Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovsk...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 35 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
29.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV. |
---|---|
AbstractList | Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV. Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage ( V oc ) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and V oc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA 0.17 Cs 0.83 PbI 3– x Br x ( x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN) 2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion V oc /stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. |
Author | Xie, Fang‐Yan Fang, Hong‐Hua Zhao, Ni Zhou, Yang Jia, Yong‐Heng Loi, Maria Antonietta Qin, Min‐Chao Wong, Ching‐Ping Gong, Li Lu, Xin‐Hui |
Author_xml | – sequence: 1 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: The Chinese University of Hong Kong – sequence: 2 givenname: Yong‐Heng surname: Jia fullname: Jia, Yong‐Heng organization: The Chinese University of Hong Kong – sequence: 3 givenname: Hong‐Hua surname: Fang fullname: Fang, Hong‐Hua organization: University of Groningen – sequence: 4 givenname: Maria Antonietta surname: Loi fullname: Loi, Maria Antonietta organization: University of Groningen – sequence: 5 givenname: Fang‐Yan surname: Xie fullname: Xie, Fang‐Yan organization: Sun Yat‐sen University – sequence: 6 givenname: Li surname: Gong fullname: Gong, Li organization: Sun Yat‐sen University – sequence: 7 givenname: Min‐Chao surname: Qin fullname: Qin, Min‐Chao organization: The Chinese University of Hong Kong – sequence: 8 givenname: Xin‐Hui surname: Lu fullname: Lu, Xin‐Hui organization: The Chinese University of Hong Kong – sequence: 9 givenname: Ching‐Ping surname: Wong fullname: Wong, Ching‐Ping email: cpwong@cuhk.edu.hk organization: The Chinese University of Hong Kong – sequence: 10 givenname: Ni orcidid: 0000-0002-1536-8516 surname: Zhao fullname: Zhao, Ni email: nzhao@ee.cuhk.edu.hk organization: The Chinese University of Hong Kong |
BookMark | eNqFkM1KAzEUhYNUsK1uXQdct-ZnzMy4q7WtgqKgorshM7kpqZ2kJqnSnY_gM_okTqlUEMTVvYvznXPv6aCWdRYQOqSkTwlhx1Lpus8IzQinnOygNhVU9DhhWWu706c91AlhRghNU560UT109cIFE42zn-8f90sLCj8aBfhMWjWVC3wL3r2GZxMhnOKxdzWeeGksHtmpsQDe2CmODt9FWZq5iSvccGtIO19LWwG-rBeNA9Rg4z7a1XIe4OB7dtHDeHQ_vOhd3Uwuh4OrXsVzQXqJVqXgMsulJlxkKoEspZBIJXhz-IlmrEyFyomCqpSpFkxRneSVKNMchGaEd9HRxrdJfllCiMXMLb1tIgtGcs5OEsZEo0o2qsq7EDzoojJRrpuIzYfzgpJiXWyxLrbYFttg_V_Ywpta-tXfQL4B3swcVv-oi8H5-PqH_QLIRY_0 |
CitedBy_id | crossref_primary_10_1002_aenm_201903587 crossref_primary_10_1016_j_joule_2022_11_013 crossref_primary_10_1021_acs_jpcc_1c09739 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1021_acsenergylett_1c01040 crossref_primary_10_1016_j_mtener_2025_101816 crossref_primary_10_1002_smsc_202400106 crossref_primary_10_1126_science_adf0194 crossref_primary_10_1021_acs_jpcc_0c07063 crossref_primary_10_1002_adma_202407681 crossref_primary_10_1002_adfm_201909919 crossref_primary_10_1002_solr_202300967 crossref_primary_10_1039_D4MH00522H crossref_primary_10_7498_aps_73_20241187 crossref_primary_10_1002_solr_202200955 crossref_primary_10_1002_adom_202303304 crossref_primary_10_1016_j_nanoen_2021_106537 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1002_aenm_202102526 crossref_primary_10_1021_acsami_0c06837 crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1002_solr_202000033 crossref_primary_10_1039_D3QM00970J crossref_primary_10_1063_1_5133021 crossref_primary_10_1016_j_nanoen_2024_109476 crossref_primary_10_1021_jacsau_5c00033 crossref_primary_10_1126_sciadv_add0377 crossref_primary_10_1002_wene_403 crossref_primary_10_1016_j_joule_2021_11_003 crossref_primary_10_1039_D1RA03117A crossref_primary_10_1021_acsami_4c16338 crossref_primary_10_3390_en14248401 crossref_primary_10_1016_j_ijleo_2022_168932 crossref_primary_10_1364_PRJ_402411 crossref_primary_10_1002_chem_202101655 crossref_primary_10_1002_adfm_202308545 crossref_primary_10_1021_acs_jpclett_4c01182 crossref_primary_10_1021_acsami_4c13467 crossref_primary_10_1007_s11426_021_1306_4 crossref_primary_10_1038_s41467_023_43016_5 crossref_primary_10_1002_pssr_202000335 crossref_primary_10_1103_PhysRevB_110_045142 crossref_primary_10_1002_aenm_201803699 crossref_primary_10_1039_D0EE00788A crossref_primary_10_1039_C9TC04851K crossref_primary_10_1021_acsenergylett_2c01556 crossref_primary_10_1002_adma_202003312 crossref_primary_10_1002_solr_202200060 crossref_primary_10_1063_5_0027573 crossref_primary_10_1002_adma_202200854 crossref_primary_10_1038_s41578_023_00610_9 crossref_primary_10_1016_j_mseb_2023_116795 crossref_primary_10_1039_D4CS00985A crossref_primary_10_1039_D4SU00431K crossref_primary_10_1063_1_5126867 crossref_primary_10_1039_D3EE02822D crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1002_adfm_201906875 crossref_primary_10_1002_aenm_202201672 crossref_primary_10_1002_solr_202300156 crossref_primary_10_1016_j_cap_2023_06_010 crossref_primary_10_1021_acsami_1c05458 crossref_primary_10_1039_D5EE00073D crossref_primary_10_1021_acs_jpclett_2c00701 crossref_primary_10_1002_sstr_202200393 crossref_primary_10_1021_acsenergylett_0c01184 crossref_primary_10_1088_2515_7655_aaeee5 crossref_primary_10_1002_adma_202002176 crossref_primary_10_1002_adma_202305567 crossref_primary_10_1002_eem2_12111 crossref_primary_10_1016_j_micrna_2022_207305 crossref_primary_10_1016_j_joule_2022_07_005 crossref_primary_10_1002_advs_202105085 crossref_primary_10_1002_aenm_202202802 crossref_primary_10_1021_acs_jpcc_0c07673 crossref_primary_10_1016_j_jcis_2021_07_147 crossref_primary_10_1021_acs_jpclett_0c01127 crossref_primary_10_1021_acsnano_0c04968 crossref_primary_10_1038_s41586_021_03217_8 crossref_primary_10_1002_adom_202100133 crossref_primary_10_1021_acs_jpcc_1c08346 crossref_primary_10_1680_jnaen_23_00003 crossref_primary_10_1002_smll_202304236 crossref_primary_10_1039_D0TC03885G crossref_primary_10_1002_solr_202100357 crossref_primary_10_1021_acsami_2c01640 crossref_primary_10_1007_s40843_024_2977_x crossref_primary_10_1016_j_vacuum_2021_110624 crossref_primary_10_1007_s43207_021_00117_5 crossref_primary_10_1021_acsenergylett_1c00794 crossref_primary_10_1021_acsenergylett_8b02002 crossref_primary_10_1021_acsenergylett_4c02325 crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1002_sus2_25 crossref_primary_10_1021_acsenergylett_3c00610 crossref_primary_10_1002_smsc_202300014 crossref_primary_10_1002_solr_202400521 crossref_primary_10_1021_acs_jpclett_3c00298 crossref_primary_10_1002_solr_202100348 crossref_primary_10_1021_acsami_2c03492 crossref_primary_10_1126_sciadv_aau9711 crossref_primary_10_56767_jfpe_2022_1_1_29 crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1002_adfm_202415331 crossref_primary_10_1002_solr_202200134 crossref_primary_10_1002_solr_202100906 crossref_primary_10_1021_acsami_3c17911 crossref_primary_10_1016_j_nanoen_2020_105634 crossref_primary_10_1021_acs_chemmater_9b04000 crossref_primary_10_1002_aenm_202302124 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1002_solr_202400359 crossref_primary_10_1039_D2QM01341J crossref_primary_10_1002_aenm_201903488 crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1002_aenm_202304429 crossref_primary_10_1002_solr_202400750 crossref_primary_10_1039_C9EE02162K crossref_primary_10_1002_adma_202306568 crossref_primary_10_1039_D3TA02209A crossref_primary_10_26599_EMD_2024_9370037 crossref_primary_10_1021_acsenergylett_0c02105 crossref_primary_10_1002_adfm_201905739 crossref_primary_10_1039_D1TA04330G crossref_primary_10_1002_solr_202200021 crossref_primary_10_1007_s10854_023_11163_6 crossref_primary_10_1002_smll_202409821 crossref_primary_10_1038_s41578_021_00331_x crossref_primary_10_1039_D1EE01562A crossref_primary_10_1039_D1TA02878B crossref_primary_10_1038_s41578_022_00521_1 crossref_primary_10_1021_acsenergylett_4c00488 crossref_primary_10_1002_adfm_202312037 crossref_primary_10_1016_j_decarb_2025_100098 crossref_primary_10_1002_solr_202300519 crossref_primary_10_1002_aenm_202002774 crossref_primary_10_1016_j_joule_2022_08_006 crossref_primary_10_1021_acsenergylett_0c02475 crossref_primary_10_1002_smll_202401301 crossref_primary_10_1016_j_matt_2023_08_016 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1021_acsenergylett_0c02631 crossref_primary_10_1002_aenm_202003628 crossref_primary_10_1063_5_0061483 crossref_primary_10_1002_adom_202301052 crossref_primary_10_1016_j_mtcomm_2024_108960 crossref_primary_10_1039_D3NR06602A crossref_primary_10_1021_acsenergylett_4c01180 crossref_primary_10_1088_1361_6463_ad82f7 crossref_primary_10_1039_D4EE01898B crossref_primary_10_1002_solr_202200708 |
Cites_doi | 10.1039/C5EE03874J 10.1039/C4SC03141E 10.1038/nenergy.2016.81 10.1126/science.aah5557 10.1021/acs.jpclett.6b00226 10.1039/C5EE03255E 10.1021/acs.accounts.5b00420 10.1126/science.aad5845 10.1038/nature25989 10.1038/nature14133 10.1021/acsenergylett.7b00278 10.1021/ja809598r 10.1021/nl400349b 10.1021/jacs.6b06320 10.1126/science.aaa5333 10.1002/adma.201603062 10.1021/acsenergylett.7b00647 10.1002/advs.201500301 10.1002/aenm.201700228 10.1021/acsenergylett.7b00282 10.1021/jz500279b 10.1002/aenm.201500799 10.1038/nenergy.2017.18 10.1021/ja5033259 10.1021/acs.nanolett.6b04453 10.1002/aenm.201701048 10.1021/ja5079305 10.1002/adma.201600594 10.1038/nenergy.2017.9 10.1039/C6EE00413J 10.1126/science.aaf9717 10.1021/acsenergylett.7b00187 10.1002/aenm.201502206 10.1039/C6EE00030D 10.1039/c3ee43822h |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201803130 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201803130 ADFM201803130 |
Genre | article |
GrantInformation_xml | – fundername: General Research Fund funderid: 14210917 – fundername: Research Grants Council of Hong Kong funderid: T23‐407/13‐N |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:57:38 EDT 2025 Tue Jul 01 04:11:49 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Aug 20 07:25:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1536-8516 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.201803130 |
PQID | 2093254226 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2093254226 crossref_citationtrail_10_1002_adfm_201803130 crossref_primary_10_1002_adfm_201803130 wiley_primary_10_1002_adfm_201803130_ADFM201803130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 29, 2018 |
PublicationDateYYYYMMDD | 2018-08-29 |
PublicationDate_xml | – month: 08 year: 2018 text: August 29, 2018 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2016; 6 2016; 7 2015; 6 2014; 5 2016; 1 2017; 2 2015; 5 2015; 3 2013; 13 2016; 354 2018 2015; 517 2016; 138 2009; 131 2015; 348 2016; 28 2016; 17 2014; 7 2016; 49 2014; 136 2016; 351 2017; 555 2016; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 1 start-page: 16081 year: 2016 publication-title: Nat. Energy – volume: 9 start-page: 656 year: 2016 publication-title: Energy Environ. Sci. – volume: 136 start-page: 14570 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 555 start-page: 497 year: 2017 publication-title: Nature – volume: 3 start-page: 1500301 year: 2015 publication-title: Adv. Sci. – volume: 9 start-page: 1752 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 2056 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 1700228 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 17009 year: 2017 publication-title: Nat. Energy – volume: 5 start-page: 1500799 year: 2015 publication-title: Adv. Energy Mater. – volume: 28 start-page: 9986 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – year: 2018 – volume: 6 start-page: 1502206 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1701048 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1177 year: 2017 publication-title: ACS Energy Lett. – volume: 13 start-page: 1764 year: 2013 publication-title: Nano. Lett. – volume: 17 start-page: 1028 year: 2016 publication-title: Nano Lett. – volume: 2 start-page: 17018 year: 2017 publication-title: Nat. Energy – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 5214 year: 2016 publication-title: Adv. Mater. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 807 year: 2017 publication-title: ACS Energy Lett. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 2 start-page: 1416 year: 2017 publication-title: ACS Energy Lett. – volume: 348 start-page: 683 year: 2015 publication-title: Science – volume: 138 start-page: 10331 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1083 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 49 start-page: 286 year: 2016 publication-title: Acc. Chem. Res. – ident: e_1_2_7_4_1 doi: 10.1039/C5EE03874J – ident: e_1_2_7_19_1 doi: 10.1039/C4SC03141E – ident: e_1_2_7_1_1 doi: 10.1038/nenergy.2016.81 – ident: e_1_2_7_5_1 doi: 10.1126/science.aah5557 – ident: e_1_2_7_30_1 doi: 10.1021/acs.jpclett.6b00226 – ident: e_1_2_7_21_1 doi: 10.1039/C5EE03255E – ident: e_1_2_7_35_1 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_2_7_11_1 doi: 10.1126/science.aad5845 – ident: e_1_2_7_28_1 doi: 10.1038/nature25989 – ident: e_1_2_7_3_1 doi: 10.1038/nature14133 – ident: e_1_2_7_25_1 doi: 10.1021/acsenergylett.7b00278 – ident: e_1_2_7_6_1 doi: 10.1021/ja809598r – ident: e_1_2_7_9_1 doi: 10.1021/nl400349b – ident: e_1_2_7_26_1 doi: 10.1021/jacs.6b06320 – ident: e_1_2_7_33_1 doi: 10.1126/science.aaa5333 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201603062 – ident: e_1_2_7_14_1 doi: 10.1021/acsenergylett.7b00647 – ident: e_1_2_7_23_1 doi: 10.1002/advs.201500301 – ident: e_1_2_7_7_1 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201700228 – ident: e_1_2_7_20_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_7_31_1 doi: 10.1021/jz500279b – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201500799 – ident: e_1_2_7_13_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_7_8_1 doi: 10.1021/ja5033259 – ident: e_1_2_7_22_1 doi: 10.1021/acs.nanolett.6b04453 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201701048 – ident: e_1_2_7_32_1 doi: 10.1021/ja5079305 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201600594 – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_7_34_1 doi: 10.1039/C6EE00413J – ident: e_1_2_7_12_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_7_18_1 doi: 10.1021/acsenergylett.7b00187 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201502206 – ident: e_1_2_7_36_1 doi: 10.1039/C6EE00030D – ident: e_1_2_7_10_1 doi: 10.1039/c3ee43822h |
SSID | ssj0017734 |
Score | 2.6125298 |
Snippet | Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Composition crystallinity Crystallization Facsimile communication Grain Grain boundaries grain boundaries passivation High temperature Light Materials science open‐circuit voltage deficit Perovskites photostability Photovoltaic cells Power efficiency Precursors Solar cells wide‐bandgap perovskites |
Title | Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201803130 https://www.proquest.com/docview/2093254226 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidIw-CT93WNE1X36azDnEiuuHeStKkIroLuwj65E_wN_pLzOltnSCCPhRamhPSXM75cnrOF4SOVI06lrbUhjSpMrSWJIaQwjYsyQVwtxBLRmyf16zVpZc9u5fL4o_5ITKHG6yMSF_DAudiUp2ThnIZQia5WQf2Qdi0Q8AWoKLbjD_KdJz4tzIzIcDL7KWsjTVSXRRftEpzqJkHrJHF8dYRT9saB5o8VWZTUQnevtE4_udjNtBaAkdxI54_m2hJDbbQao6kcBv1QWUkoV2f7x-dmVbM-P5RKnzKB_KBj_CNGg9fJuAGnpxgbzzs4ws4eALnqsHTIda4NorEfcVaDoTSjAUcezYiR-UO6nrnnbOWkRzSYASW3v0YNJSCWbzu8lAbw7qkSm_BFOUSuLxMOyREOEy6NakCwZ2QEWmG1A2YcFzFQlKzdlFhMByoPYSZVnZMaeHApvpyOXWEhmsqgJrDulNERjpIfpAwmMNBGs9-zL1MfOhGP-vGIjrOyo9i7o4fS5bSMfeTNTzRbzW2tSHTuIhINHi_1OI3ml47e9r_i9ABWoF7cFoTt4QK0_FMHWrUMxVltNxotq_uytEM_wKEsfui |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkbx3EabmUpBdoKoVb0FtmxgxB0UZsiwYlP4Bv5EjzZ2iIhJDjkkMRjOV5my8wbhI5UiTqWltSGNKkyNJckhpDCNizJBWC3EEtGaJ9NVmvT646dRhNCLkyMD5E53OBkRPwaDjg4pIsT1FAuA0glN8sAP6it9gUo6x1ZVXcZgpTpOPGPZWZCiJfZSXEbS6Q4Sz8rlybK5rTKGsmc6ioS6WjjUJOnwjgUBf_tG5Djvz5nDa0kGimuxFtoHc2p3gZansIp3ERd4BpJdNfn-0drrHkzvn-UCp_ynnzgA3yrhv2XEXiCRye4Oux38SXUnsBT3eCwj7VqGwXjvmJNB0Rp0gKOnRuRr3ILtasXrbOakdRpMHxLG0AGDaRgFi-7PNDysCyp0laYolwCnJdpB4QIh0m3JJUvuBMwIs2Auj4TjqtYQErWNprv9XtqB2Gm-R1Tmti3qb5cTh2hNTblQ89B2ckhI10lz09AzKGWxrMXwy8TD6bRy6Yxh46z9oMYvuPHlvl00b3kGI_0W63e2pBsnEMkWr1fevEq59VGdrf7F6JDtFhrNepe_ap5s4eW4Dn4sImbR_PhcKz2tRIUioNom38BTrz-KQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLa6umoPgqdqmadp6U9e6PhFR3FtJmkRE98E-BD35E_yN_hIzfbkriKCHHtpmQprHzJfpzBeEtpRNfddYaks6VFlGSxJLSOFZruQCuFuIK1O2z0tWv6WnDa8xlMWf8UOUDjdYGam-hgXekXr3izSUSw2Z5E4A7INm0z5BmR3AvK5dlwRSju9n_5WZAxFeTqOgbbTJ7qj8qFn6wprDiDU1OdEs4kVjs0iTx51BX-wkr994HP_zNXNoJsejeD-bQPNoTLUW0PQQS-EiaoLOyGO7Pt7ebwZGM-O7B6nwAW_Je97BV6rbfu6BH7i3h6Nuu4mP4eQJPFQN7rexAbZpKO4LNnIgVKQs4My1kXoql9BtdHRzWLfyUxqsxDXbH4tqKZjLg5BrYw0DSZXZgynKJZB5OZ4mRPhMhrZUieC-ZkQ6moYJE36omCa2u4zGW-2WWkGYGW3HlBFOPGqukFNfGLymEqhZB34FWcUgxUlOYQ4naTzFGfkyiaEb47IbK2i7LN_JyDt-LFktxjzOF3HPvDXg1oNU4woi6eD9Uku8X4suyrvVvwhtosmrWhSfn1yeraEpeAwObBJW0Xi_O1DrBgH1xUY6yT8BbbP84Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composition%E2%80%90Tuned+Wide+Bandgap+Perovskites%3A+From+Grain+Engineering+to+Stability+and+Performance+Improvement&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Yang&rft.au=Jia%2C+Yong%E2%80%90Heng&rft.au=Fang%2C+Hong%E2%80%90Hua&rft.au=Loi%2C+Maria+Antonietta&rft.date=2018-08-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201803130&rft.externalDBID=10.1002%252Fadfm.201803130&rft.externalDocID=ADFM201803130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |