=Boeker%2C+Peter&rft.au=W%C3%BCst%2C+Matthias&rft.date=2024-08-01&rft.issn=1615-9306&rft.volume=47&rft.issue=16+p.e2400419-&rft_id=info:doi/10.1002%2Fjssc.202400419&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon