Tracing structural changes in energy materials: A novel multi sample capillary setup for in house powder X‐ray diffraction

Lithium ion batteries (LIBs) are currently a major subject of applied electrochemical research as there is a fast growing demand of electrochemical energy storage, driven by the transformation of the automotive sector and the expansion of renewable energies. One of the key strategies to improve LIBs...

Full description

Saved in:
Bibliographic Details
Published inElectrochemical science advances Vol. 2; no. 6
Main Authors Stüble, Pirmin, Binder, Joachim R., Geßwein, Holger
Format Journal Article
LanguageEnglish
Published Aachen John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN2698-5977
2698-5977
DOI10.1002/elsa.202100143

Cover

Abstract Lithium ion batteries (LIBs) are currently a major subject of applied electrochemical research as there is a fast growing demand of electrochemical energy storage, driven by the transformation of the automotive sector and the expansion of renewable energies. One of the key strategies to improve LIBs is the optimization of the cathode active materials (CAMs). Therefore, in order to find structure property relations, both crystallographic and electrochemical properties need to be investigated and well understood. However, standard laboratory powder X‐ray diffraction (PXRD) possibly comes to its limit when minor structural variations such as atomic defects, cation order, or minor impurity phases are addressed. In order to focus on such minor structural changes and to find decisive differences in crystalline properties of battery materials, a multi‐sample capillary setup for a multipurpose in‐house PXRD setup was developed. The latter is made up from a six‐circle diffractometer, a microfocus molybdenum rotating anode, and a 2D area detector. The capillary spinner itself is made from commercial components and simple custom‐made adapters. A goniometer head is installed on a rotary module and sample spinning is enabled by a 12 V gear motor. Mounted on a xyz‐stage of the diffractometer, the position of the rotating capillary exposed to the primary beam can be varied while remaining perfectly aligned in the center of the diffractometer. Hence, by packing up to 10 different powder samples separated from each other into a single glass capillary, subsequent measurements of all samples can be carried out without remounting or readjustment. Within a series of samples, the setup is extremely reliable, precise, and accurate, while errors originating from sample displacement, misalignment, or calibration are minimized.
AbstractList Lithium ion batteries (LIBs) are currently a major subject of applied electrochemical research as there is a fast growing demand of electrochemical energy storage, driven by the transformation of the automotive sector and the expansion of renewable energies. One of the key strategies to improve LIBs is the optimization of the cathode active materials (CAMs). Therefore, in order to find structure property relations, both crystallographic and electrochemical properties need to be investigated and well understood. However, standard laboratory powder X‐ray diffraction (PXRD) possibly comes to its limit when minor structural variations such as atomic defects, cation order, or minor impurity phases are addressed. In order to focus on such minor structural changes and to find decisive differences in crystalline properties of battery materials, a multi‐sample capillary setup for a multipurpose in‐house PXRD setup was developed. The latter is made up from a six‐circle diffractometer, a microfocus molybdenum rotating anode, and a 2D area detector. The capillary spinner itself is made from commercial components and simple custom‐made adapters. A goniometer head is installed on a rotary module and sample spinning is enabled by a 12 V gear motor. Mounted on a xyz ‐stage of the diffractometer, the position of the rotating capillary exposed to the primary beam can be varied while remaining perfectly aligned in the center of the diffractometer. Hence, by packing up to 10 different powder samples separated from each other into a single glass capillary, subsequent measurements of all samples can be carried out without remounting or readjustment. Within a series of samples, the setup is extremely reliable, precise, and accurate, while errors originating from sample displacement, misalignment, or calibration are minimized.
Lithium ion batteries (LIBs) are currently a major subject of applied electrochemical research as there is a fast growing demand of electrochemical energy storage, driven by the transformation of the automotive sector and the expansion of renewable energies. One of the key strategies to improve LIBs is the optimization of the cathode active materials (CAMs). Therefore, in order to find structure property relations, both crystallographic and electrochemical properties need to be investigated and well understood. However, standard laboratory powder X‐ray diffraction (PXRD) possibly comes to its limit when minor structural variations such as atomic defects, cation order, or minor impurity phases are addressed. In order to focus on such minor structural changes and to find decisive differences in crystalline properties of battery materials, a multi‐sample capillary setup for a multipurpose in‐house PXRD setup was developed. The latter is made up from a six‐circle diffractometer, a microfocus molybdenum rotating anode, and a 2D area detector. The capillary spinner itself is made from commercial components and simple custom‐made adapters. A goniometer head is installed on a rotary module and sample spinning is enabled by a 12 V gear motor. Mounted on a xyz‐stage of the diffractometer, the position of the rotating capillary exposed to the primary beam can be varied while remaining perfectly aligned in the center of the diffractometer. Hence, by packing up to 10 different powder samples separated from each other into a single glass capillary, subsequent measurements of all samples can be carried out without remounting or readjustment. Within a series of samples, the setup is extremely reliable, precise, and accurate, while errors originating from sample displacement, misalignment, or calibration are minimized.
Author Stüble, Pirmin
Geßwein, Holger
Binder, Joachim R.
Author_xml – sequence: 1
  givenname: Pirmin
  surname: Stüble
  fullname: Stüble, Pirmin
  email: pirmin.stueble@kit.edu
  organization: Helmholtz Institute Ulm (HIU)
– sequence: 2
  givenname: Joachim R.
  surname: Binder
  fullname: Binder, Joachim R.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Holger
  surname: Geßwein
  fullname: Geßwein, Holger
  organization: Karlsruhe Institute of Technology (KIT)
BookMark eNqFkM9qGzEQh0VJoUmaa8-CnO1Iq_2n3Ixx2oChh7jQ2zKWR7aCLG0kbYwhhz5CnzFPEhmXNgRCTzMD3zcz_M7IifMOCfnC2ZgzVlyhjTAuWJEHXooP5LSoZTuqZNOcvOo_kYsY71kW2gyW_JQ8LQIo49Y0pjCoNASwVG3ArTFS4yg6DOs93ULCYMDGazqhzj-ipdvBJkMjbHuLVEFvrIWwpxHT0FPtw8He-CEi7f1uhYH-fP71O8CerozW-WYy3n0mH3Veihd_6jn5cTNbTL-N5t-_3k4n85ESshajlaxbWaoGlC6g5W1ZMIHQlICgRVtwpXGpKs3qiovMLgUwrNuSVbqRVSGVOCeXx7198A8DxtTd-yG4fLITTLKqargQmSqPlAo-xoC6UybB4c8UwNiOs-4QdXeIuvsbddbGb7Q-mG3O4n1BHoWdsbj_D93N5neTf-4L7mSWKQ
CitedBy_id crossref_primary_10_1002_advs_202301874
crossref_primary_10_1002_batt_202400666
crossref_primary_10_1002_admi_202201324
crossref_primary_10_1002_aenm_202203778
Cites_doi 10.1107/97809553602060000952
10.1366/0003702934048578
10.1149/2.0521701jes
10.1039/9781847558237-00376
10.1107/97809553602060000945
10.1107/S0021889810047461
10.1107/S0021889898009856
10.1107/S0365110X67000234
10.1016/j.joule.2017.08.001
10.1016/j.mser.2012.05.003
10.1017/S0885715613000924
10.1021/acs.cgd.0c00956
10.1107/97809553602060000936
10.1107/S0021889896009995
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley‐VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley‐VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1002/elsa.202100143
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2698-5977
EndPage n/a
ExternalDocumentID 10_1002_elsa_202100143
ELSA202100143
Genre article
GeographicLocations Japan
Germany
GeographicLocations_xml – name: Germany
– name: Japan
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ABDBF
ACCFJ
ACCMX
ACUHS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
IGS
ITC
M~E
OK1
PIMPY
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3963-d96894c7acf2a8184203ea74aeaf3821cfebc5f06513d96b3a0e68405f79529c3
IEDL.DBID BENPR
ISSN 2698-5977
IngestDate Sat Jul 26 02:44:16 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Tue Jul 01 01:12:54 EDT 2025
Wed Jan 22 16:25:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3963-d96894c7acf2a8184203ea74aeaf3821cfebc5f06513d96b3a0e68405f79529c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3090557133?pq-origsite=%requestingapplication%&accountid=15518
PQID 3090557133
PQPubID 6860408
PageCount 8
ParticipantIDs proquest_journals_3090557133
crossref_citationtrail_10_1002_elsa_202100143
crossref_primary_10_1002_elsa_202100143
wiley_primary_10_1002_elsa_202100143_ELSA202100143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Aachen
PublicationPlace_xml – name: Aachen
PublicationTitle Electrochemical science advances
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019
2008
1993; 47
2011; 44
1999; 32
2017; 1
2013; 28
2017; 164
2020; 20
1967; 22
1997; 30
2012; 73
Whitfield P. S. (e_1_2_8_8_1) 2019
Kern A. (e_1_2_8_4_1) 2019
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_3_1
e_1_2_8_2_1
Kaduk J. A. (e_1_2_8_5_1) 2019
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 73
  start-page: 51
  year: 2012
  publication-title: Mater. Sci. Engi. R Rep.
– volume: 20
  start-page: 6903
  year: 2020
  publication-title: Cryst. Growth Des.
– start-page: 200
  year: 2019
  end-page: 222
– volume: 28
  start-page: S339
  year: 2013
  publication-title: Powder Diffr.
– volume: 32
  start-page: 36
  year: 1999
  publication-title: J. Appl. Crystallogr.
– start-page: 376
  year: 2008
  end-page: 413
– volume: 30
  start-page: 21
  year: 1997
  publication-title: J. Appl. Crystallogr.
– start-page: 304
  year: 2019
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 522
  year: 2017
  publication-title: Joule
– volume: 47
  start-page: 129
  issue: 1
  year: 1993
  publication-title: Appl. Spectrosc.
– start-page: 26
  year: 2019
  end-page: 50
– volume: 22
  start-page: 151
  year: 1967
  publication-title: Acta Crystallogr.
– volume: 44
  start-page: 60
  year: 2011
  publication-title: J. Appl. Crystallogr.
– start-page: 304
  volume-title: International Tables for Crystallography Volume H: Powder Diffraction
  year: 2019
  ident: e_1_2_8_5_1
  doi: 10.1107/97809553602060000952
– ident: e_1_2_8_11_1
  doi: 10.1366/0003702934048578
– ident: e_1_2_8_15_1
  doi: 10.1149/2.0521701jes
– ident: e_1_2_8_9_1
  doi: 10.1039/9781847558237-00376
– start-page: 200
  volume-title: International Tables for Crystallography Volume H: Powder Diffraction
  year: 2019
  ident: e_1_2_8_8_1
  doi: 10.1107/97809553602060000945
– ident: e_1_2_8_10_1
  doi: 10.1107/S0021889810047461
– ident: e_1_2_8_7_1
  doi: 10.1107/S0021889898009856
– ident: e_1_2_8_6_1
  doi: 10.1107/S0365110X67000234
– ident: e_1_2_8_3_1
  doi: 10.1016/j.joule.2017.08.001
– ident: e_1_2_8_2_1
  doi: 10.1016/j.mser.2012.05.003
– ident: e_1_2_8_12_1
  doi: 10.1017/S0885715613000924
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.cgd.0c00956
– start-page: 26
  volume-title: International Tables for Crystallography Volume H: Powder Diffraction
  year: 2019
  ident: e_1_2_8_4_1
  doi: 10.1107/97809553602060000936
– ident: e_1_2_8_13_1
  doi: 10.1107/S0021889896009995
SSID ssj0002810041
Score 2.2509913
Snippet Lithium ion batteries (LIBs) are currently a major subject of applied electrochemical research as there is a fast growing demand of electrochemical energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Blood vessels
Calibration
capillary
Cosmic rays
diffraction setup
Laboratories
Lithium
Powder X‐Ray diffraction
Rietveld refinement
sample changer
Sensors
serial measurement
Software
X-rays
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDzoNexJ84nfIOgqeyLGnX1NsYG0NEBB3sVpI0QWF0Y92UgQf_BP9G_xLz2q3bDiJ4LCQ55OXlvaR5ny8h10pTqhKReFqjhBll0osS_OEahqohlEG5W3xt8dDs9f27QTBYq-Iv-BDlhRt6Rr5fo4NLldVX0FAXOpAbxBAi5PNtsoP1tSjewPzH8paFCSSi4amLNSPhIWxtSW6krL45xGZkWqWb60lrHnW6B2R_kS5Cq7DvIdky6RHZbS9V2o7Jhws22oUfKECwCNGAopg3g9cUTF7aBy4tLVbaLbQgHb2ZIeQvCSGTSAcGLceoPjSZQ2amszG4TBZ7v4xmmYHx6D0xExh8f35N5BxQUmVSlEOckH6389zueQtFBU9z52leEjVF5OtQasukC9U-o9zI0JdGWi5YQ1ujdGBdWtLgrq3ikhqkwQQ2jAIWaX5KKukoNWcEgsQlB5o7dxbCl9YK2aCWWuW2AKtDbarEW85mrBe4cVS9GMYFKJnFOPtxOftVclO2HxegjV9b1pbGiRcOl8WcRkgTcyfuKmG5wf4YJe7cP7XKr_P_dLogewyLIfLHLTVScXY2ly5FmaqrfBX-AKDo30Y
  priority: 102
  providerName: Wiley-Blackwell
Title Tracing structural changes in energy materials: A novel multi sample capillary setup for in house powder X‐ray diffraction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsa.202100143
https://www.proquest.com/docview/3090557133
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Na9wwEB2S7KG9hPSLbpMucyj0ZCJLdiwXStlNdwmlLKFtYG9GliUaCLa7TlICOfQn9Dfml3TGH5v20PZokHXQjGaepJn3AF7lVoi80EVgLUuYCWmCtOAH1yTJQ507lrvlaovl0clZ9GEVr7ZgOfTCcFnlEBPbQF1Ulu_ID5VImS6KjlTv6m8Bq0bx6-ogoWF6aYXibUsxtg0jCsma_H40my9PP21uXaRmhrRwYG8U8pAyENMPSeYiitSf2ekecv4OXNvMs9iD3R4y4rSz8SPYcuVjeHA8KLU9gVtKOJZSEHZksEykgV1Db4PnJbq2vQ8Jmnbe9ganWFbX7gLbakJsDDMEozU1KxCtb7Bxl1c1Eprlv79WV43DuvpeuDWu7n78XJsbZFmVddcS8RTOFvMvxydBr6oQWEW7LSjSI51GNjHWS0PpOpJCOZNExhmvtAytd7mNPUGTUNHYXBnhmBEm9kkay9SqZ7BTVqV7DhgXBBCsoi2tdWS81yYUXvicwoC3iXVjCIbVzGxPOc7KFxdZR5YsM179bLP6Y3i9GV93ZBt_HXkwGCfrN12T3bvIGGRrsP_Mks0_fp5uvl78e859eCi59aEtZTmAHbKoe0mA5DKfwLaMTicwms7ezxaT3ucm7fH-F54l48E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7aFcEL9iaYE5gDhFdeykSSpVaClbbemyQtBKewuOY6tIVRI2LdVKHHgEnoiH4UmYyc8WDsCpx0iODzOT-cbOzPcBPMuMEFke554xLGEmpPaSnH-4RlHmx5lluVvutpjtTE6CN_NwvgY_-lkYbqvsc2KTqPPS8B35thIJ00XRkepl9dlj1Sj-u9pLaOhOWiHfayjGusGOI7u8pCNcvXf4mvz9XMqD8fH-xOtUBjyjKPq8PNmJk8BE2jipCb4CKZTVUaCtdiqWvnE2M6EjqPYVrc2UFpYZUkIXJaFMjKJ9b8B6wBOuA1h_NZ69e7-65ZExM7L5PVukkNuEeEx3JJn7KFB_ouFVift7odwg3cFtuNWVqDhqY-oOrNniLmzs98pw9-ArAZwhyMOWfJaJO7AdIK7xU4G2GSdEKoXb6N7FERblF3uGTfci1poZidHoihWPFkus7flFhVQ989un5UVtsSovc7vA-c9v3xd6iSzjsmhHMO7DybXY9wEMirKwDwHDnAoSoyiFxHGgnYu1L5xwGaUdZyJjh-D11kxNR3HOShtnaUvOLFO2frqy_hBerNZXLbnHX1du9c5Ju4-8Tq9Ccgiycdh_dknH0w-j1dOjf-_5FDYmx2-n6fRwdrQJNyWPXTRtNFswIO_ax1QMnWdPuohD-HjdQf4LrlUc5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcXraBexCdWq85B8BTc7ibNxlupFh-lFFToLWw2uyiUJDQ-KHjwI_gZ_STuJG2qBxE8BjZ72NnZ-e9jfkPIcaQojWIRO0phCTPKpBPEeOHq-1FTRBrL3eJri37r8t69HnrDb1n8JR-iOnBDzyjWa3TwLDanc2ioDR3IDWIIEXL5IlnCGz90TeYOqlMWJpCIhrsu1gqEg7C1GbmRstOfXfyMTHO5-V20FlGnu07WpnIR2qV9N8iCTjbJSmdWpW2LvNlgo2z4gRIEixANKJN5c3hMQBepfWBlaTnTzqANSfqiR1C8JIRcIh0YlMyw-tB4Arl-es7AKln8-yF9zjVk6WusxzD8fP8YywlgSZVxmQ6xTe67F3edS2daUcFR3HqaEwctEbjKl8owaUO1yyjX0nelloYL1lRGR8ozVpY0uW0bcUk10mA84wceCxTfIbUkTfQuAS-24kBx685CuNIYIZvUUBPZJcAoX-k6cWajGaopbhyrXozCEpTMQhz9sBr9Ojmp2mclaOPXlo2ZccKpw-UhpwHSxOyOu05YYbA_egkverft6mvvPz8dkeXBeTfsXfVv9skqw7yI4p1Lg9SsyfWBVStP0WExIb8AeOPh4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracing+structural+changes+in+energy+materials%3A+A+novel+multi+sample+capillary+setup+for+in+house+powder+X%E2%80%90ray+diffraction&rft.jtitle=Electrochemical+science+advances&rft.au=St%C3%BCble%2C+Pirmin&rft.au=Binder%2C+Joachim+R&rft.au=Ge%C3%9Fwein%2C+Holger&rft.date=2022-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2698-5977&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1002%2Felsa.202100143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2698-5977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2698-5977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2698-5977&client=summon