Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model

Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular‐level changes in collagen caused by tensile overload of bovine tail tendons in vitro. Previous investigators concluded that tensile tendon rupture resulted in collagen denaturation, but our study s...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 26; no. 12; pp. 1605 - 1610
Main Authors Willett, Thomas L., Labow, Rosalind S., Lee, J. Michael
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular‐level changes in collagen caused by tensile overload of bovine tail tendons in vitro. Previous investigators concluded that tensile tendon rupture resulted in collagen denaturation, but our study suggests otherwise. Based on contemporary collagen biophysics, we hypothesized that tensile overload would lead to reduced thermal stability without change in the nativity of the molecular conformation. The thermal behavior of collagen from tail tendons ruptured in vitro at two strain rates (0.01 s−1 and 10 s−1) was measured by differential scanning calorimetry (DSC). The 1,000‐fold difference in strain rate was used since molecular mechanisms that determine mechanical behavior are thought to be strain rate‐dependent. DSC revealed that the collagen in tensile overloaded tendons was less thermally stable by 3° to 5°C relative to undamaged controls and was not denatured since there was no change in enthalpy of denaturation. The decrease in thermal stability occurred throughout the overloaded regions, independent of rupture site, and was greater in specimens ruptured at the lower strain rate. The deformation mechanism apparently involves disruption of the lattice structure of the collagen fibrils and greatly increases the molecular freedom of the collagen molecules, leading to reduced thermal molecular stability and the previously reported increased proteolysis. This has important implications for understanding soft tissue injuries, disease etiology and treatment, and for developing tissue engineered products with improved durability. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
AbstractList Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular‐level changes in collagen caused by tensile overload of bovine tail tendons in vitro. Previous investigators concluded that tensile tendon rupture resulted in collagen denaturation, but our study suggests otherwise. Based on contemporary collagen biophysics, we hypothesized that tensile overload would lead to reduced thermal stability without change in the nativity of the molecular conformation. The thermal behavior of collagen from tail tendons ruptured in vitro at two strain rates (0.01 s−1 and 10 s−1) was measured by differential scanning calorimetry (DSC). The 1,000‐fold difference in strain rate was used since molecular mechanisms that determine mechanical behavior are thought to be strain rate‐dependent. DSC revealed that the collagen in tensile overloaded tendons was less thermally stable by 3° to 5°C relative to undamaged controls and was not denatured since there was no change in enthalpy of denaturation. The decrease in thermal stability occurred throughout the overloaded regions, independent of rupture site, and was greater in specimens ruptured at the lower strain rate. The deformation mechanism apparently involves disruption of the lattice structure of the collagen fibrils and greatly increases the molecular freedom of the collagen molecules, leading to reduced thermal molecular stability and the previously reported increased proteolysis. This has important implications for understanding soft tissue injuries, disease etiology and treatment, and for developing tissue engineered products with improved durability. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular‐level changes in collagen caused by tensile overload of bovine tail tendons in vitro. Previous investigators concluded that tensile tendon rupture resulted in collagen denaturation, but our study suggests otherwise. Based on contemporary collagen biophysics, we hypothesized that tensile overload would lead to reduced thermal stability without change in the nativity of the molecular conformation. The thermal behavior of collagen from tail tendons ruptured in vitro at two strain rates (0.01 s −1 and 10 s −1 ) was measured by differential scanning calorimetry (DSC). The 1,000‐fold difference in strain rate was used since molecular mechanisms that determine mechanical behavior are thought to be strain rate‐dependent. DSC revealed that the collagen in tensile overloaded tendons was less thermally stable by 3° to 5°C relative to undamaged controls and was not denatured since there was no change in enthalpy of denaturation. The decrease in thermal stability occurred throughout the overloaded regions, independent of rupture site, and was greater in specimens ruptured at the lower strain rate. The deformation mechanism apparently involves disruption of the lattice structure of the collagen fibrils and greatly increases the molecular freedom of the collagen molecules, leading to reduced thermal molecular stability and the previously reported increased proteolysis. This has important implications for understanding soft tissue injuries, disease etiology and treatment, and for developing tissue engineered products with improved durability. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular-level changes in collagen caused by tensile overload of bovine tail tendons in vitro. Previous investigators concluded that tensile tendon rupture resulted in collagen denaturation, but our study suggests otherwise. Based on contemporary collagen biophysics, we hypothesized that tensile overload would lead to reduced thermal stability without change in the nativity of the molecular conformation. The thermal behavior of collagen from tail tendons ruptured in vitro at two strain rates (0.01 s(-1) and 10 s(-1)) was measured by differential scanning calorimetry (DSC). The 1,000-fold difference in strain rate was used since molecular mechanisms that determine mechanical behavior are thought to be strain rate-dependent. DSC revealed that the collagen in tensile overloaded tendons was less thermally stable by 3 degrees to 5 degrees C relative to undamaged controls and was not denatured since there was no change in enthalpy of denaturation. The decrease in thermal stability occurred throughout the overloaded regions, independent of rupture site, and was greater in specimens ruptured at the lower strain rate. The deformation mechanism apparently involves disruption of the lattice structure of the collagen fibrils and greatly increases the molecular freedom of the collagen molecules, leading to reduced thermal molecular stability and the previously reported increased proteolysis. This has important implications for understanding soft tissue injuries, disease etiology and treatment, and for developing tissue engineered products with improved durability.
Author Willett, Thomas L.
Lee, J. Michael
Labow, Rosalind S.
Author_xml – sequence: 1
  givenname: Thomas L.
  surname: Willett
  fullname: Willett, Thomas L.
  email: willett@mshri.on.ca
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3M 3J5, Canada
– sequence: 2
  givenname: Rosalind S.
  surname: Labow
  fullname: Labow, Rosalind S.
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3M 3J5, Canada
– sequence: 3
  givenname: J. Michael
  surname: Lee
  fullname: Lee, J. Michael
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3M 3J5, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18524005$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFPHCEYQInRuLvag3-g4dTEw6zADDAcm01dNeo21UZvhGG-qVhmsDCr7r93dFc99QAk8L4X8iZouwsdIHRAyZQSwo7uQ5wyIiTbQmPKeZFxJm-30ZjIXGSECTFCk5TuCSGSsnIXjWjJWUEIHyN_AfbOdM4aj8MjRB9MjWuwEUyChPs7eF2xHZ5TbyrnXb_CocE2eG_-QIddh83b_uj6GHAPXXIePl3DRR063IYa_D7aaYxP8GVz7qHfxz-uZyfZ-WJ-Ovt-ntlcCZYVyrLSKkEMU9YawS1TTQO0UASgojXlVSXrSlBTForxomK5ZXlhFYChULJ8D31bex9i-LeE1OvWJQvDjzsIy6SFkqoscjmAh2vQxpBShEY_RNeauNKU6Ne0ekir39IO7NeNdFm1UH-Sm5YDcLQGnoYAq_-b9Nni17syW0-41MPzx4SJf7WQueT65nKu59c_lZhdXumb_AV8vJW8
CitedBy_id crossref_primary_10_1007_s10973_020_10050_0
crossref_primary_10_1007_s10237_014_0600_x
crossref_primary_10_1016_j_actbio_2017_11_052
crossref_primary_10_1002_bip_22319
crossref_primary_10_1002_jor_24134
crossref_primary_10_2106_JBJS_I_00865
crossref_primary_10_1007_s10973_012_2846_9
crossref_primary_10_1016_j_actbio_2023_04_032
crossref_primary_10_1007_s10103_010_0871_0
crossref_primary_10_1016_j_bone_2014_01_006
crossref_primary_10_1016_j_jmbbm_2019_05_002
crossref_primary_10_1111_jocd_13235
crossref_primary_10_1002_jbm_a_32612
crossref_primary_10_1007_s10973_009_0538_x
crossref_primary_10_1016_j_jmbbm_2020_103771
crossref_primary_10_1016_j_jmps_2017_06_011
crossref_primary_10_1007_s10973_010_0820_y
crossref_primary_10_1016_j_actbio_2020_09_056
crossref_primary_10_1016_j_actbio_2021_07_045
crossref_primary_10_3382_ps_pex333
crossref_primary_10_5435_00124635_200904000_00007
crossref_primary_10_1002_jor_24067
crossref_primary_10_1016_j_matbio_2013_07_003
crossref_primary_10_1007_s40430_024_05068_6
crossref_primary_10_1016_j_jbiomech_2020_109720
crossref_primary_10_1093_icb_ict075
crossref_primary_10_1002_jor_21450
crossref_primary_10_1016_j_jmbbm_2022_105220
crossref_primary_10_1016_j_jbiomech_2018_10_006
crossref_primary_10_1038_ncomms14913
crossref_primary_10_1115_1_4052752
crossref_primary_10_1016_j_tca_2013_06_018
crossref_primary_10_1152_ajpheart_01173_2008
crossref_primary_10_1016_j_bbagen_2010_10_003
crossref_primary_10_1115_1_4000933
crossref_primary_10_1002_jbm_a_35156
crossref_primary_10_1007_s10973_019_09222_4
crossref_primary_10_1016_j_tca_2009_09_003
Cites_doi 10.1016/0076-6879(82)82074-0
10.1042/bj0610589
10.1016/0021-9290(96)00024-3
10.1016/0022-2836(85)90244-X
10.1016/S0021-9258(19)81546-6
10.1016/j.bbrc.2005.08.128
10.1016/0020-1383(75)90181-3
10.1016/S0006-3495(01)76120-6
10.1007/BF00455845
10.1016/S0021-9258(19)45663-9
10.1115/1.2798005
10.1002/bip.1974.360131208
10.1006/jmbi.1994.0035
10.1006/jsbi.1998.3966
10.1016/S0736-0266(01)00031-6
10.1016/S0142-9612(99)00013-7
10.1016/S0968-4328(00)00034-2
10.1111/j.2042-3306.1994.tb04383.x
10.1098/rspa.2002.1060
10.1021/ja01467a013
10.1002/jor.1100140120
10.4049/jimmunol.164.11.5928
10.1016/j.jmb.2004.12.001
10.1007/s10439-007-9375-x
10.1016/S0168-1656(00)00241-8
10.1136/ard.39.2.164
10.1006/jtbi.2002.2542
10.1016/S0021-9290(99)00194-3
10.1111/j.2042-3306.1994.tb04389.x
10.1152/jappl.2002.92.1.362
10.1016/S0006-3495(99)77476-X
10.1016/1350-4533(95)91882-H
10.1016/S0945-053X(01)00196-2
10.1016/0006-291X(92)91834-D
ContentType Journal Article
Copyright Copyright © 2008 Orthopaedic Research Society
Copyright_xml – notice: Copyright © 2008 Orthopaedic Research Society
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/jor.20672
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 1610
ExternalDocumentID 10_1002_jor_20672
18524005
JOR20672
ark_67375_WNG_GTP96CNS_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3V.
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RWL
RWR
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYB
WYISQ
X7M
XG1
XV2
YCJ
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
ADNMO
CITATION
7X8
ID FETCH-LOGICAL-c3962-49c28c960a29cca65c29ffe1490eeb1d15bb7db61a849254b23c234c9eea1e823
IEDL.DBID DR2
ISSN 0736-0266
IngestDate Wed Dec 04 10:12:47 EST 2024
Fri Dec 06 00:51:43 EST 2024
Sat Sep 28 07:44:23 EDT 2024
Sat Aug 24 00:54:32 EDT 2024
Wed Oct 30 09:54:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3962-49c28c960a29cca65c29ffe1490eeb1d15bb7db61a849254b23c234c9eea1e823
Notes ark:/67375/WNG-GTP96CNS-W
ArticleID:JOR20672
istex:EC1CADA0131045B8EBDA02C6DA38075D6000AE0A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jor.20672
PMID 18524005
PQID 69798437
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_69798437
crossref_primary_10_1002_jor_20672
pubmed_primary_18524005
wiley_primary_10_1002_jor_20672_JOR20672
istex_primary_ark_67375_WNG_GTP96CNS_W
PublicationCentury 2000
PublicationDate 2008-12
December 2008
2008-Dec
2008-12-00
20081201
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J. Orthop. Res
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Kastelic J, Baer E. 1980. Deformation in tendon collagen. Symp Soc Exp Biol 34: 397-435.
Humphrey J. 2003. Continuum biomechanics of soft biological tissues. Proc R Soc Lond A 459: 3-46.
Luescher M, Ruegg M, Schindler P. 1974. Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts. Biopolymers 13: 2489-2503.
Garnotel R, Rittie L, Poitevin S, et al. 2000. Human blood monocytes interact with type I collagen through alpha x beta 2 integrin (CD11c-CD18, gp150-95). J Immunol 164: 5928-5934.
Eastoe JE. 1955. The amino acid composition of mammalian collagen and gelatin. Biochem J 61: 589-600.
Fratzl P, Misof K, Zizak I, et al. 1998. Fibrillar structure and mechanical properties of collagen. J Struct Biol 122: 119-122.
Sasaki N, Odajima S. 1996. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29: 1131-1136.
Steven FS, Minns RJ. 1975. Evidence for the local denaturation of collagen fibrils during the mechanical rupture of human tendons. Injury 6: 317-319.
Flory P, Spurr O. 1961. Melting equilibrium for collagen fibers under stress. Elasticity in the amorphous state. J Am Chem Soc 83: 1308-1316.
Silver FH, Horvath I, Foran DJ. 2002. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen. J Theor Biol 216: 243-254.
Riley GP, Curry V, DeGroot J, et al. 2002. Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol 21: 185-195.
Miles CA, Ghelashvili M. 1999. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76: 3243-3252.
Berg RA. 1982. Determination of 3- and 4-hydroxyproline. Methods Enzymol 82(Pt A): 372-398.
Willett TL, Labow RS, Avery NC, et al. 2007. Increased proteolysis of collagen in an in vitro tensile overload tendon model. Ann Biomed Eng 35: 1961-1972.
Marsolais D, Cote CH, Frenette J. 2001. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J Orthop Res 19: 1203-1209.
Miles CA, Burjanadze TV. 2001. Thermal stability of collagen fibers in ethylene glycol. Biophys J 80: 1480-1486.
Provenzano PP, Heisey D, Hayashi K, et al. 2002. Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92: 362-371.
Minns RJ, Steven FS. 1980. Local denaturation of collagen fibres during the mechanical rupture of collagenous fibrous tissue. Ann Rheum Dis 39: 164-167.
McClain P, Wiley E. 1972. Differential scanning calorimetry studies of the thermal transitions of collagen: implications on structure and stability. J Biol Chem 247: 692-697.
Miles CA, Avery NC, Rodin VV, et al. 2005. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346: 551-556.
Miles CA, Bailey AJ. 2001. Thermally labile domains in the collagen molecule. Micron 32: 325-332.
Davis GE. 1992. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 182: 1025-1031.
Hickman D, Sims TJ, Miles CA, et al. 2000. Isinglass/collagen: denaturation and functionality. J Biotechnol 79: 245-257.
Chen SS, Wright NT, Humphrey JD. 1998. Heat-induced changes in the mechanics of a collagenous tissue: isothermal, isotonic shrinkage. J Biomech Eng 120: 382-388.
Knorzer E, Folkhard W, Geercken W, et al. 1986. New aspects of the etiology of tendon rupture. An analysis of time-resolved dynamic-mechanical measurements using synchrotron radiation. Arch Orthop Trauma Surg 105: 113-120.
Kadler KE, Hojima Y, Prockop DJ. 1988. Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. J Biol Chem 263: 10517-10523.
Miles CA, Burjanadze TV, Bailey AJ. 1995. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol 245: 437-446.
Nabeshima Y, Grood ES, Sakurai A, et al. 1996. Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14: 123-130.
Ellsmere JC, Khanna RA, Lee JM. 1999. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 20: 1143-1150.
Miles CA. 1994. Differential scanning calorimetry (DSC): protein structure probe useful for the study of damaged tendons. Equine Vet J 26: 255-256.
McNeilly CM, Banes AJ, Benjamin M, et al. 1996. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189(Pt 3): 593-600.
Miles CA, Wardale RJ, Birch HL, et al. 1994. Differential scanning calorimetric studies of superficial digital flexor tendon degeneration in the horse. Equine Vet J 26: 291-296.
Ruberti JW, Hallab NJ. 2005. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun 336: 483-489.
Nemethy G. 1989. Energetics and thermodynamics of collagen self-assembly. In: Nimni M, editor. Collagen: biochemistry, Boca Raton, FL: CRC Press. p 79-94.
Mosler E, Folkhard W, Knorzer E, et al. 1985. Stress-induced molecular rearrangement in tendon collagen. J Mol Biol 182: 589-596.
Wang YN, Galiotis C, Bader DL. 2000. Determination of molecular changes in soft tissues under strain using laser Raman microscopy. J Biomech 33: 483-486.
Lee JM, Pereira CA, Abdulla D, et al. 1995. A multi-sample denaturation temperature tester for collagenous biomaterials. Med Eng Phys 17: 115-121.
1974; 13
2003; 459
1992; 182
1995; 17
2005; 336
1976
2002; 216
1999; 20
1988; 263
1994; 26
1996; 14
1985; 182
1996; 189
1955; 61
2007; 35
1980; 39
2001; 80
1996; 29
1986; 105
1982; 82
2000; 79
2005; 346
1980; 34
2000; 33
2002; 21
2001; 19
1999; 76
1961; 83
2002; 92
2000; 164
1995; 245
1998; 122
1975; 6
1989
1972; 247
1998; 120
2001; 32
Kadler KE (e_1_2_1_16_2) 1988; 263
McNeilly CM (e_1_2_1_3_2) 1996; 189
Woessner JF (e_1_2_1_19_2) 1976
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Nemethy G (e_1_2_1_22_2) 1989
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
McClain P (e_1_2_1_23_2) 1972; 247
e_1_2_1_8_2
Kastelic J (e_1_2_1_10_2) 1980; 34
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – volume: 34
  start-page: 397
  year: 1980
  end-page: 435
  article-title: Deformation in tendon collagen
  publication-title: Symp Soc Exp Biol
– volume: 122
  start-page: 119
  year: 1998
  end-page: 122
  article-title: Fibrillar structure and mechanical properties of collagen
  publication-title: J Struct Biol
– volume: 39
  start-page: 164
  year: 1980
  end-page: 167
  article-title: Local denaturation of collagen fibres during the mechanical rupture of collagenous fibrous tissue
  publication-title: Ann Rheum Dis
– volume: 79
  start-page: 245
  year: 2000
  end-page: 257
  article-title: Isinglass/collagen: denaturation and functionality
  publication-title: J Biotechnol
– volume: 29
  start-page: 1131
  year: 1996
  end-page: 1136
  article-title: Elongation mechanism of collagen fibrils and force‐strain relations of tendon at each level of structural hierarchy
  publication-title: J Biomech
– start-page: 227
  year: 1976
  end-page: 233
– volume: 76
  start-page: 3243
  year: 1999
  end-page: 3252
  article-title: Polymer‐in‐a‐box mechanism for the thermal stabilization of collagen molecules in fibers
  publication-title: Biophys J
– volume: 80
  start-page: 1480
  year: 2001
  end-page: 1486
  article-title: Thermal stability of collagen fibers in ethylene glycol
  publication-title: Biophys J
– volume: 189
  start-page: 593
  issue: Pt 3
  year: 1996
  end-page: 600
  article-title: Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions
  publication-title: J Anat
– volume: 83
  start-page: 1308
  year: 1961
  end-page: 1316
  article-title: Melting equilibrium for collagen fibers under stress. Elasticity in the amorphous state
  publication-title: J Am Chem Soc
– volume: 14
  start-page: 123
  year: 1996
  end-page: 130
  article-title: Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro
  publication-title: J Orthop Res
– volume: 32
  start-page: 325
  year: 2001
  end-page: 332
  article-title: Thermally labile domains in the collagen molecule
  publication-title: Micron
– start-page: 79
  year: 1989
  end-page: 94
– volume: 13
  start-page: 2489
  year: 1974
  end-page: 2503
  article-title: Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts
  publication-title: Biopolymers
– volume: 346
  start-page: 551
  year: 2005
  end-page: 556
  article-title: The increase in denaturation temperature following cross‐linking of collagen is caused by dehydration of the fibres
  publication-title: J Mol Biol
– volume: 20
  start-page: 1143
  year: 1999
  end-page: 1150
  article-title: Mechanical loading of bovine pericardium accelerates enzymatic degradation
  publication-title: Biomaterials
– volume: 26
  start-page: 255
  year: 1994
  end-page: 256
  article-title: Differential scanning calorimetry (DSC): protein structure probe useful for the study of damaged tendons
  publication-title: Equine Vet J
– volume: 120
  start-page: 382
  year: 1998
  end-page: 388
  article-title: Heat‐induced changes in the mechanics of a collagenous tissue: isothermal, isotonic shrinkage
  publication-title: J Biomech Eng
– volume: 336
  start-page: 483
  year: 2005
  end-page: 489
  article-title: Strain‐controlled enzymatic cleavage of collagen in loaded matrix
  publication-title: Biochem Biophys Res Commun
– volume: 459
  start-page: 3
  year: 2003
  end-page: 46
  article-title: Continuum biomechanics of soft biological tissues
  publication-title: Proc R Soc Lond A
– volume: 245
  start-page: 437
  year: 1995
  end-page: 446
  article-title: The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry
  publication-title: J Mol Biol
– volume: 247
  start-page: 692
  year: 1972
  end-page: 697
  article-title: Differential scanning calorimetry studies of the thermal transitions of collagen: implications on structure and stability
  publication-title: J Biol Chem
– volume: 263
  start-page: 10517
  year: 1988
  end-page: 10523
  article-title: Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro‐unfolding of monomers
  publication-title: J Biol Chem
– volume: 33
  start-page: 483
  year: 2000
  end-page: 486
  article-title: Determination of molecular changes in soft tissues under strain using laser Raman microscopy
  publication-title: J Biomech
– volume: 35
  start-page: 1961
  year: 2007
  end-page: 1972
  article-title: Increased proteolysis of collagen in an in vitro tensile overload tendon model
  publication-title: Ann Biomed Eng
– volume: 21
  start-page: 185
  year: 2002
  end-page: 195
  article-title: Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology
  publication-title: Matrix Biol
– volume: 182
  start-page: 1025
  year: 1992
  end-page: 1031
  article-title: Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites
  publication-title: Biochem Biophys Res Commun
– volume: 164
  start-page: 5928
  year: 2000
  end-page: 5934
  article-title: Human blood monocytes interact with type I collagen through alpha x beta 2 integrin (CD11c‐CD18, gp150‐95)
  publication-title: J Immunol
– volume: 92
  start-page: 362
  year: 2002
  end-page: 371
  article-title: Subfailure damage in ligament: a structural and cellular evaluation
  publication-title: J Appl Physiol
– volume: 6
  start-page: 317
  year: 1975
  end-page: 319
  article-title: Evidence for the local denaturation of collagen fibrils during the mechanical rupture of human tendons
  publication-title: Injury
– volume: 19
  start-page: 1203
  year: 2001
  end-page: 1209
  article-title: Neutrophils and macrophages accumulate sequentially following Achilles tendon injury
  publication-title: J Orthop Res
– volume: 216
  start-page: 243
  year: 2002
  end-page: 254
  article-title: Mechanical implications of the domain structure of fiber‐forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1‐chains found in types I‐III collagen
  publication-title: J Theor Biol
– volume: 82
  start-page: 372
  issue: Pt A
  year: 1982
  end-page: 398
  article-title: Determination of 3‐ and 4‐hydroxyproline
  publication-title: Methods Enzymol
– volume: 105
  start-page: 113
  year: 1986
  end-page: 120
  article-title: New aspects of the etiology of tendon rupture. An analysis of time‐resolved dynamic‐mechanical measurements using synchrotron radiation
  publication-title: Arch Orthop Trauma Surg
– volume: 61
  start-page: 589
  year: 1955
  end-page: 600
  article-title: The amino acid composition of mammalian collagen and gelatin
  publication-title: Biochem J
– volume: 26
  start-page: 291
  year: 1994
  end-page: 296
  article-title: Differential scanning calorimetric studies of superficial digital flexor tendon degeneration in the horse
  publication-title: Equine Vet J
– volume: 182
  start-page: 589
  year: 1985
  end-page: 596
  article-title: Stress‐induced molecular rearrangement in tendon collagen
  publication-title: J Mol Biol
– volume: 17
  start-page: 115
  year: 1995
  end-page: 121
  article-title: A multi‐sample denaturation temperature tester for collagenous biomaterials
  publication-title: Med Eng Phys
– ident: e_1_2_1_20_2
  doi: 10.1016/0076-6879(82)82074-0
– ident: e_1_2_1_21_2
  doi: 10.1042/bj0610589
– ident: e_1_2_1_15_2
  doi: 10.1016/0021-9290(96)00024-3
– ident: e_1_2_1_12_2
  doi: 10.1016/0022-2836(85)90244-X
– volume: 263
  start-page: 10517
  year: 1988
  ident: e_1_2_1_16_2
  article-title: Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro‐unfolding of monomers
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)81546-6
  contributor:
    fullname: Kadler KE
– ident: e_1_2_1_29_2
  doi: 10.1016/j.bbrc.2005.08.128
– ident: e_1_2_1_5_2
  doi: 10.1016/0020-1383(75)90181-3
– ident: e_1_2_1_25_2
  doi: 10.1016/S0006-3495(01)76120-6
– volume: 34
  start-page: 397
  year: 1980
  ident: e_1_2_1_10_2
  article-title: Deformation in tendon collagen
  publication-title: Symp Soc Exp Biol
  contributor:
    fullname: Kastelic J
– ident: e_1_2_1_11_2
  doi: 10.1007/BF00455845
– volume: 247
  start-page: 692
  year: 1972
  ident: e_1_2_1_23_2
  article-title: Differential scanning calorimetry studies of the thermal transitions of collagen: implications on structure and stability
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)45663-9
  contributor:
    fullname: McClain P
– ident: e_1_2_1_31_2
  doi: 10.1115/1.2798005
– volume: 189
  start-page: 593
  issue: 3
  year: 1996
  ident: e_1_2_1_3_2
  article-title: Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions
  publication-title: J Anat
  contributor:
    fullname: McNeilly CM
– ident: e_1_2_1_26_2
  doi: 10.1002/bip.1974.360131208
– ident: e_1_2_1_17_2
  doi: 10.1006/jmbi.1994.0035
– ident: e_1_2_1_13_2
  doi: 10.1006/jsbi.1998.3966
– ident: e_1_2_1_27_2
  doi: 10.1016/S0736-0266(01)00031-6
– ident: e_1_2_1_30_2
  doi: 10.1016/S0142-9612(99)00013-7
– ident: e_1_2_1_8_2
  doi: 10.1016/S0968-4328(00)00034-2
– ident: e_1_2_1_36_2
  doi: 10.1111/j.2042-3306.1994.tb04383.x
– ident: e_1_2_1_32_2
  doi: 10.1098/rspa.2002.1060
– ident: e_1_2_1_33_2
  doi: 10.1021/ja01467a013
– ident: e_1_2_1_28_2
  doi: 10.1002/jor.1100140120
– start-page: 79
  volume-title: Energetics and thermodynamics of collagen self‐assembly
  year: 1989
  ident: e_1_2_1_22_2
  contributor:
    fullname: Nemethy G
– start-page: 227
  volume-title: The methodology of connective tissue research
  year: 1976
  ident: e_1_2_1_19_2
  contributor:
    fullname: Woessner JF
– ident: e_1_2_1_38_2
  doi: 10.4049/jimmunol.164.11.5928
– ident: e_1_2_1_7_2
  doi: 10.1016/j.jmb.2004.12.001
– ident: e_1_2_1_6_2
  doi: 10.1007/s10439-007-9375-x
– ident: e_1_2_1_24_2
  doi: 10.1016/S0168-1656(00)00241-8
– ident: e_1_2_1_4_2
  doi: 10.1136/ard.39.2.164
– ident: e_1_2_1_39_2
  doi: 10.1006/jtbi.2002.2542
– ident: e_1_2_1_14_2
  doi: 10.1016/S0021-9290(99)00194-3
– ident: e_1_2_1_35_2
  doi: 10.1111/j.2042-3306.1994.tb04389.x
– ident: e_1_2_1_2_2
  doi: 10.1152/jappl.2002.92.1.362
– ident: e_1_2_1_9_2
  doi: 10.1016/S0006-3495(99)77476-X
– ident: e_1_2_1_18_2
  doi: 10.1016/1350-4533(95)91882-H
– ident: e_1_2_1_34_2
  doi: 10.1016/S0945-053X(01)00196-2
– ident: e_1_2_1_37_2
  doi: 10.1016/0006-291X(92)91834-D
SSID ssj0007128
Score 2.160203
Snippet Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular‐level changes in collagen caused by tensile overload of...
Musculoskeletal soft tissue injuries are very common, yet poorly understood. We investigated molecular-level changes in collagen caused by tensile overload of...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1605
SubjectTerms Animals
Biomechanical Phenomena
Cattle
collagen
Collagen - analysis
Collagen - chemistry
damage
denaturation
Hot Temperature
injury
Male
Models, Animal
Models, Chemical
Models, Structural
Protein Conformation
Protein Denaturation
Protein Stability
stability
Tendons - chemistry
Tensile Strength
Title Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model
URI https://api.istex.fr/ark:/67375/WNG-GTP96CNS-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.20672
https://www.ncbi.nlm.nih.gov/pubmed/18524005
https://search.proquest.com/docview/69798437
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-Ie_FFN-a0bs4gInup3qZpmuDT0KkIXocf6IMQ8lVwXtpxP4bbX29Oau_FsYH40NKHtE1zTk5-SX_nF4At6ZzQFdVpxl0vZbrKUsMymYbB3RjhLBMec4dP-_z4ip3cFDdzsNflwrT6ENMFN-wZMV5jB9dmtDsTDf3RoJwnLzH-ZnmJdL6D85l0VJnFfVWDByPJlvNOVahHd6d3PhuL3mCzPvwLaD7HrXHgOVyC267KLd_kfmcyNjv2z19qjq_8prew-ARIydfWg97BnK_fw-DUY0YwGpAgx3PQaEdcRJgjPyIBNOIRYvqABHQZ-bW_SVOR6FXBJcldTXQ8_7obDxsSafIDP3sWrrw3NYn78CzD1eG3y_3j9GlfhtTmEpOspKXChqmPpjI4AC8slVXlw1yr50Pod1lhTOkMz7RA6UNmaG5pzqz0Xmde0PwDzNdN7VeBeMO0DfHY5bRivcppEeCCFDS8oBAlZQlsdhZSP1v5DdUKLVMVGkvFxkpgO9puWkIP75GvVhbqun-kji6_S77fv1DXCWx0xlWhF-GvEV37ZjJSXJZSsLxMYKW1-extokCabZHAl2i5_1dDnZydx4u1lxf9CAuRgBL5MZ9gfjyc-PWAcsbmc3TnR3RY-UI
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6q2gNcWMQWtloIIS5pJ46T2BIXVGiH0hlQmaq9IMtbpNJRgmZBwK_nPaeZURFIiEOiHJzE8Vv82fn8GeC58l6amps0K_0gFabOUisylWLnbq30TshAa4dH43J4Ig7PirMNeNWvhen0IVYTbhQZMV9TgNOE9O5aNfRLS3qeZYUJeAvDPSNC15vjtXhUlcWdVdGHiWZblr2u0IDvrm690httUcN-_xPUvIpcY9ezfxM-95XuGCcXO8uF3XE_f9Nz_N-vugU3LjEpe9050W3YCM0dmI4CLQomGzKieU5b45mPIHMe5gxxIx2Y1qcMAWak2P5gbc2iY6FXsvOGmXj-dr6YtSwy5adh_SyafG8bFrfiuQsn-28ne8P0cmuG1OWK1lkpx6XD0Y_hCn2gLBxXdR1wuDUImP19VlhbeVtmRpL6obA8dzwXToVgsiB5fg82m7YJD4AFK4zDlOxzXotB7Y1ExKAkxxcUsuIigWe9ifTXToFDd1rLXGNj6dhYCbyIxluVMLMLoqxVhT4dH-iDyUdV7o0_6dMEtnvragwk-jtimtAu57pUlZIirxK43xl9_TZZENO2SOBlNN3fq6EPPxzHi4f_XnQbrg0noyN99G78_hFcj3yUSJd5DJuL2TI8QdCzsE-jb_8CDjT9Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9UwFD8hkBhfFCLqlI_GEMPL4K7rujY8GfCCKBeCEHgwafq1BLnZyP0w6l_vacfuDUYT48OWPXRb13N6-mv3O78CbEnnhK6oTjPueinTVZYalskUB3djhLNM-JA7fDLgR5fs-Lq4XoC9Lhem1YeYLbiFnhHjdejgd67anYuGfm2CnCcvMf4uMU5lEM4_OJ9rR5VZ3FgVXTiwbDnvZIV6dHd264PBaCm06_c_Ic2HwDWOPP2n8KWrc0s4ud2ZTsyO_fmbnON_ftQyPLlHpORd60IrsODrZzA88SElOFiQBJLnsNGOuAgxx35MEDWGA4P6kCC8jATbH6SpSHQr9ElyUxMdz99uJqOGRJ780M-fFZbem5rEjXhW4bL__mL_KL3fmCG1uQxZVtJSYXHuo6lED-CFpbKqPE62eh5jv8sKY0pneKZF0D5khuaW5sxK73XmBc2fw2Ld1P4lEG-YthiQXU4r1qucFogXpKD4gkKUlCXwprOQumv1N1SrtEwVNpaKjZXA22i7WQk9ug2EtbJQV4NDdXhxJvn-4LO6SmCzM67CbhT-jejaN9Ox4rKUguVlAi9am8_fJorAsy0S2I6W-3s11PHpebx49e9FN-HR2UFfffow-PgaHkcySuTKrMHiZDT164h4JmYjevYvIav8Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+overload+decreases+the+thermal+stability+of+collagen+in+an+in+vitro+tensile+overload+tendon+model&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Willett%2C+Thomas+L.&rft.au=Labow%2C+Rosalind+S.&rft.au=Lee%2C+J.+Michael&rft.date=2008-12-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=26&rft.issue=12&rft.spage=1605&rft.epage=1610&rft_id=info:doi/10.1002%2Fjor.20672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jor_20672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon