Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography
SUMMARY This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty‐eight columns of varied stationary phase chemistries available on the market are evaluated. The retention factors of 134 selected test compounds are used to compute hierar...
Saved in:
Published in | Journal of chemometrics Vol. 26; no. 3-4; pp. 52 - 65 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty‐eight columns of varied stationary phase chemistries available on the market are evaluated. The retention factors of 134 selected test compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantitative structure–retention relationships (QSRRs). The use of HCA in conjunction with either PCA of QSRRs provides a classification of columns that is consistent with the experience of the SFC chromatographer. Besides, different coefficients, namely, Pearson correlation coefficient (r), selectivity difference (s2), distance (L), and angle (θ), were calculated between all couples of columns to identify a ranking index, which would provide meaningful information whenever two columns need to be compared on an objective basis. This can be the case either when an equivalent is sought for replacement of a reference column or when an orthogonal column is desired to achieve complementary selectivity. It is concluded that the θ angle and the normalized distance L/u are the best coefficients, allowing for a meaningful comparison between two columns. Copyright © 2012 John Wiley & Sons, Ltd.
This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). 48 columns with varied stationary phases available on the market are evaluated. The retention factors of 134 test‐compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA) and quantitative structure‐retention relationships (QSRRs). Besides, different coefficients were calculated between all couples of columns to identify a ranking index, which would provide meaningful information, whenever two columns need to be compared on an objective basis. |
---|---|
AbstractList | SUMMARY
This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty‐eight columns of varied stationary phase chemistries available on the market are evaluated. The retention factors of 134 selected test compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantitative structure–retention relationships (QSRRs). The use of HCA in conjunction with either PCA of QSRRs provides a classification of columns that is consistent with the experience of the SFC chromatographer. Besides, different coefficients, namely, Pearson correlation coefficient (r), selectivity difference (s2), distance (L), and angle (θ), were calculated between all couples of columns to identify a ranking index, which would provide meaningful information whenever two columns need to be compared on an objective basis. This can be the case either when an equivalent is sought for replacement of a reference column or when an orthogonal column is desired to achieve complementary selectivity. It is concluded that the θ angle and the normalized distance L/u are the best coefficients, allowing for a meaningful comparison between two columns. Copyright © 2012 John Wiley & Sons, Ltd.
This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). 48 columns with varied stationary phases available on the market are evaluated. The retention factors of 134 test‐compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA) and quantitative structure‐retention relationships (QSRRs). Besides, different coefficients were calculated between all couples of columns to identify a ranking index, which would provide meaningful information, whenever two columns need to be compared on an objective basis. This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty-eight columns of varied stationary phase chemistries available on the market are evaluated. The retention factors of 134 selected test compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantitative structure-retention relationships (QSRRs). The use of HCA in conjunction with either PCA of QSRRs provides a classification of columns that is consistent with the experience of the SFC chromatographer. Besides, different coefficients, namely, Pearson correlation coefficient (r), selectivity difference (s...), distance (L), and angle (...), were calculated between all couples of columns to identify a ranking index, which would provide meaningful information whenever two columns need to be compared on an objective basis. This can be the case either when an equivalent is sought for replacement of a reference column or when an orthogonal column is desired to achieve complementary selectivity. It is concluded that the ... angle and the normalized distance L... are the best coefficients, allowing for a meaningful comparison between two columns. (ProQuest: ... denotes formulae/symbols omitted.) SUMMARY This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty‐eight columns of varied stationary phase chemistries available on the market are evaluated. The retention factors of 134 selected test compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantitative structure–retention relationships (QSRRs). The use of HCA in conjunction with either PCA of QSRRs provides a classification of columns that is consistent with the experience of the SFC chromatographer. Besides, different coefficients, namely, Pearson correlation coefficient ( r ), selectivity difference ( s 2 ), distance ( L ), and angle ( θ ), were calculated between all couples of columns to identify a ranking index, which would provide meaningful information whenever two columns need to be compared on an objective basis. This can be the case either when an equivalent is sought for replacement of a reference column or when an orthogonal column is desired to achieve complementary selectivity. It is concluded that the θ angle and the normalized distance L /u are the best coefficients, allowing for a meaningful comparison between two columns. Copyright © 2012 John Wiley & Sons, Ltd. This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). 48 columns with varied stationary phases available on the market are evaluated. The retention factors of 134 test‐compounds are used to compute hierarchical cluster analysis (HCA), principal component analysis (PCA) and quantitative structure‐retention relationships (QSRRs). Besides, different coefficients were calculated between all couples of columns to identify a ranking index, which would provide meaningful information, whenever two columns need to be compared on an objective basis. |
Author | West, Caroline Lesellier, Eric |
Author_xml | – sequence: 1 givenname: Caroline surname: West fullname: West, Caroline email: caroline.west@univ-orleans.fr, Caroline West, Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, CNRS UMR 6005, BP 6759, 2 rue de Chartres, 45067 Orléans cedex 2, France., caroline.west@univ-orleans.fr organization: Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, CNRS UMR 6005, BP 6759, 2 rue de Chartres, 45067, Orléans cedex 2, France – sequence: 2 givenname: Eric surname: Lesellier fullname: Lesellier, Eric organization: Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, CNRS UMR 6005, BP 6759, 2 rue de Chartres, 45067, Orléans cedex 2, France |
BookMark | eNp1kMtOwzAURC1UJNqCxCdYrNik2LGTOEuooDwKCIlHd5bjOMRtEgc7EeTvcVWExIK7mcUczdXMBIwa0ygAjjGaYYTCM6nqGaaY7oExRmka4JCtRmCMGIuDlDByACbOrRHyHqFj0MxLVZtadVZL6KU0uYOdgbISzuligK4TnTaNsANsS-GUg4WxUMhSW1HBVsiNyqE0VV830PWtstLqTkvvFVWvvVVaU4vOvFvRlsMh2C9E5dTRj07By9Xl8_w6WD4ububny0CSNKYBTYpUUEX9paGUJMGooFEumRQ4ziOEVMZwGIcSFSzyDbMsJQJhJjMlklwRMgUnu9zWmo9euY6vTW8b_5KnEcZhFLHQQ6c7SFrjnFUFb62ufVOOEd-Oyf2YfDumR4Md-qkrNfzL8fnl_V9eu059_fLCbnickCTibw8LfrF4jVd39JY_kW-aoIjA |
CitedBy_id | crossref_primary_10_1016_j_chroma_2013_06_003 crossref_primary_10_1016_j_chroma_2015_07_071 crossref_primary_10_1016_j_chroma_2016_02_052 crossref_primary_10_1002_jssc_201501062 crossref_primary_10_1016_j_jchromb_2018_06_021 crossref_primary_10_1016_j_chroma_2017_02_030 crossref_primary_10_1021_ac503313j crossref_primary_10_1016_j_chroma_2013_09_055 crossref_primary_10_1016_j_aca_2015_04_009 crossref_primary_10_1016_j_chroma_2022_463340 crossref_primary_10_1016_j_chroma_2015_08_009 crossref_primary_10_1155_2017_5340601 crossref_primary_10_1016_j_chroma_2013_10_037 crossref_primary_10_1016_j_chroma_2014_08_005 crossref_primary_10_1002_jssc_202300431 crossref_primary_10_1016_j_chroma_2020_461839 crossref_primary_10_1021_ie303459a crossref_primary_10_1007_s00216_013_7097_5 crossref_primary_10_1016_j_chroma_2015_09_085 crossref_primary_10_1016_j_chroma_2012_05_008 crossref_primary_10_1002_cem_2511 crossref_primary_10_1016_j_chroma_2021_461923 crossref_primary_10_1016_j_chroma_2018_03_032 crossref_primary_10_5937_arhfarm74_49565 crossref_primary_10_1016_j_chroma_2014_01_060 crossref_primary_10_1007_s10337_018_3494_4 |
Cites_doi | 10.1007/BF02466449 10.1002/jssc.200800178 10.1002/jssc.200800057 10.1016/j.chroma.2006.02.050 10.1016/j.chroma.2005.09.016 10.1016/j.chroma.2009.05.059 10.1016/j.chroma.2004.02.006 10.1007/BF02505406 10.1016/j.chroma.2007.03.119 10.1016/j.chroma.2009.06.048 10.1016/S0021-9673(99)00364-7 10.1016/j.chroma.2007.10.002 10.1016/j.chroma.2007.12.062 10.1016/S0021-9673(02)00002-X 10.1016/j.chroma.2005.09.002 10.1002/jps.20070 10.1021/js990119 10.1016/j.chroma.2007.01.034 10.1016/S0021-9673(00)00445-3 10.1021/ac990539j 10.1016/j.chroma.2003.10.099 10.1016/j.chroma.2007.03.072 10.1002/cem.1108 10.1016/j.chroma.2003.12.004 10.1016/0021-9673(94)80575-X 10.1016/j.chroma.2006.01.125 10.1016/j.chroma.2006.02.002 10.1016/j.chroma.2005.03.104 10.1016/j.chroma.2008.02.108 10.1002/jssc.201100278 10.1016/j.chroma.2004.10.027 10.1016/S0021-9673(04)01107-0 10.1016/j.chroma.2008.10.081 10.1002/cem.1116 10.1016/j.aca.2004.12.030 10.1016/j.chroma.2006.06.006 10.1016/S0021-9673(03)00512-0 10.1016/S0021-9673(00)01250-4 10.1002/jssc.200390034 10.1016/S0021-9673(00)90032-3 10.1016/j.chroma.2007.10.079 10.1016/j.chroma.2006.01.109 10.1016/S0021-9673(03)01142-7 10.1016/j.chroma.2006.06.074 10.1016/0021-9673(95)01238-9 10.1016/j.chroma.2008.07.016 10.1016/S0021-9673(03)00393-5 10.1016/j.chroma.2005.03.117 10.1016/j.chroma.2007.09.011 10.1016/S0021-9673(99)00742-6 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Mar/Apr 2012 |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Mar/Apr 2012 |
DBID | BSCLL AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cem.1414 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-128X |
EndPage | 65 |
ExternalDocumentID | 2620018151 10_1002_cem_1414 CEM1414 ark_67375_WNG_BGV6XK4J_Q |
Genre | article Feature |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3964-47f9a4e444492cc3710f45dc8ca16d500eb81262c0f85128bb93a018cbea7de33 |
IEDL.DBID | DR2 |
ISSN | 0886-9383 |
IngestDate | Thu Oct 10 20:24:36 EDT 2024 Fri Aug 23 03:18:39 EDT 2024 Sat Aug 24 00:58:52 EDT 2024 Wed Oct 30 09:53:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3964-47f9a4e444492cc3710f45dc8ca16d500eb81262c0f85128bb93a018cbea7de33 |
Notes | ArticleID:CEM1414 ark:/67375/WNG-BGV6XK4J-Q istex:4474B0498FF3E895E2E0140E3212E1F172E5A944 |
PQID | 951125582 |
PQPubID | 37374 |
PageCount | 14 |
ParticipantIDs | proquest_journals_951125582 crossref_primary_10_1002_cem_1414 wiley_primary_10_1002_cem_1414_CEM1414 istex_primary_ark_67375_WNG_BGV6XK4J_Q |
PublicationCentury | 2000 |
PublicationDate | March-April 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March-April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | Journal of chemometrics |
PublicationTitleAlternate | J. Chemometrics |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J. Chromatogr. A 2006; 1126:143-194. Marchand DH, Snyder LR, Dolan JW. Characterization and applications of reversed-phase column selectivity based on the hydrophobic-subtraction model. J. Chromatogr. A 2008; 1191:2-20. Cruz E, Euerby MR, Johnson CM, Hackett CA. Chromatographic classification of commercially available reverse-phase HPLC columns. Chromatographia 1997; 44:151-161. Németh T, Haghedooren E, Noszál B, Hoogmartens J, Adams E. Three methods to characterize reversed phase liquid chromatographic columns applied to pharmaceutical separations. J. Chemometrics 2008; 22:178-185. Visky D, Vander Heyden Y, Iványi T, Baten P, De Beer J, Kovács Z, Noszál B, Dehouck P, Roets E, Massart DL, Hoogmartens J. Charachterisation of reversed-phase liquid chromatographic columns by chromatographic tests. Rational column classification by a minimal number of column parameters. J. Chromatogr. A. 2003; 1012:11-29. Lopez LA, Rutan SC. Comparison of methods for characterization of reversed-phase liquid chromatographic selectivity. J. Chromatogr. A. 2002; 965:301-314. Lesellier E, West C. Combined supercritical fluid chromatographic method for the characterization of octadecylsiloxane-bonded stationary phases. J. Chromatogr. A 2007; 1149:345-357. West C, Lesellier E. Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model II. Comparison tools. J. Chromatogr. A 2006; 1110:191-199. Sander LC, Wise SA. A new standard reference material for column evaluation in reversed-phase liquid chromatography. J. Sep. Sci. 2003; 26:283-294. Lesellier E, Gurdale K, Tchapla A. Separation of cis/trans isomers of β-carotene by supercritical fluid chromatography. J. Chromatogr. A 1999; 844:307-320. West C, Lesellier E. Advances in Chromatography, Grushka E, Gringerg N (eds.). CRC Press: Boca Raton, FL, 2010; 48, 195-254. Jandera P, Vynuchalová K, Hájek T, Česla P, Vohralík G. Characterization of HPLC columns for two-dimensional LC × LC separations of phenolic acids and flavonoids. J. Chemometrics. 2008; 22:203-217. Kaliszan R, van Straten MA, Markuszewski M, Cramers CA, Claessens HA. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships. J. Chromatogr. A. 1999; 855:455-486. Euerby MR, Petersson P. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing polar embedded groups/amino endcapping using principal component analysis. J. Chromatogr. A. 2005; 1088:1-15. Ishihama Y, Asakawa N. Characterization of lipophilicity scales using vectors from solvation energy descriptors. J. Pharm. Sci. 1999; 88:1305-1312. Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004; 1037:29-47. Turowski M, Kaliszan R, Lüllmann C, Genieser HG, Jastorff B. New stationary phases for the high-performance liquid chromatographic separation of nucleosides and cyclic nucleotides synthesis and chemometric analysis of retention data. J. Chromatogr. A. 1996; 728:201-211. Lämmerhofer M, Richter M, Wu J, Nogueira R, Bicker W, Lindner W. Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J. Sep. Sci. 2008; 31:2572-2588. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid chromatography. J. Chromatogr. A 2008; 1191:21-39. West C, Ogden J, Lesellier E. Possibility of predicting separations in supercritical fluid chromatography with the solvation parameter model. J. Chromatogr. A 2009; 1216:5600-5607. Lesellier E. Tchapla A. Retention behaviour of triglycerides in octadecyl packed subcritical fluid chromatography with CO2/modifier mobile phases. Anal. Chem. 1999; 71:5372-5378. West C, Lesellier E. Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model I. Alkylsiloxane-bonded stationary phases. J. Chromatogr. A 2006; 1110:181-190. Zhang Y, Carr PW. A visual approach to stationary phase selectivity classification based on the Snyder-Dolan hydrophobic-subtraction model. J. Chromatogr. A. 2009; 1216:6685-6694. Baczek T, Kaliszan R, Novotná K, Jandera P. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model. J. Chromatogr. A. 2005; 1075: 109-115. Gaudin K, Lesellier E, Chaminade P, Ferrier D, Baillet A, Tchapla A. Retention behaviour of ceramides in subcritical fluid chromatography in comparison with non-aqueous reversed-phase liquid chromatography. J. Chromatogr. A 2000; 883:211-222. Yarita T, Nomura A, Abe K, Takeshita Y. Supercritical fluid chromatographic determination of tocopherols on an ODS-silica gel column. J. Chromatogr. A 1994; 679:329-334. Bamba T, Fukusaki E, Kajiyama S, Ute K, Kitayama T, Kobayashi A. High-resolution analysis of polyprenols by supercritical fluid chromatography. J. Chromatogr. A 2001; 911:113-117. West C, Lesellier E. Effects of modifiers in subcritical fluid chromatography on retention with porous graphitic carbon. J. Chromatogr. A 2005; 1087:64-76. Gilroy JJ, Dolan JW, Snyder LR. Column selectivity in reversed-phase liquid chromatography: IV. Type-B alkyl-silica columns. J. Chromatogr. A 2003; 1000:757-778. West C, Lesellier E. Comment on the paper "Characterization of stationary phases by a linear solvation energy relationship utilizing supercritical fluid chromatography" by C.R. Mitchell, N.J. Benz, S. Zhang. J. Sep. Sci. 2011; 34:1917-1924. Le Mapihan K, Vial J, Jardy A. Reversed-phase liquid chromatography column testing and classification: physicochemical interpretation based on a wide set of stationary phases. J. Chromatogr. A. 2007; 1144: 183-196. West C, Fougère L, Lesellier E. Combined supercritical fluid chromatography tests to improve the classification of numerous stationary phases used in reversed-phase liquid chromatography. J. Chromatogr. A 2008; 1189:227-244. Le Mapihan K, Vial J, Jardy A. Testing of "special base" columns in reversed-phase liquid chromatography A rational approach considering solvent effects. J. Chromatogr. A. 2004; 1030:135-147. Delaney MF, Papas AN, Walters MJ. Chemometric classification of reversed-phase high-performance liquid chromatography columns. J. Chromatogr. 1987; 410:31-41. Euerby MR, Petersson P, Campbell W, Roe W. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing phenyl moieties using principal component analysis. J. Chromatogr. A. 2007; 1154:138-151. Lesellier E. Overview of the retention in subcritical fluid chromatography with varied polarity stationary phases. J. Sep. Sci. 2008; 31:1238-1251. Lesellier E, Tchapla A. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification. J. Chromatogr. A 2005; 1100:45-59 West C, Lesellier E. Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases. J. Chromatogr. A 2006; 1115:233-245. West C, Lesellier E. Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model III. Polar stationary phases. J. Chromatogr. A 2006; 1110:200-213. Abraham MH, Martins F. Human skin permeation and partition: general linear free-energy relationship analyses. J. Pharm. Sci. 2004; 93:1508-1523. Lesellier E, Tchapla A. Separation of vegetable oil triacylglycerides by subcritical fluid chromatography with octadecyl packed columns and CO2/modifier mobile phases. Chromatographia 2000; 51:688-694. West C, Lesellier E. Characterization of stationary phases in supercritical fluid chromatography with the solvation parameter model V. Elaboration of a reduced set of test solutes for rapid evaluation. J. Chromatogr. A 2007; 1169:205-219. Lesellier E. Retention mechanisms in super/subcritical fluid chromatography on packed columns. J. Chromatogr. A 2009; 1216 :1881-1890. Forlay-Frick P, Fekete J, Héberger K. Classification and replacement test of HPLC systems using principal component analysis. Anal. Chim. Acta 2005; 536:71-81. Hoffman BJ, Taylor LT, Rumbelow S, Goff L, Pinkston JD. Separation of derivatized alcohol ethoxylates and propoxylates by low temperature packed column supercritical fluid chromatography using ultraviolet absorbance detection. J. Chromatogr. A 2004; 1034:207-212. West C, Lesellier E. Separation of substituted aromatic isomers with porous graphitic carbon in subcritical fluid chromatography. J. Chromatogr. A 2005; 1099:175-184. West C, Lesellier E. Orthogonal screening system of columns for supercritical fluid chromatography. J. Chromatogr. A 2008; 1203:105-113. Neue UD, O'Gara JE, Méndez A. Selectivity in reversed-phase separations: Influence of the stationary phase. J. Chromatogr. A 2006; 1127:161-174. Euerby MR, Petersson P. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns using principal component analysis. J. Chromatogr. A 2003; 994 13-36. West C, Lesellier E, Tchapla A. Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide-methanol mobile phases. J. Chromatogr. A 2004; 1048:99-109. Michel M, Baczek T, Studzińska S, Bodzioch K, Jonsson T, Kaliszan R, Buszewski B. Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships. J. Chromatogr. A. 2007; 1175:49-54. 1996; 728 1997; 44 2008; 1191 2007; 1144 2007; 1149 2003; 1012 2007; 1169 2006; 1126 2005; 536 2005; 1099 2000; 51 2005; 1075 1999; 88 2006; 1127 2011; 34 2008; 31 1999; 844 2003; 994 1994; 679 2004; 1048 2009; 1216 2010; 48 1987; 410 2008; 1203 2008; 1189 2004; 93 2000; 883 2007; 1154 2007; 1175 2003; 1000 2006; 1115 2005; 1088 2002; 965 2005; 1087 2003; 26 2004; 1030 2006; 1110 2008; 22 2004; 1034 1999; 71 2001; 911 1999; 855 2004; 1037 2005; 1100 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 West C (e_1_2_7_24_1) 2010 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 1110 start-page: 181 year: 2006 end-page: 190 article-title: Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model I. Alkylsiloxane‐bonded stationary phases publication-title: J. Chromatogr. A – volume: 1115 start-page: 233 year: 2006 end-page: 245 article-title: Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases publication-title: J. Chromatogr. A – volume: 1030 start-page: 135 year: 2004 end-page: 147 article-title: Testing of “special base” columns in reversed‐phase liquid chromatography A rational approach considering solvent effects publication-title: J. Chromatogr. A. – volume: 883 start-page: 211 year: 2000 end-page: 222 article-title: Retention behaviour of ceramides in subcritical fluid chromatography in comparison with non‐aqueous reversed‐phase liquid chromatography publication-title: J. Chromatogr. A – volume: 1126 start-page: 143 year: 2006 end-page: 194 article-title: The chemical interpretation and practice of linear solvation energy relationships in chromatography publication-title: J. Chromatogr. A – volume: 88 start-page: 1305 year: 1999 end-page: 1312 article-title: Characterization of lipophilicity scales using vectors from solvation energy descriptors publication-title: J. Pharm. Sci. – volume: 22 start-page: 178 year: 2008 end-page: 185 article-title: Three methods to characterize reversed phase liquid chromatographic columns applied to pharmaceutical separations publication-title: J. Chemometrics – volume: 1110 start-page: 200 year: 2006 end-page: 213 article-title: Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model III. Polar stationary phases publication-title: J. Chromatogr. A – volume: 1012 start-page: 11 year: 2003 end-page: 29 article-title: Charachterisation of reversed‐phase liquid chromatographic columns by chromatographic tests. Rational column classification by a minimal number of column parameters publication-title: J. Chromatogr. A. – volume: 51 start-page: 688 year: 2000 end-page: 694 article-title: Separation of vegetable oil triacylglycerides by subcritical fluid chromatography with octadecyl packed columns and CO /modifier mobile phases publication-title: Chromatographia – volume: 1034 start-page: 207 year: 2004 end-page: 212 article-title: Separation of derivatized alcohol ethoxylates and propoxylates by low temperature packed column supercritical fluid chromatography using ultraviolet absorbance detection publication-title: J. Chromatogr. A – volume: 31 start-page: 1238 year: 2008 end-page: 1251 article-title: Overview of the retention in subcritical fluid chromatography with varied polarity stationary phases publication-title: J. Sep. Sci. – volume: 22 start-page: 203 year: 2008 end-page: 217 article-title: Characterization of HPLC columns for two‐dimensional LC × LC separations of phenolic acids and flavonoids publication-title: J. Chemometrics. – volume: 1088 start-page: 1 year: 2005 end-page: 15 article-title: Chromatographic classification and comparison of commercially available reversed‐phase liquid chromatographic columns containing polar embedded groups/amino endcapping using principal component analysis publication-title: J. Chromatogr. A. – volume: 855 start-page: 455 year: 1999 end-page: 486 article-title: Molecular mechanism of retention in reversed‐phase high‐performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships publication-title: J. Chromatogr. A. – volume: 844 start-page: 307 year: 1999 end-page: 320 article-title: Separation of cis/trans isomers of β‐carotene by supercritical fluid chromatography publication-title: J. Chromatogr. A – volume: 1087 start-page: 64 year: 2005 end-page: 76 article-title: Effects of modifiers in subcritical fluid chromatography on retention with porous graphitic carbon publication-title: J. Chromatogr. A – volume: 1216 start-page: 1881 year: 2009 end-page: 1890 article-title: Retention mechanisms in super/subcritical fluid chromatography on packed columns publication-title: J. Chromatogr. A – volume: 1216 start-page: 6685 year: 2009 end-page: 6694 article-title: A visual approach to stationary phase selectivity classification based on the Snyder–Dolan hydrophobic‐subtraction model publication-title: J. Chromatogr. A. – volume: 26 start-page: 283 year: 2003 end-page: 294 article-title: A new standard reference material for column evaluation in reversed‐phase liquid chromatography publication-title: J. Sep. Sci. – volume: 44 start-page: 151 year: 1997 end-page: 161 article-title: Chromatographic classification of commercially available reverse‐phase HPLC columns publication-title: Chromatographia – volume: 994 start-page: 13 year: 2003 end-page: 36 article-title: Chromatographic classification and comparison of commercially available reversed‐phase liquid chromatographic columns using principal component analysis publication-title: J. Chromatogr. A – volume: 71 start-page: 5372 year: 1999 end-page: 5378 article-title: Retention behaviour of triglycerides in octadecyl packed subcritical fluid chromatography with CO /modifier mobile phases publication-title: Anal. Chem. – volume: 1189 start-page: 227 year: 2008 end-page: 244 article-title: Combined supercritical fluid chromatography tests to improve the classification of numerous stationary phases used in reversed‐phase liquid chromatography publication-title: J. Chromatogr. A – volume: 728 start-page: 201 year: 1996 end-page: 211 article-title: New stationary phases for the high‐performance liquid chromatographic separation of nucleosides and cyclic nucleotides synthesis and chemometric analysis of retention data publication-title: J. Chromatogr. A. – volume: 93 start-page: 1508 year: 2004 end-page: 1523 article-title: Human skin permeation and partition: general linear free‐energy relationship analyses publication-title: J. Pharm. Sci. – volume: 965 start-page: 301 year: 2002 end-page: 314 article-title: Comparison of methods for characterization of reversed‐phase liquid chromatographic selectivity publication-title: J. Chromatogr. A. – volume: 1110 start-page: 191 year: 2006 end-page: 199 article-title: Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model II. Comparison tools publication-title: J. Chromatogr. A – volume: 1000 start-page: 757 year: 2003 end-page: 778 article-title: Column selectivity in reversed‐phase liquid chromatography: IV. Type‐B alkyl‐silica columns publication-title: J. Chromatogr. A – volume: 1099 start-page: 175 year: 2005 end-page: 184 article-title: Separation of substituted aromatic isomers with porous graphitic carbon in subcritical fluid chromatography publication-title: J. Chromatogr. A – volume: 1216 start-page: 5600 year: 2009 end-page: 5607 article-title: Possibility of predicting separations in supercritical fluid chromatography with the solvation parameter model publication-title: J. Chromatogr. A – volume: 1144 start-page: 183 year: 2007 end-page: 196 article-title: Reversed‐phase liquid chromatography column testing and classification: physicochemical interpretation based on a wide set of stationary phases publication-title: J. Chromatogr. A. – volume: 1075 start-page: 109 year: 2005 end-page: 115 article-title: Comparative characteristics of HPLC columns based on quantitative structure–retention relationships (QSRR) and hydrophobic‐subtraction model publication-title: J. Chromatogr. A. – volume: 1191 start-page: 21 year: 2008 end-page: 39 article-title: A unified classification of stationary phases for packed column supercritical fluid chromatography publication-title: J. Chromatogr. A – volume: 1203 start-page: 105 year: 2008 end-page: 113 article-title: Orthogonal screening system of columns for supercritical fluid chromatography publication-title: J. Chromatogr. A – volume: 31 start-page: 2572 year: 2008 end-page: 2588 article-title: Mixed‐mode ion‐exchangers and their comparative chromatographic characterization in reversed‐phase and hydrophilic interaction chromatography elution modes publication-title: J. Sep. Sci. – volume: 1169 start-page: 205 year: 2007 end-page: 219 article-title: Characterization of stationary phases in supercritical fluid chromatography with the solvation parameter model V. Elaboration of a reduced set of test solutes for rapid evaluation publication-title: J. Chromatogr. A – volume: 1175 start-page: 49 year: 2007 end-page: 54 article-title: Comparative evaluation of high‐performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure–retention relationships publication-title: J. Chromatogr. A. – volume: 1048 start-page: 99 year: 2004 end-page: 109 article-title: Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide–methanol mobile phases publication-title: J. Chromatogr. A – volume: 34 start-page: 1917 year: 2011 end-page: 1924 article-title: Comment on the paper “Characterization of stationary phases by a linear solvation energy relationship utilizing supercritical fluid chromatography” by C.R. Mitchell, N.J. Benz, S. Zhang publication-title: J. Sep. Sci. – volume: 1191 start-page: 2 year: 2008 end-page: 20 article-title: Characterization and applications of reversed‐phase column selectivity based on the hydrophobic‐subtraction model publication-title: J. Chromatogr. A – volume: 1100 start-page: 45 year: 2005 end-page: 59 article-title: A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification publication-title: J. Chromatogr. A – volume: 48 start-page: 195 year: 2010 end-page: 254 – volume: 536 start-page: 71 year: 2005 end-page: 81 article-title: Classification and replacement test of HPLC systems using principal component analysis publication-title: Anal. Chim. Acta – volume: 410 start-page: 31 year: 1987 end-page: 41 article-title: Chemometric classification of reversed‐phase high‐performance liquid chromatography columns publication-title: J. Chromatogr. – volume: 911 start-page: 113 year: 2001 end-page: 117 article-title: High‐resolution analysis of polyprenols by supercritical fluid chromatography publication-title: J. Chromatogr. A – volume: 1127 start-page: 161 year: 2006 end-page: 174 article-title: Selectivity in reversed‐phase separations: Influence of the stationary phase publication-title: J. Chromatogr. A – volume: 1037 start-page: 29 year: 2004 end-page: 47 article-title: Determination of sets of solute descriptors from chromatographic measurements publication-title: J. Chromatogr. A – volume: 1154 start-page: 138 year: 2007 end-page: 151 article-title: Chromatographic classification and comparison of commercially available reversed‐phase liquid chromatographic columns containing phenyl moieties using principal component analysis publication-title: J. Chromatogr. A. – volume: 679 start-page: 329 year: 1994 end-page: 334 article-title: Supercritical fluid chromatographic determination of tocopherols on an ODS‐silica gel column publication-title: J. Chromatogr. A – volume: 1149 start-page: 345 year: 2007 end-page: 357 article-title: Combined supercritical fluid chromatographic method for the characterization of octadecylsiloxane‐bonded stationary phases publication-title: J. Chromatogr. A – ident: e_1_2_7_32_1 doi: 10.1007/BF02466449 – ident: e_1_2_7_39_1 doi: 10.1002/jssc.200800178 – ident: e_1_2_7_3_1 doi: 10.1002/jssc.200800057 – ident: e_1_2_7_22_1 doi: 10.1016/j.chroma.2006.02.050 – start-page: 195 volume-title: Advances in Chromatography year: 2010 ident: e_1_2_7_24_1 contributor: fullname: West C – ident: e_1_2_7_14_1 doi: 10.1016/j.chroma.2005.09.016 – ident: e_1_2_7_45_1 doi: 10.1016/j.chroma.2009.05.059 – ident: e_1_2_7_8_1 doi: 10.1016/j.chroma.2004.02.006 – ident: e_1_2_7_6_1 doi: 10.1007/BF02505406 – ident: e_1_2_7_33_1 doi: 10.1016/j.chroma.2007.03.119 – ident: e_1_2_7_47_1 doi: 10.1016/j.chroma.2009.06.048 – ident: e_1_2_7_4_1 doi: 10.1016/S0021-9673(99)00364-7 – ident: e_1_2_7_38_1 doi: 10.1016/j.chroma.2007.10.002 – ident: e_1_2_7_16_1 doi: 10.1016/j.chroma.2007.12.062 – ident: e_1_2_7_29_1 doi: 10.1016/S0021-9673(02)00002-X – ident: e_1_2_7_43_1 doi: 10.1016/j.chroma.2005.09.002 – ident: e_1_2_7_49_1 doi: 10.1002/jps.20070 – ident: e_1_2_7_52_1 doi: 10.1021/js990119 – ident: e_1_2_7_31_1 doi: 10.1016/j.chroma.2007.01.034 – ident: e_1_2_7_7_1 doi: 10.1016/S0021-9673(00)00445-3 – ident: e_1_2_7_5_1 doi: 10.1021/ac990539j – ident: e_1_2_7_30_1 doi: 10.1016/j.chroma.2003.10.099 – ident: e_1_2_7_15_1 doi: 10.1016/j.chroma.2007.03.072 – ident: e_1_2_7_51_1 doi: 10.1002/cem.1108 – ident: e_1_2_7_17_1 doi: 10.1016/j.chroma.2003.12.004 – ident: e_1_2_7_9_1 doi: 10.1016/0021-9673(94)80575-X – ident: e_1_2_7_19_1 doi: 10.1016/j.chroma.2006.01.125 – ident: e_1_2_7_20_1 doi: 10.1016/j.chroma.2006.02.002 – ident: e_1_2_7_42_1 doi: 10.1016/j.chroma.2005.03.104 – ident: e_1_2_7_23_1 doi: 10.1016/j.chroma.2008.02.108 – ident: e_1_2_7_26_1 doi: 10.1002/jssc.201100278 – ident: e_1_2_7_34_1 doi: 10.1016/j.chroma.2004.10.027 – ident: e_1_2_7_41_1 doi: 10.1016/S0021-9673(04)01107-0 – ident: e_1_2_7_2_1 doi: 10.1016/j.chroma.2008.10.081 – ident: e_1_2_7_40_1 doi: 10.1002/cem.1116 – ident: e_1_2_7_36_1 doi: 10.1016/j.aca.2004.12.030 – ident: e_1_2_7_48_1 doi: 10.1016/j.chroma.2006.06.006 – ident: e_1_2_7_50_1 doi: 10.1016/S0021-9673(03)00512-0 – ident: e_1_2_7_10_1 doi: 10.1016/S0021-9673(00)01250-4 – ident: e_1_2_7_13_1 doi: 10.1002/jssc.200390034 – ident: e_1_2_7_27_1 doi: 10.1016/S0021-9673(00)90032-3 – ident: e_1_2_7_12_1 doi: 10.1016/j.chroma.2007.10.079 – ident: e_1_2_7_21_1 doi: 10.1016/j.chroma.2006.01.109 – ident: e_1_2_7_35_1 doi: 10.1016/S0021-9673(03)01142-7 – ident: e_1_2_7_18_1 doi: 10.1016/j.chroma.2006.06.074 – ident: e_1_2_7_37_1 doi: 10.1016/0021-9673(95)01238-9 – ident: e_1_2_7_44_1 doi: 10.1016/j.chroma.2008.07.016 – ident: e_1_2_7_11_1 doi: 10.1016/S0021-9673(03)00393-5 – ident: e_1_2_7_46_1 doi: 10.1016/j.chroma.2005.03.117 – ident: e_1_2_7_25_1 doi: 10.1016/j.chroma.2007.09.011 – ident: e_1_2_7_28_1 doi: 10.1016/S0021-9673(99)00742-6 |
SSID | ssj0009934 |
Score | 2.1907732 |
Snippet | SUMMARY
This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty‐eight columns of varied... This paper investigates classification models for packed columns used in supercritical fluid chromatography (SFC). Forty-eight columns of varied stationary... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 52 |
SubjectTerms | Chromatography Classification Cluster analysis Comparative analysis hierarchical cluster analysis Information principal component analysis quantitative structure-retention relationships stationary phase classification supercritical fluid chromatography |
Title | Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography |
URI | https://api.istex.fr/ark:/67375/WNG-BGV6XK4J-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1414 https://www.proquest.com/docview/951125582 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kPuiL3-JZlRXEt7S5_UryqGc_qLSgWD3wYclOJrSczR3JHah_vTPZpLWCIOYlgWx2k5mdnd9uZn8jxCtnbKZ0bRLQhU4M1ioJudMJmDp3gA6V4s3Jxyfu8NQcze18iKrkvTCRH-JywY0tox-v2cDL0O1ekYYCXpCZ9zmspzrjaK53H6-Yo8jtmgggXVLQLGzknU3V7vjgNU90k4X6_RrM_B2s9t5m_674Or5nDDJZ7GzWYQd-_kHh-H8fck_cGUCofBN7zX1xA5sH4tZszP32UDR8vbzgbFsgY5LpTq6XEhhrn9c_ZBf_4FOjcnVGjrCTBH4lB2a2VDHNwxdYSeCRr5HdZoUtDCkVZP1tc063ztolYeWBL_uRON3f-zQ7TIbMDKxSZxKT1UVp0NBRKABNMKU2toIcyqmrbJpiIODgFKQ1ITqVh1DoMp3mELDMKtT6sdhqlg0-ETLXDqcYHDJxHYDNtcGQVWlljQlBuYl4OWrJryIBh49Uy8qT5DxLbiJe9-q7LFC2Cw5Yy6z_cnLg3x58dvP35sh_mIjtUb9-sNXOF4w5rc0VVdPr6a_t-NneMZ-f_mvBbXGbAJaKMWvPxNa63eBzAjHr8KLvrr8AstDvZA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9lAuvBFLeRgJcUub9SuJOMHSdmm7K4Fa2AOSFU8ctVqaXSW7EvDrmYmTliIhIXJJpDh2MuPxfHbG3zD2yiidCFmqCGQmI-VLEbnUyAhUmRrwxgtBm5MnUzM-U0czPdtgb_q9MIEf4mrBjSyjHa_JwGlBeu-aNRT8Jdo5JbHeQmuXlLfh_adr7ih0vCpASBNlOA_rmWdjsdc_ecMXbZFYv98Amr_D1dbfHNxhX_s3DWEm8931yu3Czz9IHP_zU-6y2x0O5W9Dx7nHNnx1n22P-vRvD1hF14tLSrgFPOSZbvhqwYHg9kX5gzfhJz62ypfn6AsbjviXU2xmjRXjVHzuCw40-FW8WS99DV1WBV5-W1_grfN6gXC5o8x-yM4O9k9H46hLzkBaNSpSSZnlyis8MgEgEamUSheQQj40hY5j7xA7GAFxiaBOpM5lMo-HKTifJ4WX8hHbrBaVf8x4Ko0femc8cdcB6FQq75IiLrRSzgkzYC97Ndll4OCwgW1ZWJScJckN2OtWf1cF8npOMWuJtl-mh_bd4WczO1ZH9uOA7fQKtp25NjYj2Kl1KrCaVlF_bceO9id0fvKvBV-w7fHp5MSefJge77BbiLdECGF7yjZX9do_Q0yzcs_bvvsLlb7zfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bT9swFIetCaSxl93YRMfYPGnaWyD1Lcnj6Ci3UQ00RiUerNixBepIq6SVNv56zokTGJMmTeQlkeLEiY8vn5Pj3yHkoxIyYdyLyPKMR8J5FplU8cgKnyrrlGMMFycfjdTeqTgYy3HrVYlrYYI-xO0HN2wZTX-NDXxW-K070VDrrqCZYwzrZaEAfBGITu6ko2DcFYEgVZTBNKwTno3ZVnflvaFoGUv11z3O_JNWm-Fm-Iycdw8avEwmm4u52bTXf2k4PuxNnpOnLYXSz6HavCCPXPmSrAy64G-rpMTj6RWG27I0RJmu6XxKLcL2pf9N6_ALHzKlswsYCWsK9EvRM7OCG8NEfOIKarHrK2m9mLnKtjEVqP-5uIRTF9UUYLkVzH5FToc73wd7URuaAW2qRCQSn-XCCdgyZi0HTvFCFja1eV8VMo6dAXJQzMYekI6lxmQ8j_upNS5PCsf5a7JUTku3RmjKles7oxwq11krUy6cSYq4kEIYw1SPfOispGdBgUMHrWWmoeQ0llyPfGrMd5sgrybosZZIfTba1du7P9T4UBzo4x5Z7-yr28Za6wyhU8qUwW0aO_0zHz3YOcL9m_9N-J48_vZlqL_ujw7XyROALRb8196SpXm1cBsANHPzrqm5N9Ha8is |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemometric+methods+to+classify+stationary+phases+for+achiral+packed+column+supercritical+fluid+chromatography&rft.jtitle=Journal+of+chemometrics&rft.au=West%2C+Caroline&rft.au=Lesellier%2C+Eric&rft.date=2012-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=26&rft.issue=3-4&rft.spage=52&rft_id=info:doi/10.1002%2Fcem.1414&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2620018151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |