Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement

Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovsk...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 35
Main Authors Zhou, Yang, Jia, Yong‐Heng, Fang, Hong‐Hua, Loi, Maria Antonietta, Xie, Fang‐Yan, Gong, Li, Qin, Min‐Chao, Lu, Xin‐Hui, Wong, Ching‐Ping, Zhao, Ni
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 29.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.
AbstractList Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage ( V oc ) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and V oc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA 0.17 Cs 0.83 PbI 3– x Br x ( x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN) 2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion V oc /stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
Author Xie, Fang‐Yan
Fang, Hong‐Hua
Zhao, Ni
Zhou, Yang
Jia, Yong‐Heng
Loi, Maria Antonietta
Qin, Min‐Chao
Wong, Ching‐Ping
Gong, Li
Lu, Xin‐Hui
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Yong‐Heng
  surname: Jia
  fullname: Jia, Yong‐Heng
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Hong‐Hua
  surname: Fang
  fullname: Fang, Hong‐Hua
  organization: University of Groningen
– sequence: 4
  givenname: Maria Antonietta
  surname: Loi
  fullname: Loi, Maria Antonietta
  organization: University of Groningen
– sequence: 5
  givenname: Fang‐Yan
  surname: Xie
  fullname: Xie, Fang‐Yan
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Li
  surname: Gong
  fullname: Gong, Li
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Min‐Chao
  surname: Qin
  fullname: Qin, Min‐Chao
  organization: The Chinese University of Hong Kong
– sequence: 8
  givenname: Xin‐Hui
  surname: Lu
  fullname: Lu, Xin‐Hui
  organization: The Chinese University of Hong Kong
– sequence: 9
  givenname: Ching‐Ping
  surname: Wong
  fullname: Wong, Ching‐Ping
  email: cpwong@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
– sequence: 10
  givenname: Ni
  orcidid: 0000-0002-1536-8516
  surname: Zhao
  fullname: Zhao, Ni
  email: nzhao@ee.cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BookMark eNqFkM1KAzEUhYNUsK1uXQdct-ZnzMy4q7WtgqKgorshM7kpqZ2kJqnSnY_gM_okTqlUEMTVvYvznXPv6aCWdRYQOqSkTwlhx1Lpus8IzQinnOygNhVU9DhhWWu706c91AlhRghNU560UT109cIFE42zn-8f90sLCj8aBfhMWjWVC3wL3r2GZxMhnOKxdzWeeGksHtmpsQDe2CmODt9FWZq5iSvccGtIO19LWwG-rBeNA9Rg4z7a1XIe4OB7dtHDeHQ_vOhd3Uwuh4OrXsVzQXqJVqXgMsulJlxkKoEspZBIJXhz-IlmrEyFyomCqpSpFkxRneSVKNMchGaEd9HRxrdJfllCiMXMLb1tIgtGcs5OEsZEo0o2qsq7EDzoojJRrpuIzYfzgpJiXWyxLrbYFttg_V_Ywpta-tXfQL4B3swcVv-oi8H5-PqH_QLIRY_0
CitedBy_id crossref_primary_10_1002_aenm_201903587
crossref_primary_10_1016_j_joule_2022_11_013
crossref_primary_10_1021_acs_jpcc_1c09739
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1021_acsenergylett_1c01040
crossref_primary_10_1016_j_mtener_2025_101816
crossref_primary_10_1002_smsc_202400106
crossref_primary_10_1126_science_adf0194
crossref_primary_10_1021_acs_jpcc_0c07063
crossref_primary_10_1002_adma_202407681
crossref_primary_10_1002_adfm_201909919
crossref_primary_10_1002_solr_202300967
crossref_primary_10_1039_D4MH00522H
crossref_primary_10_7498_aps_73_20241187
crossref_primary_10_1002_solr_202200955
crossref_primary_10_1002_adom_202303304
crossref_primary_10_1016_j_nanoen_2021_106537
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_1021_acsami_0c06837
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1002_solr_202000033
crossref_primary_10_1039_D3QM00970J
crossref_primary_10_1063_1_5133021
crossref_primary_10_1016_j_nanoen_2024_109476
crossref_primary_10_1021_jacsau_5c00033
crossref_primary_10_1126_sciadv_add0377
crossref_primary_10_1002_wene_403
crossref_primary_10_1016_j_joule_2021_11_003
crossref_primary_10_1039_D1RA03117A
crossref_primary_10_1021_acsami_4c16338
crossref_primary_10_3390_en14248401
crossref_primary_10_1016_j_ijleo_2022_168932
crossref_primary_10_1364_PRJ_402411
crossref_primary_10_1002_chem_202101655
crossref_primary_10_1002_adfm_202308545
crossref_primary_10_1021_acs_jpclett_4c01182
crossref_primary_10_1021_acsami_4c13467
crossref_primary_10_1007_s11426_021_1306_4
crossref_primary_10_1038_s41467_023_43016_5
crossref_primary_10_1002_pssr_202000335
crossref_primary_10_1103_PhysRevB_110_045142
crossref_primary_10_1002_aenm_201803699
crossref_primary_10_1039_D0EE00788A
crossref_primary_10_1039_C9TC04851K
crossref_primary_10_1021_acsenergylett_2c01556
crossref_primary_10_1002_adma_202003312
crossref_primary_10_1002_solr_202200060
crossref_primary_10_1063_5_0027573
crossref_primary_10_1002_adma_202200854
crossref_primary_10_1038_s41578_023_00610_9
crossref_primary_10_1016_j_mseb_2023_116795
crossref_primary_10_1039_D4CS00985A
crossref_primary_10_1039_D4SU00431K
crossref_primary_10_1063_1_5126867
crossref_primary_10_1039_D3EE02822D
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1002_adfm_201906875
crossref_primary_10_1002_aenm_202201672
crossref_primary_10_1002_solr_202300156
crossref_primary_10_1016_j_cap_2023_06_010
crossref_primary_10_1021_acsami_1c05458
crossref_primary_10_1039_D5EE00073D
crossref_primary_10_1021_acs_jpclett_2c00701
crossref_primary_10_1002_sstr_202200393
crossref_primary_10_1021_acsenergylett_0c01184
crossref_primary_10_1088_2515_7655_aaeee5
crossref_primary_10_1002_adma_202002176
crossref_primary_10_1002_adma_202305567
crossref_primary_10_1002_eem2_12111
crossref_primary_10_1016_j_micrna_2022_207305
crossref_primary_10_1016_j_joule_2022_07_005
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1002_aenm_202202802
crossref_primary_10_1021_acs_jpcc_0c07673
crossref_primary_10_1016_j_jcis_2021_07_147
crossref_primary_10_1021_acs_jpclett_0c01127
crossref_primary_10_1021_acsnano_0c04968
crossref_primary_10_1038_s41586_021_03217_8
crossref_primary_10_1002_adom_202100133
crossref_primary_10_1021_acs_jpcc_1c08346
crossref_primary_10_1680_jnaen_23_00003
crossref_primary_10_1002_smll_202304236
crossref_primary_10_1039_D0TC03885G
crossref_primary_10_1002_solr_202100357
crossref_primary_10_1021_acsami_2c01640
crossref_primary_10_1007_s40843_024_2977_x
crossref_primary_10_1016_j_vacuum_2021_110624
crossref_primary_10_1007_s43207_021_00117_5
crossref_primary_10_1021_acsenergylett_1c00794
crossref_primary_10_1021_acsenergylett_8b02002
crossref_primary_10_1021_acsenergylett_4c02325
crossref_primary_10_7498_aps_69_20200822
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1002_sus2_25
crossref_primary_10_1021_acsenergylett_3c00610
crossref_primary_10_1002_smsc_202300014
crossref_primary_10_1002_solr_202400521
crossref_primary_10_1021_acs_jpclett_3c00298
crossref_primary_10_1002_solr_202100348
crossref_primary_10_1021_acsami_2c03492
crossref_primary_10_1126_sciadv_aau9711
crossref_primary_10_56767_jfpe_2022_1_1_29
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1002_adfm_202415331
crossref_primary_10_1002_solr_202200134
crossref_primary_10_1002_solr_202100906
crossref_primary_10_1021_acsami_3c17911
crossref_primary_10_1016_j_nanoen_2020_105634
crossref_primary_10_1021_acs_chemmater_9b04000
crossref_primary_10_1002_aenm_202302124
crossref_primary_10_1002_cssc_202101089
crossref_primary_10_1002_solr_202400359
crossref_primary_10_1039_D2QM01341J
crossref_primary_10_1002_aenm_201903488
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1002_aenm_202304429
crossref_primary_10_1002_solr_202400750
crossref_primary_10_1039_C9EE02162K
crossref_primary_10_1002_adma_202306568
crossref_primary_10_1039_D3TA02209A
crossref_primary_10_26599_EMD_2024_9370037
crossref_primary_10_1021_acsenergylett_0c02105
crossref_primary_10_1002_adfm_201905739
crossref_primary_10_1039_D1TA04330G
crossref_primary_10_1002_solr_202200021
crossref_primary_10_1007_s10854_023_11163_6
crossref_primary_10_1002_smll_202409821
crossref_primary_10_1038_s41578_021_00331_x
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1039_D1TA02878B
crossref_primary_10_1038_s41578_022_00521_1
crossref_primary_10_1021_acsenergylett_4c00488
crossref_primary_10_1002_adfm_202312037
crossref_primary_10_1016_j_decarb_2025_100098
crossref_primary_10_1002_solr_202300519
crossref_primary_10_1002_aenm_202002774
crossref_primary_10_1016_j_joule_2022_08_006
crossref_primary_10_1021_acsenergylett_0c02475
crossref_primary_10_1002_smll_202401301
crossref_primary_10_1016_j_matt_2023_08_016
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1021_acsenergylett_0c02631
crossref_primary_10_1002_aenm_202003628
crossref_primary_10_1063_5_0061483
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1016_j_mtcomm_2024_108960
crossref_primary_10_1039_D3NR06602A
crossref_primary_10_1021_acsenergylett_4c01180
crossref_primary_10_1088_1361_6463_ad82f7
crossref_primary_10_1039_D4EE01898B
crossref_primary_10_1002_solr_202200708
Cites_doi 10.1039/C5EE03874J
10.1039/C4SC03141E
10.1038/nenergy.2016.81
10.1126/science.aah5557
10.1021/acs.jpclett.6b00226
10.1039/C5EE03255E
10.1021/acs.accounts.5b00420
10.1126/science.aad5845
10.1038/nature25989
10.1038/nature14133
10.1021/acsenergylett.7b00278
10.1021/ja809598r
10.1021/nl400349b
10.1021/jacs.6b06320
10.1126/science.aaa5333
10.1002/adma.201603062
10.1021/acsenergylett.7b00647
10.1002/advs.201500301
10.1002/aenm.201700228
10.1021/acsenergylett.7b00282
10.1021/jz500279b
10.1002/aenm.201500799
10.1038/nenergy.2017.18
10.1021/ja5033259
10.1021/acs.nanolett.6b04453
10.1002/aenm.201701048
10.1021/ja5079305
10.1002/adma.201600594
10.1038/nenergy.2017.9
10.1039/C6EE00413J
10.1126/science.aaf9717
10.1021/acsenergylett.7b00187
10.1002/aenm.201502206
10.1039/C6EE00030D
10.1039/c3ee43822h
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201803130
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201803130
ADFM201803130
Genre article
GrantInformation_xml – fundername: General Research Fund
  funderid: 14210917
– fundername: Research Grants Council of Hong Kong
  funderid: T23‐407/13‐N
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:57:38 EDT 2025
Tue Jul 01 04:11:49 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Aug 20 07:25:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1536-8516
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.201803130
PQID 2093254226
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2093254226
crossref_citationtrail_10_1002_adfm_201803130
crossref_primary_10_1002_adfm_201803130
wiley_primary_10_1002_adfm_201803130_ADFM201803130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 29, 2018
PublicationDateYYYYMMDD 2018-08-29
PublicationDate_xml – month: 08
  year: 2018
  text: August 29, 2018
  day: 29
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2016; 6
2016; 7
2015; 6
2014; 5
2016; 1
2017; 2
2015; 5
2015; 3
2013; 13
2016; 354
2018
2015; 517
2016; 138
2009; 131
2015; 348
2016; 28
2016; 17
2014; 7
2016; 49
2014; 136
2016; 351
2017; 555
2016; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 1
  start-page: 16081
  year: 2016
  publication-title: Nat. Energy
– volume: 9
  start-page: 656
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 14570
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 555
  start-page: 497
  year: 2017
  publication-title: Nature
– volume: 3
  start-page: 1500301
  year: 2015
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1752
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 2056
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1700228
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 17009
  year: 2017
  publication-title: Nat. Energy
– volume: 5
  start-page: 1500799
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9986
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1706
  year: 2016
  publication-title: Energy Environ. Sci.
– year: 2018
– volume: 6
  start-page: 1502206
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1701048
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1177
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano. Lett.
– volume: 17
  start-page: 1028
  year: 2016
  publication-title: Nano Lett.
– volume: 2
  start-page: 17018
  year: 2017
  publication-title: Nat. Energy
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 5214
  year: 2016
  publication-title: Adv. Mater.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 807
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 2
  start-page: 1416
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 348
  start-page: 683
  year: 2015
  publication-title: Science
– volume: 138
  start-page: 10331
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1083
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 49
  start-page: 286
  year: 2016
  publication-title: Acc. Chem. Res.
– ident: e_1_2_7_4_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_7_19_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_7_1_1
  doi: 10.1038/nenergy.2016.81
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.jpclett.6b00226
– ident: e_1_2_7_21_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_7_28_1
  doi: 10.1038/nature25989
– ident: e_1_2_7_3_1
  doi: 10.1038/nature14133
– ident: e_1_2_7_25_1
  doi: 10.1021/acsenergylett.7b00278
– ident: e_1_2_7_6_1
  doi: 10.1021/ja809598r
– ident: e_1_2_7_9_1
  doi: 10.1021/nl400349b
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.6b06320
– ident: e_1_2_7_33_1
  doi: 10.1126/science.aaa5333
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201603062
– ident: e_1_2_7_14_1
  doi: 10.1021/acsenergylett.7b00647
– ident: e_1_2_7_23_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_7_7_1
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201700228
– ident: e_1_2_7_20_1
  doi: 10.1021/acsenergylett.7b00282
– ident: e_1_2_7_31_1
  doi: 10.1021/jz500279b
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201500799
– ident: e_1_2_7_13_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_7_8_1
  doi: 10.1021/ja5033259
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.nanolett.6b04453
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201701048
– ident: e_1_2_7_32_1
  doi: 10.1021/ja5079305
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201600594
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_7_34_1
  doi: 10.1039/C6EE00413J
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_7_18_1
  doi: 10.1021/acsenergylett.7b00187
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201502206
– ident: e_1_2_7_36_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_7_10_1
  doi: 10.1039/c3ee43822h
SSID ssj0017734
Score 2.6125298
Snippet Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Composition
crystallinity
Crystallization
Facsimile communication
Grain
Grain boundaries
grain boundaries passivation
High temperature
Light
Materials science
open‐circuit voltage deficit
Perovskites
photostability
Photovoltaic cells
Power efficiency
Precursors
Solar cells
wide‐bandgap perovskites
Title Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201803130
https://www.proquest.com/docview/2093254226
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidIw-CT93WNE1X36azDnEiuuHeStKkIroLuwj65E_wN_pLzOltnSCCPhRamhPSXM75cnrOF4SOVI06lrbUhjSpMrSWJIaQwjYsyQVwtxBLRmyf16zVpZc9u5fL4o_5ITKHG6yMSF_DAudiUp2ThnIZQia5WQf2Qdi0Q8AWoKLbjD_KdJz4tzIzIcDL7KWsjTVSXRRftEpzqJkHrJHF8dYRT9saB5o8VWZTUQnevtE4_udjNtBaAkdxI54_m2hJDbbQao6kcBv1QWUkoV2f7x-dmVbM-P5RKnzKB_KBj_CNGg9fJuAGnpxgbzzs4ws4eALnqsHTIda4NorEfcVaDoTSjAUcezYiR-UO6nrnnbOWkRzSYASW3v0YNJSCWbzu8lAbw7qkSm_BFOUSuLxMOyREOEy6NakCwZ2QEWmG1A2YcFzFQlKzdlFhMByoPYSZVnZMaeHApvpyOXWEhmsqgJrDulNERjpIfpAwmMNBGs9-zL1MfOhGP-vGIjrOyo9i7o4fS5bSMfeTNTzRbzW2tSHTuIhINHi_1OI3ml47e9r_i9ABWoF7cFoTt4QK0_FMHWrUMxVltNxotq_uytEM_wKEsfui
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkbx3EabmUpBdoKoVb0FtmxgxB0UZsiwYlP4Bv5EjzZ2iIhJDjkkMRjOV5my8wbhI5UiTqWltSGNKkyNJckhpDCNizJBWC3EEtGaJ9NVmvT646dRhNCLkyMD5E53OBkRPwaDjg4pIsT1FAuA0glN8sAP6it9gUo6x1ZVXcZgpTpOPGPZWZCiJfZSXEbS6Q4Sz8rlybK5rTKGsmc6ioS6WjjUJOnwjgUBf_tG5Djvz5nDa0kGimuxFtoHc2p3gZansIp3ERd4BpJdNfn-0drrHkzvn-UCp_ynnzgA3yrhv2XEXiCRye4Oux38SXUnsBT3eCwj7VqGwXjvmJNB0Rp0gKOnRuRr3ILtasXrbOakdRpMHxLG0AGDaRgFi-7PNDysCyp0laYolwCnJdpB4QIh0m3JJUvuBMwIs2Auj4TjqtYQErWNprv9XtqB2Gm-R1Tmti3qb5cTh2hNTblQ89B2ckhI10lz09AzKGWxrMXwy8TD6bRy6Yxh46z9oMYvuPHlvl00b3kGI_0W63e2pBsnEMkWr1fevEq59VGdrf7F6JDtFhrNepe_ap5s4eW4Dn4sImbR_PhcKz2tRIUioNom38BTrz-KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLa6umoPgqdqmadp6U9e6PhFR3FtJmkRE98E-BD35E_yN_hIzfbkriKCHHtpmQprHzJfpzBeEtpRNfddYaks6VFlGSxJLSOFZruQCuFuIK1O2z0tWv6WnDa8xlMWf8UOUDjdYGam-hgXekXr3izSUSw2Z5E4A7INm0z5BmR3AvK5dlwRSju9n_5WZAxFeTqOgbbTJ7qj8qFn6wprDiDU1OdEs4kVjs0iTx51BX-wkr994HP_zNXNoJsejeD-bQPNoTLUW0PQQS-EiaoLOyGO7Pt7ebwZGM-O7B6nwAW_Je97BV6rbfu6BH7i3h6Nuu4mP4eQJPFQN7rexAbZpKO4LNnIgVKQs4My1kXoql9BtdHRzWLfyUxqsxDXbH4tqKZjLg5BrYw0DSZXZgynKJZB5OZ4mRPhMhrZUieC-ZkQ6moYJE36omCa2u4zGW-2WWkGYGW3HlBFOPGqukFNfGLymEqhZB34FWcUgxUlOYQ4naTzFGfkyiaEb47IbK2i7LN_JyDt-LFktxjzOF3HPvDXg1oNU4woi6eD9Uku8X4suyrvVvwhtosmrWhSfn1yeraEpeAwObBJW0Xi_O1DrBgH1xUY6yT8BbbP84Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composition%E2%80%90Tuned+Wide+Bandgap+Perovskites%3A+From+Grain+Engineering+to+Stability+and+Performance+Improvement&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Yang&rft.au=Jia%2C+Yong%E2%80%90Heng&rft.au=Fang%2C+Hong%E2%80%90Hua&rft.au=Loi%2C+Maria+Antonietta&rft.date=2018-08-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201803130&rft.externalDBID=10.1002%252Fadfm.201803130&rft.externalDocID=ADFM201803130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon