Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes

High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling‐activated efflux of 3H‐glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5–5 U/mL) elicit...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 55; no. 9; pp. 917 - 925
Main Authors Ramos-Mandujano, Gerardo, Vázquez-Juárez, Erika, Hernández-Benítez, Reyna, Pasantes-Morales, Herminia
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling‐activated efflux of 3H‐glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5–5 U/mL) elicited small 3H‐glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5‐ to 10‐fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease‐activated receptor‐1. Thr potentiation of 3H‐glutamate efflux was largely dependent on a Thr‐elicited increases in cytosolic Ca2+ (Ca2+i) concentration ([Ca2+]i). Preventing Ca2+i rise by treatment with EGTA‐AM or with the phospholipase C blocker U73122 reduced the Thr‐increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%–22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca2+‐sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide‐3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA‐AM plus wortmannin essentially abolished Thr‐dependent glutamate efflux. Thr‐activated glutamate release was potently inhibited by the blockers of the volume‐sensitive anion permeability pathway, NPPB (IC50 15.8 μM), DCPIB (IC50 4.2 μM). These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma. © 2007 Wiley‐Liss, Inc.
AbstractList High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling‐activated efflux of 3 H ‐glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5–5 U/mL) elicited small 3 H ‐glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5‐ to 10‐fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease‐activated receptor‐1. Thr potentiation of 3 H ‐glutamate efflux was largely dependent on a Thr‐elicited increases in cytosolic Ca 2+ (Ca 2+ i ) concentration ([Ca 2+ ] i ). Preventing Ca 2+ i rise by treatment with EGTA‐AM or with the phospholipase C blocker U73122 reduced the Thr‐increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%–22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca 2+ ‐sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide‐3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA‐AM plus wortmannin essentially abolished Thr‐dependent glutamate efflux. Thr‐activated glutamate release was potently inhibited by the blockers of the volume‐sensitive anion permeability pathway, NPPB (IC 50 15.8 μM), DCPIB (IC 50 4.2 μM). These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma. © 2007 Wiley‐Liss, Inc.
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling‐activated efflux of 3H‐glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5–5 U/mL) elicited small 3H‐glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5‐ to 10‐fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease‐activated receptor‐1. Thr potentiation of 3H‐glutamate efflux was largely dependent on a Thr‐elicited increases in cytosolic Ca2+ (Ca2+i) concentration ([Ca2+]i). Preventing Ca2+i rise by treatment with EGTA‐AM or with the phospholipase C blocker U73122 reduced the Thr‐increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%–22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca2+‐sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide‐3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA‐AM plus wortmannin essentially abolished Thr‐dependent glutamate efflux. Thr‐activated glutamate release was potently inhibited by the blockers of the volume‐sensitive anion permeability pathway, NPPB (IC50 15.8 μM), DCPIB (IC50 4.2 μM). These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma. © 2007 Wiley‐Liss, Inc.
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of 3H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small 3H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of 3H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca2+ (Ca2+i) concentration ([Ca2+]i). Preventing Ca2+i rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca2+-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC50 15.8 M), DCPIB (IC50 4.2 M). These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.
Author Pasantes-Morales, Herminia
Ramos-Mandujano, Gerardo
Vázquez-Juárez, Erika
Hernández-Benítez, Reyna
Author_xml – sequence: 1
  givenname: Gerardo
  surname: Ramos-Mandujano
  fullname: Ramos-Mandujano, Gerardo
  organization: Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
– sequence: 2
  givenname: Erika
  surname: Vázquez-Juárez
  fullname: Vázquez-Juárez, Erika
  organization: Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
– sequence: 3
  givenname: Reyna
  surname: Hernández-Benítez
  fullname: Hernández-Benítez, Reyna
  organization: Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
– sequence: 4
  givenname: Herminia
  surname: Pasantes-Morales
  fullname: Pasantes-Morales, Herminia
  email: hpasante@ifc.unam.mx
  organization: Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17437307$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJSTYfl_6A4lMPBacay7asYwjpJrBsCk1JbmIijzdqZXkryU3239fJJjmU0sLAMPA8wzDvPtvxgyfG3gE_Bs6LTytn8bjgFYg3bAZcNTmAqHfYjDeqzKFUsMf2Y_zOOUyD3GV7IEshBZczdn11F4b-1vpsPSTyyW0y8nfoDcUs3pNz1q_ySD7aZH9RtnJjwh4TZdR1bnzIusnOzOjSGKjNMKYwmE2ieMjedugiHT33A_bt89nV6Xm-uJxfnJ4sciNULfK2kl2pSkDRcmEAUNZcmUoJhLKThZCSmxZRKqpEOTFgFGFRqbppiqYRIA7Yh-3edRh-jhST7m00093oaRijlryqaiGb_4IFL0U91QS-fwbH255avQ62x7DRLz-bAL4FTBhiDNRpYxMmO_gU0DoNXD_Goh9j0U-xTMrHP5TXrX-DYQvfW0ebf5B6vrg4eXHyrWNjoodXB8MPXUshK329nOsv6uZrszxf6qX4DcnZrJ4
CitedBy_id crossref_primary_10_1371_journal_pone_0031756
crossref_primary_10_3390_biom11040562
crossref_primary_10_1111_j_1471_4159_2009_06418_x
crossref_primary_10_1016_j_pathophys_2007_09_009
crossref_primary_10_1124_jpet_107_131110
crossref_primary_10_1158_1055_9965_EPI_10_0658
crossref_primary_10_1177_1759091415605115
crossref_primary_10_1002_jnr_23102
crossref_primary_10_1016_j_siny_2021_101224
crossref_primary_10_1007_s12035_021_02639_9
crossref_primary_10_1111_j_1468_1331_2011_03363_x
crossref_primary_10_1124_jpet_107_135475
crossref_primary_10_1523_JNEUROSCI_3193_09_2009
crossref_primary_10_3389_fncel_2020_609947
crossref_primary_10_1007_s00424_007_0343_y
crossref_primary_10_1089_neu_2016_4464
crossref_primary_10_1186_s12868_018_0481_5
crossref_primary_10_1002_jcp_21406
crossref_primary_10_1146_annurev_pharmtox_011008_145602
crossref_primary_10_1007_s00701_024_06408_0
crossref_primary_10_1111_j_1471_4159_2008_05560_x
crossref_primary_10_1016_j_neuron_2008_04_002
crossref_primary_10_1016_j_expneurol_2009_01_023
crossref_primary_10_1186_1756_6606_5_38
crossref_primary_10_1152_ajpcell_00430_2009
crossref_primary_10_1089_neur_2023_0098
crossref_primary_10_3390_ijms232113625
crossref_primary_10_1002_ardp_202400846
crossref_primary_10_3390_ijms17010084
crossref_primary_10_1007_s11064_008_9632_x
crossref_primary_10_1111_j_1471_4159_2008_05312_x
crossref_primary_10_1007_s11064_014_1300_8
crossref_primary_10_1186_1756_6606_6_4
crossref_primary_10_1016_j_brainresrev_2007_08_002
crossref_primary_10_1038_s41582_020_00447_8
crossref_primary_10_1159_000113742
crossref_primary_10_1111_j_1471_4159_2008_05510_x
crossref_primary_10_1111_jnc_14711
crossref_primary_10_1016_j_neuint_2012_02_018
crossref_primary_10_1038_jcbfm_2009_230
crossref_primary_10_1155_2018_6501031
crossref_primary_10_1113_jphysiol_2010_190777
Cites_doi 10.1007/s00424-004-1322-1
10.1111/j.1471-4159.2005.03499.x
10.1161/01.STR.0000124127.57946.a1
10.1002/glia.10012
10.1074/jbc.271.21.12133
10.1124/jpet.104.072553
10.1046/j.1471-4159.2003.01268.x
10.1083/jcb.200210115
10.1038/35025229
10.1097/01.WCB.0000100062.36077.84
10.1016/j.expneurol.2005.11.017
10.1046/j.1471-4159.2003.02021.x
10.1016/j.expneurol.2004.02.018
10.1159/000045829
10.1152/ajpcell.00330.2004
10.1073/pnas.2235594100
10.5483/BMBRep.2002.35.1.067
10.4049/jimmunol.170.5.2638
10.1002/glia.10271
10.1073/pnas.040552897
10.1242/jeb.198.2.311
10.1006/bbrc.1997.6222
10.1016/j.neuint.2005.12.001
10.1523/JNEUROSCI.20-12-04582.2000
10.1016/0304-3940(92)90065-F
10.1016/j.neuroscience.2006.09.049
10.1113/jphysiol.2005.103820
10.1124/jpet.105.098467
10.1038/sj.bjp.0704413
10.1002/glia.20174
10.1046/j.1471-4159.1996.66041374.x
10.1124/jpet.105.090787
10.1046/j.0953-816x.2001.01676.x
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
(c) 2007 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
– notice: (c) 2007 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
DOI 10.1002/glia.20513
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 925
ExternalDocumentID 17437307
10_1002_glia_20513
GLIA20513
ark_67375_WNG_P9XS8NHN_N
Genre article
Journal Article
GrantInformation_xml – fundername: DGAPA, UNAM
  funderid: 209507
– fundername: CONACYT, México
  funderid: 46465
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c3963-d57f4941a3d03c11a7609c593a14f723770cdaa79e5343d01c9ea259688288313
IEDL.DBID DR2
ISSN 0894-1491
IngestDate Thu Jul 10 22:57:58 EDT 2025
Fri Jul 11 11:19:12 EDT 2025
Wed Feb 19 01:43:21 EST 2025
Tue Jul 01 02:14:55 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Jan 22 16:15:31 EST 2025
Wed Oct 30 09:56:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
(c) 2007 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3963-d57f4941a3d03c11a7609c593a14f723770cdaa79e5343d01c9ea259688288313
Notes ArticleID:GLIA20513
istex:9F3F46B81CC55981C59D783570828A0481246484
CONACYT, México - No. 46465
ark:/67375/WNG-P9XS8NHN-N
DGAPA, UNAM - No. 209507
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17437307
PQID 20436436
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_70556378
proquest_miscellaneous_20436436
pubmed_primary_17437307
crossref_citationtrail_10_1002_glia_20513
crossref_primary_10_1002_glia_20513
wiley_primary_10_1002_glia_20513_GLIA20513
istex_primary_ark_67375_WNG_P9XS8NHN_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07
July 2007
2007-07-00
2007-Jul
20070701
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Abdullaev IF,Rudkouskaya A,Schools GP,Kimelberg HK,Mongin AA. 2006. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 572: 677-689.
Heacock AM,Dodd MS,Fisher SK. 2006. Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J Pharmacol Exp Ther 317: 685-693.
Decher N,Lang HJ,Nilius B,Bruggemann A,Busch AE,Steinmeyer K. 2001. DCPIB is a novel selective blocker of I(Cl,swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br J Pharmacol 134; 1467-1479.
Kawai H,Yuki S,Sugimoto J,Tamao Y. 1996. Effects of a thrombin inhibitor, argatroban, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J Pharmacol Exp Ther 278: 780-785.
Junge CE,Lee CJ,Hubbard KB,Zhang Z,Olson JJ,Hepler JR,Brat DJ,Traynelis SF. 2004. Protease-activated receptor-1 in human brain: Localization and functional expression in astrocytes. Exp Neurol 188: 94-103.
Cheema TA,Ward CE,Fisher SK. 2005. Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J Pharmacol Exp Ther 315: 755-763.
Pasantes-Morales H,Morales Mulia S. 2000. Influence of calcium on regulatory volume decrease: Role of potassium channels. Nephron 86: 414-427.
Weinstein JR,Hong S,Kulman JD,Bishop C,Kuniyoshi J,Andersen H,Ransom BR,Hanisch UK,Moller T. 2005. Unraveling thrombin's true microglia-activating potential: Markedly disparate profiles of pharmaceutical-grade and commercial-grade thrombin preparations. J Neurochem 95: 1177-1187.
Mongin AA,Kimelberg HK. 2005. ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 288: C204-C213.
Yi JH,Hazell AS. 2006. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48: 394-403.
Coughlin SR. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258-264.
Pike CJ,Vaughan PJ,Cunningham DD,Connan CW. 1996. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by β-amyloid in vitro. J Neurochem 66: 1374-1382.
Feustel PJ,Jin Y,Kimelberg HK. 2004. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35: 1164-1168.
Gingrich MB,Junge CE,Lyuboslavsky P,Traynelis SF. 2000. Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20: 4582-4595.
Striggow F,Riek-Burchardt M,Kiesel A,Schmidt W,Henrich-Noack P,Breder J,Krug M,Reymann KG,Reiser G. 2001. Four different types of protease-activated receptors are widely expressed in the brain and are up regulated in hippocampus by severe ischemia. Eur J Neurosci 14: 595-608.
Loveday D,Heacock AM,Fisher SK. 2003. Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells. J Neurochem. 87: 476-486.
Xi G,Hua Y,Wu J,Keep RF. 2002. Increase of brain thrombin concentration in cerebral ischemia. Stroke 33: 399
Karabiyikoglu M,Hua Y,Keep RF,Ennis SR,Xi G. 2004. Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab 24: 159-166.
Cardin V,Lezama R,Torres-Marquez ME,Pasantes-Morales H. 2003. Potentiation of the osmosensitive taurine release and cell volume regulation by Ca2+i rise in cultured cerebellar astrocytes. Glia 44: 119-128.
Kimelberg HK. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50: 389-397.
Fujimoto S,Katsuki H,Ohnishi M,Takagi M,Kume T,Akaike A. 2007. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144: 694-701.
Won SJ,Kim DY,Gwag BJ. 2002. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35: 67-86.
Boven LA,Vergnolle N,Henry SD,Silva C,Imai Y,Holden J,Warren K,Hollenberg MD,Power C. 2003. Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170: 2638-2646.
Akiyama H,Ikeda K,Kondo H,McGeer PL. 1992. Thrombin accumulation in brains of patients with Alzheimer's disease. Neurosci Lett 146: 152-154.
Junge CE,Sugawara T,Mannaioni G,Alagarsamy S,Conn PJ,Brat DJ,Chan PH,Traynelis SF. 2003. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci USA 100: 13019-13024.
De Castro Ribeiro M,Badaut J,Price M,Meins M,Bogousslavsky J,Monard D,Hirt L. 2006. Thrombin in ischemic neuronal death. Exp Neurol 198: 199-203.
Hawes BE,Luttrell LM,van Biesen T,Lefkowitz RJ. 1996. Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271: 12133-12136.
BrocK C,Schaefer M,Reusch HP,Chupalla C,Michalke M,Spicher K,Schultz G,Nurberg B. 2003. Roles of G β γ in membrane recruitment and activation of p110/p101 phosphoinositide 3-kinase γ. J Cell Biol 160: 89-99.
Thoroed S,Soergaard M,Cragoe E,Fugelli K. 1995. The osmolality-sensitive taurine channel in flounder erythrocytes is strongly stimulated by noradrenaline under hypo-osmotic conditions. J Exp Biol 198: 311-324.
Wang H,Ubl JJ,Reiser G. 2002. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37: 53-63.
Xi G,Reiser G,Keep RF. 2003. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? J Neurochem 84: 3-9.
Franco R,Rodríguez R,Pasantes-Morales H. 2004. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflugers Arch Eur J Physiol 449: 159-169.
Heacock AM,Kerley D,Gurda GT,VanTroostenberghe AT,Fisher SK. 2004. Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J Pharmacol Exp Ther 311: 1097-1104.
Striggow F,Riek M,Breder J,Henrich-Noack P,Reymann KG,Reiser G. 2000. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 97: 2264-2269.
Manolopoulos VG,Droogmans G,Nilius B. 1997. Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation. Biochem Biophys Res Commun 232: 74-79.
2004; 188
2002; 37
2006; 317
1992; 146
2007; 144
2002; 35
1997; 232
2005; 315
2000; 20
2004; 24
2000; 86
2002; 33
2006; 572
2006; 198
2003; 170
2004; 449
1995; 198
2000; 407
2001; 134
2004; 311
2005; 288
2004; 35
2000; 97
2006; 48
2005; 95
1996; 271
2003; 160
2005; 50
1996; 278
2003; 84
2001; 14
2003; 100
2003; 87
2003; 44
1996; 66
e_1_2_6_32_1
Xi G (e_1_2_6_34_1) 2002; 33
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Thoroed S (e_1_2_6_30_1) 1995; 198
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Kawai H (e_1_2_6_21_1) 1996; 278
e_1_2_6_25_1
Gingrich MB (e_1_2_6_14_1) 2000; 20
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Xi G,Hua Y,Wu J,Keep RF. 2002. Increase of brain thrombin concentration in cerebral ischemia. Stroke 33: 399
– reference: Cheema TA,Ward CE,Fisher SK. 2005. Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J Pharmacol Exp Ther 315: 755-763.
– reference: Abdullaev IF,Rudkouskaya A,Schools GP,Kimelberg HK,Mongin AA. 2006. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 572: 677-689.
– reference: Karabiyikoglu M,Hua Y,Keep RF,Ennis SR,Xi G. 2004. Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab 24: 159-166.
– reference: Thoroed S,Soergaard M,Cragoe E,Fugelli K. 1995. The osmolality-sensitive taurine channel in flounder erythrocytes is strongly stimulated by noradrenaline under hypo-osmotic conditions. J Exp Biol 198: 311-324.
– reference: Striggow F,Riek-Burchardt M,Kiesel A,Schmidt W,Henrich-Noack P,Breder J,Krug M,Reymann KG,Reiser G. 2001. Four different types of protease-activated receptors are widely expressed in the brain and are up regulated in hippocampus by severe ischemia. Eur J Neurosci 14: 595-608.
– reference: Weinstein JR,Hong S,Kulman JD,Bishop C,Kuniyoshi J,Andersen H,Ransom BR,Hanisch UK,Moller T. 2005. Unraveling thrombin's true microglia-activating potential: Markedly disparate profiles of pharmaceutical-grade and commercial-grade thrombin preparations. J Neurochem 95: 1177-1187.
– reference: Akiyama H,Ikeda K,Kondo H,McGeer PL. 1992. Thrombin accumulation in brains of patients with Alzheimer's disease. Neurosci Lett 146: 152-154.
– reference: Decher N,Lang HJ,Nilius B,Bruggemann A,Busch AE,Steinmeyer K. 2001. DCPIB is a novel selective blocker of I(Cl,swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br J Pharmacol 134; 1467-1479.
– reference: Pike CJ,Vaughan PJ,Cunningham DD,Connan CW. 1996. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by β-amyloid in vitro. J Neurochem 66: 1374-1382.
– reference: Cardin V,Lezama R,Torres-Marquez ME,Pasantes-Morales H. 2003. Potentiation of the osmosensitive taurine release and cell volume regulation by Ca2+i rise in cultured cerebellar astrocytes. Glia 44: 119-128.
– reference: Heacock AM,Kerley D,Gurda GT,VanTroostenberghe AT,Fisher SK. 2004. Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J Pharmacol Exp Ther 311: 1097-1104.
– reference: Feustel PJ,Jin Y,Kimelberg HK. 2004. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35: 1164-1168.
– reference: Junge CE,Sugawara T,Mannaioni G,Alagarsamy S,Conn PJ,Brat DJ,Chan PH,Traynelis SF. 2003. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci USA 100: 13019-13024.
– reference: Striggow F,Riek M,Breder J,Henrich-Noack P,Reymann KG,Reiser G. 2000. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 97: 2264-2269.
– reference: Gingrich MB,Junge CE,Lyuboslavsky P,Traynelis SF. 2000. Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20: 4582-4595.
– reference: Kimelberg HK. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50: 389-397.
– reference: Boven LA,Vergnolle N,Henry SD,Silva C,Imai Y,Holden J,Warren K,Hollenberg MD,Power C. 2003. Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170: 2638-2646.
– reference: Coughlin SR. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258-264.
– reference: Franco R,Rodríguez R,Pasantes-Morales H. 2004. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflugers Arch Eur J Physiol 449: 159-169.
– reference: Junge CE,Lee CJ,Hubbard KB,Zhang Z,Olson JJ,Hepler JR,Brat DJ,Traynelis SF. 2004. Protease-activated receptor-1 in human brain: Localization and functional expression in astrocytes. Exp Neurol 188: 94-103.
– reference: De Castro Ribeiro M,Badaut J,Price M,Meins M,Bogousslavsky J,Monard D,Hirt L. 2006. Thrombin in ischemic neuronal death. Exp Neurol 198: 199-203.
– reference: Wang H,Ubl JJ,Reiser G. 2002. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37: 53-63.
– reference: Xi G,Reiser G,Keep RF. 2003. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? J Neurochem 84: 3-9.
– reference: Yi JH,Hazell AS. 2006. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48: 394-403.
– reference: Heacock AM,Dodd MS,Fisher SK. 2006. Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J Pharmacol Exp Ther 317: 685-693.
– reference: Won SJ,Kim DY,Gwag BJ. 2002. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35: 67-86.
– reference: Fujimoto S,Katsuki H,Ohnishi M,Takagi M,Kume T,Akaike A. 2007. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144: 694-701.
– reference: Mongin AA,Kimelberg HK. 2005. ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 288: C204-C213.
– reference: BrocK C,Schaefer M,Reusch HP,Chupalla C,Michalke M,Spicher K,Schultz G,Nurberg B. 2003. Roles of G β γ in membrane recruitment and activation of p110/p101 phosphoinositide 3-kinase γ. J Cell Biol 160: 89-99.
– reference: Manolopoulos VG,Droogmans G,Nilius B. 1997. Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation. Biochem Biophys Res Commun 232: 74-79.
– reference: Loveday D,Heacock AM,Fisher SK. 2003. Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells. J Neurochem. 87: 476-486.
– reference: Pasantes-Morales H,Morales Mulia S. 2000. Influence of calcium on regulatory volume decrease: Role of potassium channels. Nephron 86: 414-427.
– reference: Kawai H,Yuki S,Sugimoto J,Tamao Y. 1996. Effects of a thrombin inhibitor, argatroban, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J Pharmacol Exp Ther 278: 780-785.
– reference: Hawes BE,Luttrell LM,van Biesen T,Lefkowitz RJ. 1996. Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271: 12133-12136.
– volume: 134
  start-page: 1467
  year: 2001
  end-page: 1479
  article-title: DCPIB is a novel selective blocker of I(Cl,swell) and prevents swelling‐induced shortening of guinea‐pig atrial action potential duration
  publication-title: Br J Pharmacol
– volume: 50
  start-page: 389
  year: 2005
  end-page: 397
  article-title: Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy
  publication-title: Glia
– volume: 288
  start-page: C204
  year: 2005
  end-page: C213
  article-title: ATP regulates anion channel‐mediated organic osmolyte release from cultured rat astrocytes via multiple Ca ‐sensitive mechanisms
  publication-title: Am J Physiol Cell Physiol
– volume: 315
  start-page: 755
  year: 2005
  end-page: 763
  article-title: Subnanomolar concentrations of thrombin enhance the volume‐sensitive efflux of taurine from human 1321N1 astrocytoma cells
  publication-title: J Pharmacol Exp Ther
– volume: 311
  start-page: 1097
  year: 2004
  end-page: 1104
  article-title: Potentiation of the osmosensitive release of taurine and ‐aspartate from SH‐SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors
  publication-title: J Pharmacol Exp Ther
– volume: 100
  start-page: 13019
  year: 2003
  end-page: 13024
  article-title: The contribution of protease‐activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 1164
  year: 2004
  end-page: 1168
  article-title: Volume‐regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra
  publication-title: Stroke
– volume: 278
  start-page: 780
  year: 1996
  end-page: 785
  article-title: Effects of a thrombin inhibitor, argatroban, on ischemic brain damage in the rat distal middle cerebral artery occlusion model
  publication-title: J Pharmacol Exp Ther
– volume: 44
  start-page: 119
  year: 2003
  end-page: 128
  article-title: Potentiation of the osmosensitive taurine release and cell volume regulation by Ca rise in cultured cerebellar astrocytes
  publication-title: Glia
– volume: 48
  start-page: 394
  year: 2006
  end-page: 403
  article-title: Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury
  publication-title: Neurochem Int
– volume: 407
  start-page: 258
  year: 2000
  end-page: 264
  article-title: Thrombin signalling and protease‐activated receptors
  publication-title: Nature
– volume: 14
  start-page: 595
  year: 2001
  end-page: 608
  article-title: Four different types of protease‐activated receptors are widely expressed in the brain and are up regulated in hippocampus by severe ischemia
  publication-title: Eur J Neurosci
– volume: 20
  start-page: 4582
  year: 2000
  end-page: 4595
  article-title: Potentiation of NMDA receptor function by the serine protease thrombin
  publication-title: J Neurosci
– volume: 37
  start-page: 53
  year: 2002
  end-page: 63
  article-title: Four subtypes of protease‐activated receptors, co‐expressed in rat astrocytes, evoke different physiological signaling
  publication-title: Glia
– volume: 97
  start-page: 2264
  year: 2000
  end-page: 2269
  article-title: The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations
  publication-title: Proc Natl Acad Sci USA
– volume: 198
  start-page: 311
  year: 1995
  end-page: 324
  article-title: The osmolality‐sensitive taurine channel in flounder erythrocytes is strongly stimulated by noradrenaline under hypo‐osmotic conditions
  publication-title: J Exp Biol
– volume: 317
  start-page: 685
  year: 2006
  end-page: 693
  article-title: Regulation of volume‐sensitive osmolyte efflux from human SH‐SY5Y neuroblastoma cells following activation of lysophospholipid receptors
  publication-title: J Pharmacol Exp Ther
– volume: 84
  start-page: 3
  year: 2003
  end-page: 9
  article-title: The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective?
  publication-title: J Neurochem
– volume: 35
  start-page: 67
  year: 2002
  end-page: 86
  article-title: Cellular and molecular pathways of ischemic neuronal death
  publication-title: J Biochem Mol Biol
– volume: 188
  start-page: 94
  year: 2004
  end-page: 103
  article-title: Protease‐activated receptor‐1 in human brain: Localization and functional expression in astrocytes
  publication-title: Exp Neurol
– volume: 449
  start-page: 159
  year: 2004
  end-page: 169
  article-title: Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts
  publication-title: Pflugers Arch Eur J Physiol
– volume: 572
  start-page: 677
  year: 2006
  end-page: 689
  article-title: Pharmacological comparison of swelling‐activated excitatory amino acid release and Cl‐ currents in cultured rat astrocytes
  publication-title: J Physiol
– volume: 24
  start-page: 159
  year: 2004
  end-page: 166
  article-title: Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow
  publication-title: J Cereb Blood Flow Metab
– volume: 271
  start-page: 12133
  year: 1996
  end-page: 12136
  article-title: Phosphatidylinositol 3‐kinase is an early intermediate in the Gβγ‐mediated mitogen‐activated protein kinase signaling pathway
  publication-title: J Biol Chem
– volume: 95
  start-page: 1177
  year: 2005
  end-page: 1187
  article-title: Unraveling thrombin's true microglia‐activating potential: Markedly disparate profiles of pharmaceutical‐grade and commercial‐grade thrombin preparations
  publication-title: J Neurochem
– volume: 66
  start-page: 1374
  year: 1996
  end-page: 1382
  article-title: Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by β‐amyloid in vitro
  publication-title: J Neurochem
– volume: 86
  start-page: 414
  year: 2000
  end-page: 427
  article-title: Influence of calcium on regulatory volume decrease: Role of potassium channels
  publication-title: Nephron
– volume: 144
  start-page: 694
  year: 2007
  end-page: 701
  article-title: Thrombin induces striatal neurotoxicity depending on mitogen‐activated protein kinase pathways in vivo
  publication-title: Neuroscience
– volume: 87
  start-page: 476
  year: 2003
  end-page: 486
  article-title: Activation of muscarinic cholinergic receptors enhances the volume‐sensitive efflux of myo‐inositol from SH‐SY5Y neuroblastoma cells
  publication-title: J Neurochem.
– volume: 170
  start-page: 2638
  year: 2003
  end-page: 2646
  article-title: Up‐regulation of proteinase‐activated receptor 1 expression in astrocytes during HIV encephalitis
  publication-title: J Immunol
– volume: 146
  start-page: 152
  year: 1992
  end-page: 154
  article-title: Thrombin accumulation in brains of patients with Alzheimer's disease
  publication-title: Neurosci Lett
– volume: 160
  start-page: 89
  year: 2003
  end-page: 99
  article-title: Roles of G β γ in membrane recruitment and activation of p110/p101 phosphoinositide 3‐kinase γ
  publication-title: J Cell Biol
– volume: 33
  start-page: 399
  year: 2002
  article-title: Increase of brain thrombin concentration in cerebral ischemia
  publication-title: Stroke
– volume: 198
  start-page: 199
  year: 2006
  end-page: 203
  article-title: Thrombin in ischemic neuronal death
  publication-title: Exp Neurol
– volume: 232
  start-page: 74
  year: 1997
  end-page: 79
  article-title: Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation
  publication-title: Biochem Biophys Res Commun
– ident: e_1_2_6_12_1
  doi: 10.1007/s00424-004-1322-1
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1471-4159.2005.03499.x
– ident: e_1_2_6_11_1
  doi: 10.1161/01.STR.0000124127.57946.a1
– ident: e_1_2_6_31_1
  doi: 10.1002/glia.10012
– ident: e_1_2_6_15_1
  doi: 10.1074/jbc.271.21.12133
– volume: 33
  start-page: 399
  year: 2002
  ident: e_1_2_6_34_1
  article-title: Increase of brain thrombin concentration in cerebral ischemia
  publication-title: Stroke
– ident: e_1_2_6_17_1
  doi: 10.1124/jpet.104.072553
– ident: e_1_2_6_35_1
  doi: 10.1046/j.1471-4159.2003.01268.x
– ident: e_1_2_6_5_1
  doi: 10.1083/jcb.200210115
– ident: e_1_2_6_8_1
  doi: 10.1038/35025229
– ident: e_1_2_6_20_1
  doi: 10.1097/01.WCB.0000100062.36077.84
– ident: e_1_2_6_9_1
  doi: 10.1016/j.expneurol.2005.11.017
– ident: e_1_2_6_23_1
  doi: 10.1046/j.1471-4159.2003.02021.x
– ident: e_1_2_6_18_1
  doi: 10.1016/j.expneurol.2004.02.018
– ident: e_1_2_6_26_1
  doi: 10.1159/000045829
– ident: e_1_2_6_25_1
  doi: 10.1152/ajpcell.00330.2004
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.2235594100
– ident: e_1_2_6_33_1
  doi: 10.5483/BMBRep.2002.35.1.067
– ident: e_1_2_6_4_1
  doi: 10.4049/jimmunol.170.5.2638
– ident: e_1_2_6_6_1
  doi: 10.1002/glia.10271
– ident: e_1_2_6_28_1
  doi: 10.1073/pnas.040552897
– volume: 278
  start-page: 780
  year: 1996
  ident: e_1_2_6_21_1
  article-title: Effects of a thrombin inhibitor, argatroban, on ischemic brain damage in the rat distal middle cerebral artery occlusion model
  publication-title: J Pharmacol Exp Ther
– volume: 198
  start-page: 311
  year: 1995
  ident: e_1_2_6_30_1
  article-title: The osmolality‐sensitive taurine channel in flounder erythrocytes is strongly stimulated by noradrenaline under hypo‐osmotic conditions
  publication-title: J Exp Biol
  doi: 10.1242/jeb.198.2.311
– ident: e_1_2_6_24_1
  doi: 10.1006/bbrc.1997.6222
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neuint.2005.12.001
– volume: 20
  start-page: 4582
  year: 2000
  ident: e_1_2_6_14_1
  article-title: Potentiation of NMDA receptor function by the serine protease thrombin
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-12-04582.2000
– ident: e_1_2_6_3_1
  doi: 10.1016/0304-3940(92)90065-F
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuroscience.2006.09.049
– ident: e_1_2_6_2_1
  doi: 10.1113/jphysiol.2005.103820
– ident: e_1_2_6_16_1
  doi: 10.1124/jpet.105.098467
– ident: e_1_2_6_10_1
  doi: 10.1038/sj.bjp.0704413
– ident: e_1_2_6_22_1
  doi: 10.1002/glia.20174
– ident: e_1_2_6_27_1
  doi: 10.1046/j.1471-4159.1996.66041374.x
– ident: e_1_2_6_7_1
  doi: 10.1124/jpet.105.090787
– ident: e_1_2_6_29_1
  doi: 10.1046/j.0953-816x.2001.01676.x
SSID ssj0011497
Score 2.0826912
Snippet High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 917
SubjectTerms Animals
Animals, Newborn
astrocyte swelling
Astrocytes - drug effects
Astrocytes - metabolism
Brain Damage, Chronic - metabolism
Brain Damage, Chronic - physiopathology
Brain Edema - metabolism
Brain Edema - physiopathology
Brain Injuries - metabolism
Brain Injuries - physiopathology
Brain Ischemia - metabolism
Brain Ischemia - physiopathology
Calcium Signaling - drug effects
Calcium Signaling - physiology
Cell Death - drug effects
Cell Death - physiology
Cells, Cultured
DCPIB
Enzyme Inhibitors - pharmacology
Extracellular Fluid - metabolism
Glutamic Acid - metabolism
Hypotonic Solutions - pharmacology
intracerebral hemorrhage
Oligopeptides - pharmacology
Osmotic Pressure - drug effects
PAR-1
Rats
Receptors, Thrombin - drug effects
Receptors, Thrombin - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
tamoxifen
Thrombin - metabolism
Thrombin - pharmacology
volume-sensitive anion channel
Water-Electrolyte Balance - drug effects
Water-Electrolyte Balance - physiology
Title Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes
URI https://api.istex.fr/ark:/67375/WNG-P9XS8NHN-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.20513
https://www.ncbi.nlm.nih.gov/pubmed/17437307
https://www.proquest.com/docview/20436436
https://www.proquest.com/docview/70556378
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9sIFKOUjbSmWQJVAShvHThxLXFaIdkEQIWjFckCWE9st6jZbbbJSlxM_ob-RX8LY2WRVVJDglsNEcuw3nufJzDNCzyLOlYqFDm0W05BZkYYZ0yI0xgKkdBGXwvU7v8_T4TF7O0pGK-hl1wvT6kP0CTfnGX6_dg6uinp_KRp6Mv7mdIMSf2WtK9ZyjOhjrx0FPF-0Mp-ChfBMem3SeH_56rVotOYm9vImqnmdufrQc3AHfe0G3VacnO3NmmKv_P6bnuP_ftVddHvBSfGgBdE6WjHVPbQxqOA8fj7Hu9hXifr0-wb6cnQ6nZzDcRpfTIBuN-M5NtWpg06Na5cIhFD488dV7eri3U6KTwDaCmixwcba8ewSu4YW3Ap-GI1V3UAInQPhvY-OD14fvRqGi-sZwpKC24Y64ZYJRhTVES0JUTyNRJkIqgizPKacR6VWiguTUAY2pBRGwWkrBVKfZZTQB2i1mlTmEcJAS6kAcpSyLGEcEGNJoU2UGKGFsrEN0PNumWS50C53V2iMZau6HEs3b9LPW4Ce9rYXrWLHjVa7frV7EzU9czVuPJGf80P5QYw-Zfkwl3mAnnRwkOB57neKqsxkVkvXVQx8Lv2zhVcqojwL0MMWR8sBcScpFfEAvfBo-MtI5eG7NwP_tPkvxlvoVpeGjsg2Wm2mM_MY-FNT7Hg_-QX3QRcE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfQ9gAv_BuwbIxZAk0CKVsSO3H8WE1sHXQRgk6UJ8tN7A2tS6cmlVae-Aj7jHyS3TltqqGBBG95uEiOfef73eXud4S8CYTQOpKFb9OI-dzKxE95IX1jLKhUMYxyif3Ox1nSPeEfBvFgXpuDvTANP0SbcEPLcPc1GjgmpPeWrKGno-9IHBTjzNpVHOntIqrPLXsUIH3ZEH1K7sNz2LKTRnvLd2_5o1Xc2qu7wOZt7Oqcz8GjZsJq5TgLsebkfHdaD3fzH78xOv73dz0mD-ewlHYaPXpC7pnyKVnrlBCSX8zoDnWFoi4Dv0a-9c8m4wuIqOnlGBB3PZpRU56h9lS0wlwgeMNfP68rLI3Hy5SegnZrQMaGGmtH0yuKPS204fwwBdVVDV50Bpj3GTk5eN_f7_rzCQ1-zsBy_SIWlksealYELA9DLZJA5rFkOuRWREyIIC-0FtLEjINMmEujIeBKANenKQvZc7JSjkuzTiggUyYBHyU8jbkApbHhsDBBbGQhtY2sR94uzknlc_pynKIxUg3xcqRw35TbN4-8bmUvG9KOO6V23HG3InpyjmVuIlZfs0P1SQ6-pFk3U5lHthf6oMD48I-KLs14WilsLAZIl_xZwpEVMZF65EWjSMsFCWSVCoRH3jl1-MtK1WHvqOOeNv5FeJvc7_aPe6p3lH3cJA8WWekgfElW6snUbAGcqoevnNHcAE43Gx8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamTUK8sMGAhQGzBJoEUrYkduJY4qVidB2MaIJNlAdkubG9oXVp1aTSuqf9BH4jv4Sz06QaGkjwloeL5Njf-T5f7j4j9DJgTMqIK9-kEfGp4YmfUsV9rQ1ASg2inNt-549Z0juh7_txfwm9aXphan2INuFmPcPt19bBx8rsLkRDT4ffrW5QbK-sXaFJkFpM731qxaOA6PNa55NTH57DVpw02l28eyMcrdiZvbyNa96kri72dFfRt2bUdcnJ-c60GuzkV78JOv7vZ62he3NSijs1iu6jJV08QOudAg7kFzO8jV2ZqMu_r6Ovx2eT0QWcp_F4BHy7Gs6wLs4sdkpc2kwgxMKf1z9KWxhvt1J8CtiWwIs11sYMp5fYdrTgWvFDKyzLCmLoDBjvQ3TSfXf8tufP72fwcwJ-66uYGcppKIkKSB6GkiUBz2NOZEgNiwhjQa6kZFzHhIJNmHMt4biVAKtPUxKSR2i5GBV6A2HgpYQDO0poGlMGkDHhQOkg1lxxaSLjoVfNMol8Ll5u79AYilp2ORJ23oSbNw-9aG3HtWTHrVbbbrVbEzk5t0VuLBZfsn1xxPuf06yXicxDWw0cBLie_Z8iCz2alsK2FQOhS_5s4aSKCEs99LjG0WJAzGpKBcxDrx0a_jJSsX940HFPT_7FeAvdOdrrisOD7MMmutukpIPwKVquJlP9DLhUNXjuXOYXC90Z1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thrombin+potently+enhances+swelling%E2%80%90sensitive+glutamate+efflux+from+cultured+astrocytes&rft.jtitle=Glia&rft.au=Ramos%E2%80%90Mandujano%2C+Gerardo&rft.au=V%C3%A1zquez%E2%80%90Ju%C3%A1rez%2C+Erika&rft.au=Hern%C3%A1ndez%E2%80%90Ben%C3%ADtez%2C+Reyna&rft.au=Pasantes%E2%80%90Morales%2C+Herminia&rft.date=2007-07-01&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=55&rft.issue=9&rft.spage=917&rft.epage=925&rft_id=info:doi/10.1002%2Fglia.20513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_glia_20513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon