Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks
For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-f...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 10; pp. 3839 - 3852 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)]. |
---|---|
AbstractList | For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)]. For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)].For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)]. |
Author | Kwon, O-Yeon Lee, Min-Ho Guan, Cuntai Lee, Seong-Whan |
Author_xml | – sequence: 1 givenname: O-Yeon orcidid: 0000-0001-5498-0540 surname: Kwon fullname: Kwon, O-Yeon email: data0311@gmail.com organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Min-Ho orcidid: 0000-0002-5730-1715 surname: Lee fullname: Lee, Min-Ho email: minho.lee@nu.edu.kz organization: Department of Computer Science, Nazarbayev University, Astana, Kazakhstan – sequence: 3 givenname: Cuntai orcidid: 0000-0002-0872-3276 surname: Guan fullname: Guan, Cuntai email: ctguan@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Seong-Whan orcidid: 0000-0002-6249-4996 surname: Lee fullname: Lee, Seong-Whan email: sw.lee@korea.ac.kr organization: Department of Artificial Intelligence, Korea University, Seoul, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31725394$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1u2zAUhYkiQZMmfoEWKARkySKHf6LIsXbSxoDhDPbQTgJFXQFyZVIlqRR9-9Cx6yFDONxLkN-5JM75hM6ss4DQZ4KnhGB1t1mtluspxURNqeJCCvUBXVIiaE6ZlGenffnzAk1C2OK0BC4EVx_RBSMlLZjil-jXeqy3YGK-sA0MkIqN2czrzuZztxvGCD5b2FRbbSBkMx2gyZzN7gGGbO7ss-vH2Dmr-2wFo39t8a_zv8M1Om91H2By7Fdo8_1hM3_Ml08_FvNvy9wwVcS8baipW0kEEyUxQFipWcmVaBsoSIPF_kjTdFPWYDgwWbecUgINJgWoll2h28PYwbs_I4RY7bpgoO-1BTeGijJSYJUs4gm9eYNu3ejT1xPFuWIEcyUT9fVIjfUOmmrw3U77f9V_zxJAD4DxLgQP7QkhuNpnU71mU-2zqY7ZJJF8IzJd1HvnYjK7f1_65SDtAOD0lpSqLCljL0xInAI |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_1109_TNSRE_2020_3001990 crossref_primary_10_3390_s24196466 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_3390_s23239588 crossref_primary_10_1016_j_bspc_2021_103101 crossref_primary_10_1186_s13040_023_00336_y crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1109_TBME_2021_3137184 crossref_primary_10_31083_j_jin2308153 crossref_primary_10_1109_TNSRE_2024_3457502 crossref_primary_10_1186_s12984_023_01181_0 crossref_primary_10_1109_ACCESS_2024_3406736 crossref_primary_10_1080_2326263X_2024_2347790 crossref_primary_10_1109_JBHI_2023_3337072 crossref_primary_10_1038_s44222_024_00185_2 crossref_primary_10_1016_j_neunet_2023_03_039 crossref_primary_10_3390_s24123755 crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1109_LSP_2021_3095761 crossref_primary_10_3390_s22093331 crossref_primary_10_1016_j_neunet_2021_08_019 crossref_primary_10_1016_j_neuroimage_2022_119754 crossref_primary_10_1038_s41597_024_03838_4 crossref_primary_10_1109_TNNLS_2022_3209925 crossref_primary_10_1109_JTEHM_2020_2999725 crossref_primary_10_1038_s41597_022_01509_w crossref_primary_10_1109_JBHI_2023_3238421 crossref_primary_10_1109_ACCESS_2025_3528539 crossref_primary_10_1109_MCI_2021_3061875 crossref_primary_10_1142_S0218001422500410 crossref_primary_10_1007_s42600_023_00321_8 crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_3389_fnhum_2021_646915 crossref_primary_10_1109_TIM_2020_3041099 crossref_primary_10_3390_s21165436 crossref_primary_10_3389_fnins_2023_1292724 crossref_primary_10_1109_JSEN_2022_3171808 crossref_primary_10_1088_1361_6579_ad4e95 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1371_journal_pone_0309706 crossref_primary_10_1016_j_bspc_2023_105063 crossref_primary_10_1109_ACCESS_2021_3049191 crossref_primary_10_1109_ACCESS_2022_3171906 crossref_primary_10_1016_j_asoc_2022_108416 crossref_primary_10_1109_JBHI_2024_3392564 crossref_primary_10_1016_j_bbe_2024_12_003 crossref_primary_10_1109_TNNLS_2023_3269949 crossref_primary_10_1109_TNSRE_2023_3307481 crossref_primary_10_1016_j_bspc_2022_104456 crossref_primary_10_1109_TNNLS_2023_3303308 crossref_primary_10_3389_fnhum_2022_898300 crossref_primary_10_1109_TBME_2024_3458389 crossref_primary_10_1109_TBME_2022_3140246 crossref_primary_10_1016_j_knosys_2025_113315 crossref_primary_10_1007_s11042_025_20605_8 crossref_primary_10_1109_JBHI_2024_3467090 crossref_primary_10_3390_brainsci13071109 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1109_JBHI_2021_3091187 crossref_primary_10_1142_S012918312350047X crossref_primary_10_1186_s40708_021_00124_6 crossref_primary_10_1016_j_neucom_2024_129010 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1016_j_aiia_2023_04_002 crossref_primary_10_1038_s41598_025_93047_9 crossref_primary_10_1109_JSEN_2023_3270281 crossref_primary_10_1007_s42979_022_01515_0 crossref_primary_10_1088_1741_2552_ac5eb7 crossref_primary_10_1109_TNSRE_2023_3254551 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_1016_j_compbiomed_2024_108973 crossref_primary_10_1109_JIOT_2024_3402254 crossref_primary_10_1016_j_bspc_2024_106206 crossref_primary_10_1109_ACCESS_2021_3089998 crossref_primary_10_3389_fnins_2021_667907 crossref_primary_10_3389_fnins_2022_824471 crossref_primary_10_1007_s11042_023_16278_w crossref_primary_10_1016_j_bspc_2022_103496 crossref_primary_10_3390_app11052070 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_3390_s21062173 crossref_primary_10_1155_2022_3893866 crossref_primary_10_1016_j_imu_2023_101352 crossref_primary_10_1063_5_0054912 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1088_1741_2552_ac4430 crossref_primary_10_1088_1741_2552_ab6df3 crossref_primary_10_1016_j_bspc_2024_106771 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_1109_TITS_2024_3522308 crossref_primary_10_3390_bdcc8120169 crossref_primary_10_3390_brainsci15020129 crossref_primary_10_3389_fnins_2023_1219988 crossref_primary_10_1038_s41597_021_01094_4 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1088_1741_2552_ac463a crossref_primary_10_1109_TNSRE_2022_3186442 crossref_primary_10_1109_TSMC_2024_3382828 crossref_primary_10_1109_TASE_2022_3183589 crossref_primary_10_1109_TNSRE_2022_3143836 crossref_primary_10_1371_journal_pone_0274101 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_1109_TNSRE_2021_3125386 crossref_primary_10_1088_1741_2552_ad0c61 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_1016_j_engappai_2022_105347 crossref_primary_10_1109_TII_2024_3450010 crossref_primary_10_3390_s24186110 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_3389_fnhum_2020_00338 crossref_primary_10_1109_TNNLS_2020_3048385 crossref_primary_10_1038_s41598_024_73755_4 crossref_primary_10_1109_JBHI_2024_3454097 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_3390_bios14050211 crossref_primary_10_1038_s41467_022_28451_0 crossref_primary_10_1109_TNNLS_2020_3027984 crossref_primary_10_1109_TNSRE_2022_3228216 crossref_primary_10_1016_j_compbiomed_2023_107135 crossref_primary_10_3390_s21196672 crossref_primary_10_1016_j_compbiomed_2023_107254 crossref_primary_10_1109_TNSRE_2023_3265304 crossref_primary_10_1007_s11596_024_2927_6 crossref_primary_10_1109_TNNLS_2022_3210384 crossref_primary_10_14789_jmj_JMJ23_0011_R crossref_primary_10_1109_JBHI_2023_3304646 crossref_primary_10_1109_ACCESS_2022_3204758 crossref_primary_10_1007_s00521_021_06202_4 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_1109_TNSRE_2020_3027004 crossref_primary_10_1364_BOE_489179 crossref_primary_10_1109_ACCESS_2022_3195513 crossref_primary_10_1093_gigascience_giaa098 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_1016_j_eswa_2021_116101 crossref_primary_10_1016_j_dsp_2022_103816 crossref_primary_10_3233_JCM_247551 crossref_primary_10_1109_THMS_2022_3168421 crossref_primary_10_1109_TII_2020_3044310 crossref_primary_10_3390_signals4010013 crossref_primary_10_1080_27706710_2023_2258938 crossref_primary_10_1109_TNSRE_2024_3502135 crossref_primary_10_3390_s21134293 crossref_primary_10_3390_s21082750 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_16984_saufenbilder_1190493 crossref_primary_10_1016_j_neunet_2023_11_037 crossref_primary_10_1109_TCDS_2024_3376433 crossref_primary_10_1109_ACCESS_2023_3320561 crossref_primary_10_1109_TNNLS_2021_3053576 crossref_primary_10_3390_s25051399 crossref_primary_10_1007_s11571_022_09906_y crossref_primary_10_1016_j_matpr_2021_06_409 crossref_primary_10_26599_BSA_2022_9050011 crossref_primary_10_1088_1741_2552_ad19ea crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_1109_ACCESS_2024_3430838 crossref_primary_10_1109_TNSRE_2024_3454088 crossref_primary_10_1109_TNSRE_2020_2966826 crossref_primary_10_1080_10255842_2023_2275244 crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_1088_1741_2552_ad788e crossref_primary_10_1109_ACCESS_2022_3190967 crossref_primary_10_1109_JSEN_2021_3101684 crossref_primary_10_3390_app112210906 |
Cites_doi | 10.1016/j.neuroimage.2010.03.022 10.1109/TNSRE.2007.914468 10.1088/1741-2560/14/1/016003 10.1109/IEMBS.2009.5334126 10.1016/j.patcog.2011.04.034 10.1109/TNNLS.2016.2628878 10.1109/TCYB.2019.2924237 10.1088/1741-2560/10/4/046003 10.1371/journal.pone.0146282 10.1109/TPAMI.2016.2572683 10.1109/TPAMI.2012.69 10.1002/ana.23879 10.1109/TNSRE.2016.2597854 10.1109/TNSRE.2017.2681963 10.3389/fnhum.2019.00039 10.1109/JPROC.2015.2415800 10.1016/j.patcog.2015.03.010 10.1109/TNSRE.2018.2839116 10.3389/fnins.2018.00340 10.1109/TNNLS.2014.2302898 10.1371/journal.pone.0172578 10.1038/nature11076 10.1016/j.neuroimage.2007.01.051 10.1109/TNSRE.2014.2375879 10.1109/IEMBS.2011.6091139 10.1109/TPAMI.2005.159 10.1093/gigascience/giz002 10.1109/TNNLS.2015.2496284 10.1016/j.neunet.2009.06.003 10.1038/srep38565 10.1109/CVPR.2016.319 10.1109/TBME.2005.851521 10.1109/JPROC.2015.2404941 10.1109/TNSRE.2016.2601240 10.1109/5.939829 10.1088/1741-2560/13/1/016014 10.1080/00140139.2012.661083 10.1088/1741-2552/aa785c 10.1109/ISCAS.2010.5537907 10.3390/s120201211 10.1088/1741-2560/4/2/R01 10.1162/NECO_a_00592 10.1561/9781601988157 10.1109/TNNLS.2018.2789927 10.1109/IWW-BCI.2016.7457440 10.1109/BSN.2016.7516270 10.1002/hbm.23730 10.1109/86.895946 10.1016/j.jneumeth.2009.01.015 10.1109/TKDE.2009.191 10.1109/TBME.2010.2093133 10.1109/TNNLS.2016.2636227 10.3389/fnbeh.2015.00269 10.1109/TBME.2013.2253608 10.1109/CVPR.2016.213 10.1109/MCI.2015.2501545 10.1371/journal.pone.0111157 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2946869 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3852 |
ExternalDocumentID | 31725394 10_1109_TNNLS_2019_2946869 8897723 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Institute for Information and Communications Technology Planning and Evaluation (IITP) Grant – fundername: Korea Government (MSIT) (Development of Intelligent Pattern Recognition Softwares for Ambulatory Brain-Computer Interface) and (Development of BCI based Brain and Cognitive Computing Technology for Recognizing User‘s Intentions using Deep Learning) grantid: 2015-0-00185; 2017-0-00451 – fundername: Samsung Research Funding Center of Samsung Electronics grantid: SRFC-TC1603-02 funderid: 10.13039/100004358 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c395t-fd2cbf8163671ce137a37496fde51d06ce13a21ce7bec4e38bf4221ed015e9f3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 05:30:55 EDT 2025 Mon Jun 30 05:34:59 EDT 2025 Thu Jan 02 22:57:48 EST 2025 Thu Apr 24 23:08:59 EDT 2025 Tue Jul 01 00:27:31 EDT 2025 Wed Aug 27 02:31:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-fd2cbf8163671ce137a37496fde51d06ce13a21ce7bec4e38bf4221ed015e9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5730-1715 0000-0001-5498-0540 0000-0002-6249-4996 0000-0002-0872-3276 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8897723 |
PMID | 31725394 |
PQID | 2449310498 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | ieee_primary_8897723 proquest_miscellaneous_2315092944 proquest_journals_2449310498 crossref_primary_10_1109_TNNLS_2019_2946869 pubmed_primary_31725394 crossref_citationtrail_10_1109_TNNLS_2019_2946869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 sun (ref41) 2014 ref54 ref10 ref17 ref16 alamgir (ref34) 2010 ref19 ref18 krizhevsky (ref44) 2012 ref51 ref50 ref46 ref45 ref48 blankertz (ref26) 2008 ref42 ref43 ref49 ref8 ref7 ref9 ref4 gaurav (ref3) 2016; 6 ref6 ref5 ang (ref28) 2008 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 shi (ref47) 2018; 29 ref38 ref24 ref23 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref27 leigh (ref2) 2012; 485 ref29 yosinski (ref60) 2015 arnold (ref40) 2011 ref62 ref61 |
References_xml | – ident: ref63 doi: 10.1016/j.neuroimage.2010.03.022 – ident: ref27 doi: 10.1109/TNSRE.2007.914468 – ident: ref48 doi: 10.1088/1741-2560/14/1/016003 – ident: ref32 doi: 10.1109/IEMBS.2009.5334126 – ident: ref57 doi: 10.1016/j.patcog.2011.04.034 – ident: ref45 doi: 10.1109/TNNLS.2016.2628878 – ident: ref15 doi: 10.1109/TCYB.2019.2924237 – ident: ref12 doi: 10.1088/1741-2560/10/4/046003 – start-page: 113 year: 2008 ident: ref26 article-title: Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing publication-title: Proc Neural Inf Process Syst (NIPS) – ident: ref59 doi: 10.1371/journal.pone.0146282 – ident: ref62 doi: 10.1109/TPAMI.2016.2572683 – ident: ref30 doi: 10.1109/TPAMI.2012.69 – ident: ref5 doi: 10.1002/ana.23879 – start-page: 1988 year: 2014 ident: ref41 article-title: Deep learning face representation by joint identification-verification publication-title: Proc Neural Inf Process Syst (NIPS) – start-page: 1 year: 2015 ident: ref60 article-title: Understanding neural networks through deep visualization publication-title: Proc 32nd Int Conf Mach Learn (ICML) – ident: ref9 doi: 10.1109/TNSRE.2016.2597854 – ident: ref58 doi: 10.1109/TNSRE.2017.2681963 – ident: ref7 doi: 10.3389/fnhum.2019.00039 – ident: ref4 doi: 10.1109/JPROC.2015.2415800 – ident: ref17 doi: 10.1016/j.patcog.2015.03.010 – ident: ref11 doi: 10.1109/TNSRE.2018.2839116 – ident: ref6 doi: 10.3389/fnins.2018.00340 – start-page: 477 year: 2011 ident: ref40 article-title: An introduction to deep learning publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN) – ident: ref21 doi: 10.1109/TNNLS.2014.2302898 – ident: ref19 doi: 10.1371/journal.pone.0172578 – volume: 485 start-page: 372 year: 2012 ident: ref2 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature doi: 10.1038/nature11076 – ident: ref25 doi: 10.1016/j.neuroimage.2007.01.051 – ident: ref8 doi: 10.1109/TNSRE.2014.2375879 – ident: ref38 doi: 10.1109/IEMBS.2011.6091139 – ident: ref54 doi: 10.1109/TPAMI.2005.159 – volume: 29 start-page: 2872 year: 2018 ident: ref47 article-title: Improving CNN performance accuracies with min-max objective publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 2391 year: 2008 ident: ref28 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref64 doi: 10.1093/gigascience/giz002 – start-page: 17 year: 2010 ident: ref34 article-title: Multitask learning for brain-computer interfaces publication-title: Proc 14th Int Conf Artif Intell Statist (AISTATS) – ident: ref20 doi: 10.1109/TNNLS.2015.2496284 – ident: ref33 doi: 10.1016/j.neunet.2009.06.003 – ident: ref14 doi: 10.1038/srep38565 – ident: ref66 doi: 10.1109/CVPR.2016.319 – ident: ref29 doi: 10.1109/TBME.2005.851521 – ident: ref22 doi: 10.1109/JPROC.2015.2404941 – ident: ref49 doi: 10.1109/TNSRE.2016.2601240 – volume: 6 year: 2016 ident: ref3 article-title: Using an artificial neural bypass to restore cortical control of rhythmic movements in a human with quadriplegia publication-title: Sci Rep – ident: ref1 doi: 10.1109/5.939829 – ident: ref10 doi: 10.1088/1741-2560/13/1/016014 – ident: ref13 doi: 10.1080/00140139.2012.661083 – ident: ref56 doi: 10.1088/1741-2552/aa785c – ident: ref43 doi: 10.1109/ISCAS.2010.5537907 – ident: ref16 doi: 10.3390/s120201211 – ident: ref24 doi: 10.1088/1741-2560/4/2/R01 – ident: ref39 doi: 10.1162/NECO_a_00592 – ident: ref42 doi: 10.1561/9781601988157 – ident: ref51 doi: 10.1109/TNNLS.2018.2789927 – ident: ref53 doi: 10.1109/IWW-BCI.2016.7457440 – ident: ref65 doi: 10.1109/BSN.2016.7516270 – ident: ref50 doi: 10.1002/hbm.23730 – ident: ref23 doi: 10.1109/86.895946 – ident: ref52 doi: 10.1016/j.jneumeth.2009.01.015 – ident: ref55 doi: 10.1109/TKDE.2009.191 – ident: ref37 doi: 10.1109/TBME.2010.2093133 – ident: ref46 doi: 10.1109/TNNLS.2016.2636227 – start-page: 1097 year: 2012 ident: ref44 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Neural Inf Process Syst (NIPS) – ident: ref31 doi: 10.3389/fnbeh.2015.00269 – ident: ref36 doi: 10.1109/TBME.2013.2253608 – ident: ref61 doi: 10.1109/CVPR.2016.213 – ident: ref35 doi: 10.1109/MCI.2015.2501545 – ident: ref18 doi: 10.1371/journal.pone.0111157 |
SSID | ssj0000605649 |
Score | 2.6916058 |
Snippet | For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure... For a brain–computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3839 |
SubjectTerms | Artificial neural networks Band theory Bayesian analysis Brain Brain modeling Brain–computer interface (BCI) Calibration convolutional neural networks (CNNs) Covariance matrix deep learning (DL) EEG Electrodes Electroencephalography electroencephalography (EEG) Embedding Feature extraction Filter banks Frequencies Frequency dependence Human-computer interface Imagery Information theory Interfaces Mathematical models Mental task performance Model accuracy motor imagery (MI) Neural networks Optimization Representations Spectra subject-independent Task analysis |
Title | Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/8897723 https://www.ncbi.nlm.nih.gov/pubmed/31725394 https://www.proquest.com/docview/2449310498 https://www.proquest.com/docview/2315092944 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnHopjy3tAkWpxI16cezJw0cWimjV3UsXaTlFTuxcQAmCLAd-PWPnIVS1iFOieBI7mXHmm_F4BuA45ZgrjJAl3EQMTSqZykvOtObG1StE4x1u80V8dY2_VtFqBN-HvTDWWh98Zqfu1K_lm7pYO1fZaZoSWhFyAzbIcGv3ag3-FE64PPZoV4SxYEImq36PDFeny8Xi9x8XyKWmQmGcuvjmV3rIF1b5P8b0uuZyC-b9KNsQk9vpusmnxfNfCRzf-xrb8LEDncFZKyU7MLLVLmz1BR2Cbn6P4YZ-I84vw34OxXGbYOaKSLCB2LsQSxfIFcxIA5qgroILa--D87p66uSY-nJJP_zBR5k_foLl5Y_l-RXrai-wQqqoYaURRV6mhNbiJCxsKBMtE1RxaWwUGh67S1pQS0JCgFameYlChNYQvLCqlHuwWdWV_QIBN6EsCKRo1AlirnVBOtFKMitLjEODEwh7RmRFl5fclce4y7x9wlXmmZc55mUd8yZwMtxz32bleJN67JgwUHbffwKHPb-zbuI-ZoR2FCFeVOkEvg3NNOXcOoqubL0mGkkommAl0tg_t3IyPJvgmIikwv1_93kAH4Qz2H004CFsNg9r-5VQTZMfeXF-ARaU8jw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoALBcpjoUCQ4IS8dezJwwcOtKXapdu9sEjLyXJi5wJKKjYLgr_CX-HHMXYeQgi4VeKUKHbi2DP2fDMezwA8yzkWChNkGbcJQ5tLpoqKM2O49fkK0QaD2_kynb3DN-tkvQPfx7MwzrngfOam_jbs5dum3HpT2WGeE1oRQ6rqM_f1Cylom5fzE6LmcyFOX6-OZ6zPIcBKqZKWVVaURZUT6kizuHSxzIzMUKWVdUlseeofGUElGXUGncyLCoWInSUx6VQl6bNX4CrBjER0h8NGAw4nRSAN8FrEqWBCZuvhUA5Xh6vlcvHWe46pqVCY5t6h-hfBFzK5_B3UBuF2ugc_hmHpfFo-TLdtMS2__RYx8j8dt5twowfV0atuFtyCHVffhr0hYUXUr1_78J6WSW93YvMx-W8bHfkkGWysHEyklXdUi45IwtuoqaMT5y6i46b-3M9TassHNQmX4EW_uQOry-jfXditm9rdh4jbWJYEwgyaDLEwpiSZ7ySpzRWmscUJxAPdddnHXffpPz7qoH9xpQOvaM8ruueVCbwY37nooo78s_a-p_lYsyf3BA4G9tL9wrTRhOYUIXpU-QSejsW0pPh9IlO7Zkt1JGkJBJuR_v1ex5bjtwluikQqfPDnNp_AtdnqfKEX8-XZQ7guvHEieD4ewG77aeseEYJri8dhJkWgL5kDfwLukFB7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Brain%E2%80%93Computer+Interfaces+Based+on+Deep+Convolutional+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=O-Yeon+Kwon&rft.au=Min-Ho%2C+Lee&rft.au=Guan%2C+Cuntai&rft.au=Lee%2C+Seong-Whan&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=10&rft.spage=3839&rft_id=info:doi/10.1109%2FTNNLS.2019.2946869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |