The solvent at antigen-binding site regulated C3d–CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation
The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d–CR2 interaction in the design of vaccines and inhibitors, a number of studies have been perfor...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1860; no. 10; pp. 2220 - 2231 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d–CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d–CR2 interaction. Many studies have indicated C3d–CR2 interactions are ionic strength-dependent.
To investigate the molecular mechanism of C3d–CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d–CR2 complex together with the energetic and structural analysis were performed.
Our results revealed the increased interactions between charged protein and ions weaken C3d–CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths.
Our results reveal the origins of the effects of ionic strengths on C3d–CR2 interactions are due to the changes of water, ion occupancies and distributions.
This study uncovers the origin of the effect of ionic strength on C3d–CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors.
[Display omitted]
•The solvent occupancies and distributions at antigen-binding site are largely influenced by ionic strengths.•High ionic strengths enhances polar interactions of antigen-binding site and leads to the deviation of Lys291-Pro294 from CR2.•Lys291-Pro294 regulates the interdomain contact region of V-shape structure of CR2.•Ala17 and Gln20 transforms between the activated and non-activated states mediated by His133 and Glu135. |
---|---|
AbstractList | BACKGROUNDThe interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent.METHODSTo investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed.RESULTSOur results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths.CONCLUSIONSOur results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions.GENERAL SIGNIFICANCEThis study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d–CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d–CR2 interaction. Many studies have indicated C3d–CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d–CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d–CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d–CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d–CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d–CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. [Display omitted] •The solvent occupancies and distributions at antigen-binding site are largely influenced by ionic strengths.•High ionic strengths enhances polar interactions of antigen-binding site and leads to the deviation of Lys291-Pro294 from CR2.•Lys291-Pro294 regulates the interdomain contact region of V-shape structure of CR2.•Ala17 and Gln20 transforms between the activated and non-activated states mediated by His133 and Glu135. The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d–CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d–CR2 interaction. Many studies have indicated C3d–CR2 interactions are ionic strength-dependent.To investigate the molecular mechanism of C3d–CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d–CR2 complex together with the energetic and structural analysis were performed.Our results revealed the increased interactions between charged protein and ions weaken C3d–CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths.Our results reveal the origins of the effects of ionic strengths on C3d–CR2 interactions are due to the changes of water, ion occupancies and distributions.This study uncovers the origin of the effect of ionic strength on C3d–CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. |
Author | Guo, Jingjing Liu, Huanxiang Zhang, Yan Li, Lanlan Liu, Xuewei Yao, Xiaojun |
Author_xml | – sequence: 1 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China – sequence: 2 givenname: Jingjing surname: Guo fullname: Guo, Jingjing organization: School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China – sequence: 3 givenname: Lanlan surname: Li fullname: Li, Lanlan organization: State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China – sequence: 4 givenname: Xuewei surname: Liu fullname: Liu, Xuewei organization: State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China – sequence: 5 givenname: Xiaojun surname: Yao fullname: Yao, Xiaojun organization: State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China – sequence: 6 givenname: Huanxiang surname: Liu fullname: Liu, Huanxiang email: hxliu@lzu.edu.cn organization: School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27154286$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9qFTEUxoNU7G31DUSydDPXJJOZyXQhyKX-gYIgdR0yycncXGaSmmQK3fkOPkjfyScx460uXKghkIR8v-8czneGTnzwgNBzSraU0PbVYTsMagS_ZeW1Jc2WEPYIbajoWCUIaU_QhtSEV5y2zSk6S-lAymr65gk6ZR1tOBPtBt1f7wGnMN2Cz1iV7bMrptXgvHF-xMllwBHGZVIZDN7V5vvXb7tPDDufISqdXfAJ530My7gvJ-BdVT5m59WEs3ITDnalVm_jrIW4FioQTrlcx7xPF8UruXGfE7YxzHgOE-hSL2Jz59XsdCpdzGsDBXuKHls1JXj2cJ6jz28vr3fvq6uP7z7s3lxVuu6bXFlBezNo1UFfC2iEEnboBq2HriaE113PNO-FbYAO3HCtuFKWaKN62_KOANTn6OXR9yaGLwukLGeXNEyT8hCWJKlgDa9Zy-v_kJKOCcKoKNIXD9JlmMHIm-hmFe_krzyKgB8FOoaUItjfEkrkGrs8yGPsco1dkkaW2At28QemXf45rxxLBv-CXx9hKPO8dRBl0g68BuMi6CxNcH83-AEKcs7- |
CitedBy_id | crossref_primary_10_1016_j_dci_2023_105109 crossref_primary_10_1111_cbdd_13460 crossref_primary_10_1111_cbdd_13045 crossref_primary_10_3390_biom13030443 crossref_primary_10_1021_acsnano_6b05536 |
Cites_doi | 10.1002/jcc.20290 10.1039/C2CP41388D 10.4049/jimmunol.172.12.7537 10.1146/annurev.bb.18.060189.002243 10.1126/science.271.5247.348 10.1002/ange.200462957 10.1063/1.470117 10.1073/pnas.0704459104 10.1002/prot.10470 10.4049/jimmunol.147.2.590 10.1371/journal.pcbi.1002840 10.1016/j.jmb.2007.02.101 10.1016/j.jmb.2004.10.017 10.1016/j.molimm.2014.11.006 10.1063/1.448118 10.1021/ci300375k 10.1529/biophysj.105.068130 10.1021/ja981844+ 10.1021/ct700119m 10.1034/j.1600-065X.2001.1800103.x 10.4049/jimmunol.167.3.1490 10.1021/mp900131p 10.1016/S0022-2836(03)00610-7 10.1074/jbc.M808404200 10.1002/prot.21123 10.1073/pnas.84.24.9194 10.1006/jmbi.1993.1381 10.1126/science.1201954 10.1002/j.1460-2075.1991.tb08025.x 10.1021/ci100275a 10.1016/j.immuni.2012.08.002 10.1002/bip.10270 10.4049/jimmunol.141.8.2569 10.1021/acs.jmedchem.5b01062 10.1016/0092-8674(89)90240-7 10.1093/emboj/18.22.6228 10.1021/j100058a043 10.1126/science.280.5367.1277 10.1093/emboj/18.11.2911 10.1038/358505a0 10.1128/JVI.62.4.1442-1447.1988 10.1084/jem.140.1.126 10.1084/jem.158.4.1021 10.1146/annurev.immunol.16.1.545 10.1021/bi0101749 10.1084/jem.167.3.1047 10.1016/0021-9991(77)90098-5 10.1128/JVI.01673-08 10.1021/ar00161a004 10.1002/jcc.10349 10.1021/ar000033j 10.1063/1.445869 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2016.05.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2231 |
ExternalDocumentID | 27154286 10_1016_j_bbagen_2016_05_002 S0304416516301313 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-f819dbca7e938e58a8fb7bccb730043792c498f5e1b4d4ca4aaf0cda9f6470ee3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Tue Aug 05 10:54:34 EDT 2025 Thu Jul 10 18:42:14 EDT 2025 Thu Apr 03 07:09:30 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 00:22:06 EDT 2025 Fri Feb 23 02:34:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | CR2 Complement Molecular dynamics simulation C3d MM-GBSA |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-f819dbca7e938e58a8fb7bccb730043792c498f5e1b4d4ca4aaf0cda9f6470ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27154286 |
PQID | 1807280218 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1825432643 proquest_miscellaneous_1807280218 pubmed_primary_27154286 crossref_primary_10_1016_j_bbagen_2016_05_002 crossref_citationtrail_10_1016_j_bbagen_2016_05_002 elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kovacs, Hannan, Eisenmesser, Holers (bb0240) 2009; 284 Zhang, Mallik, Morikis (bb0090) 2007; 369 Morikis, Lambris (bb0115) 2004; 172 Srinivasan, Cheatham, Cieplak, Kollman, Case (bb0205) 1998; 120 Wan, Hu, Tian, Chang (bb0260) 2013; 15 Moore, Cooper, Tack, Nemerow (bb0030) 1987; 84 Hou, Wang, Li, Wang (bb0185) 2011; 51 Gorham, Nuñez, Lin, Rooijakkers, Vullev, Morikis (bb0100) 2015; 58 Pepys (bb0050) 1974; 140 Lange, Grubmüller, De Groot (bb0230) 2005; 117 Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0145) 1983; 79 Guthridge, Rakstang, Young, Hinshelwood, Aslam, Robertson, Gipson, Sarrias, Moore, Meagher (bb0110) 2001; 40 Ghosh, Vishveshwara (bb0235) 2007; 104 Fingeroth, Clabby, Strominger (bb0040) 1988; 62 Li, Li, Zhang, Hou (bb0200) 2012; 52 Kalli, Ahearn, Fearon (bb0010) 1991; 147 Gouda, Kuntz, Case, Kollman (bb0175) 2003; 68 Schwarzenbacher, Zeth, Diederichs, Gries, Kostner, Laggner, Prassl (bb0130) 1999; 18 Delcayre, Salas, Mathur, Kovats, Lotz, Lernhardt (bb0075) 1991; 10 Lee, Duan (bb0215) 2004; 55 Nagar, Jones, Diefenbach, Isenman, Rini (bb0015) 1998; 280 Iida, Nadler, Nussenzweig (bb0060) 1983; 158 Sahu, Lambris (bb0005) 2001; 180 Barlow, Steinkasserer, Norman, Kieffer, Wiles, Sim, Campbell (bb0120) 1993; 232 Kollman, Massova, Reyes, Kuhn, Huo, Chong, Lee, Lee, Duan, Wang (bb0210) 2000; 33 Nemerow, Houghten, Moore, Cooper (bb0070) 1989; 56 Mohan, Gorham, Morikis (bb0255) 2015; 64 Dempsey, Allison, Akkaraju, Goodnow, Fearon (bb0020) 1996; 271 Carroll (bb0055) 1998; 16 van den Elsen, Isenman (bb0085) 2011; 332 Duan, Wu, Chowdhury, Lee, Xiong, Zhang, Yang, Cieplak, Luo, Lee (bb0180) 2003; 24 Ryckaert, Ciccotti, Berendsen (bb0155) 1977; 23 Zhang, Morikis (bb0250) 2006; 90 Jorgensen (bb0170) 1989; 22 Gohlke, Kiel, Case (bb0195) 2003; 330 Kieslich, Morikis (bb0095) 2012; 8 Carroll, Isenman (bb0025) 2012; 37 Beveridge, DiCapua (bb0165) 1989; 18 Sarrias, Franchini, Canziani, Argyropoulos, Moore, Sahu, Lambris (bb0105) 2001; 167 Bohnsack, Cooper (bb0080) 1988; 141 Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0160) 1984; 81 Lehtinen, Meri, Jokiranta (bb0125) 2004; 344 Liu, Yao (bb0190) 2009; 7 Aubry, Pochon, Graber, Jansen, Bonnefoy (bb0065) 1992; 358 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (bb0150) 1995; 103 Young, Herbert, Barlow, Holers, Hannan (bb0245) 2008; 82 Weis, Toothaker, Smith, Weis, Fearon (bb0035) 1988; 167 Hornak, Abel, Okur, Strockbine, Roitberg, Simmerling (bb0140) 2006; 65 Case, Cheatham, Darden, Gohlke, Luo, Merz, Onufriev, Simmerling, Wang, Woods (bb0135) 2005; 26 Sitkoff, Sharp, Honig (bb0220) 1994; 98 Shao, Tanner, Thompson, Cheatham (bb0225) 2007; 3 Casasnovas, Larvie, Stehle (bb0045) 1999; 18 Shao (10.1016/j.bbagen.2016.05.002_bb0225) 2007; 3 Zhang (10.1016/j.bbagen.2016.05.002_bb0090) 2007; 369 Kollman (10.1016/j.bbagen.2016.05.002_bb0210) 2000; 33 Kieslich (10.1016/j.bbagen.2016.05.002_bb0095) 2012; 8 Kovacs (10.1016/j.bbagen.2016.05.002_bb0240) 2009; 284 Hornak (10.1016/j.bbagen.2016.05.002_bb0140) 2006; 65 Duan (10.1016/j.bbagen.2016.05.002_bb0180) 2003; 24 Berendsen (10.1016/j.bbagen.2016.05.002_bb0160) 1984; 81 Fingeroth (10.1016/j.bbagen.2016.05.002_bb0040) 1988; 62 Casasnovas (10.1016/j.bbagen.2016.05.002_bb0045) 1999; 18 Schwarzenbacher (10.1016/j.bbagen.2016.05.002_bb0130) 1999; 18 Iida (10.1016/j.bbagen.2016.05.002_bb0060) 1983; 158 Aubry (10.1016/j.bbagen.2016.05.002_bb0065) 1992; 358 Mohan (10.1016/j.bbagen.2016.05.002_bb0255) 2015; 64 Moore (10.1016/j.bbagen.2016.05.002_bb0030) 1987; 84 Delcayre (10.1016/j.bbagen.2016.05.002_bb0075) 1991; 10 Nagar (10.1016/j.bbagen.2016.05.002_bb0015) 1998; 280 Wan (10.1016/j.bbagen.2016.05.002_bb0260) 2013; 15 Sarrias (10.1016/j.bbagen.2016.05.002_bb0105) 2001; 167 Gouda (10.1016/j.bbagen.2016.05.002_bb0175) 2003; 68 Lange (10.1016/j.bbagen.2016.05.002_bb0230) 2005; 117 Dempsey (10.1016/j.bbagen.2016.05.002_bb0020) 1996; 271 Case (10.1016/j.bbagen.2016.05.002_bb0135) 2005; 26 Ghosh (10.1016/j.bbagen.2016.05.002_bb0235) 2007; 104 Jorgensen (10.1016/j.bbagen.2016.05.002_bb0145) 1983; 79 Guthridge (10.1016/j.bbagen.2016.05.002_bb0110) 2001; 40 Zhang (10.1016/j.bbagen.2016.05.002_bb0250) 2006; 90 Gorham (10.1016/j.bbagen.2016.05.002_bb0100) 2015; 58 Bohnsack (10.1016/j.bbagen.2016.05.002_bb0080) 1988; 141 Beveridge (10.1016/j.bbagen.2016.05.002_bb0165) 1989; 18 Li (10.1016/j.bbagen.2016.05.002_bb0200) 2012; 52 Ryckaert (10.1016/j.bbagen.2016.05.002_bb0155) 1977; 23 Essmann (10.1016/j.bbagen.2016.05.002_bb0150) 1995; 103 Sahu (10.1016/j.bbagen.2016.05.002_bb0005) 2001; 180 Gohlke (10.1016/j.bbagen.2016.05.002_bb0195) 2003; 330 Kalli (10.1016/j.bbagen.2016.05.002_bb0010) 1991; 147 Nemerow (10.1016/j.bbagen.2016.05.002_bb0070) 1989; 56 Young (10.1016/j.bbagen.2016.05.002_bb0245) 2008; 82 Hou (10.1016/j.bbagen.2016.05.002_bb0185) 2011; 51 Pepys (10.1016/j.bbagen.2016.05.002_bb0050) 1974; 140 Jorgensen (10.1016/j.bbagen.2016.05.002_bb0170) 1989; 22 Liu (10.1016/j.bbagen.2016.05.002_bb0190) 2009; 7 Lehtinen (10.1016/j.bbagen.2016.05.002_bb0125) 2004; 344 Weis (10.1016/j.bbagen.2016.05.002_bb0035) 1988; 167 Srinivasan (10.1016/j.bbagen.2016.05.002_bb0205) 1998; 120 Barlow (10.1016/j.bbagen.2016.05.002_bb0120) 1993; 232 Carroll (10.1016/j.bbagen.2016.05.002_bb0025) 2012; 37 van den Elsen (10.1016/j.bbagen.2016.05.002_bb0085) 2011; 332 Morikis (10.1016/j.bbagen.2016.05.002_bb0115) 2004; 172 Carroll (10.1016/j.bbagen.2016.05.002_bb0055) 1998; 16 Sitkoff (10.1016/j.bbagen.2016.05.002_bb0220) 1994; 98 Lee (10.1016/j.bbagen.2016.05.002_bb0215) 2004; 55 |
References_xml | – volume: 140 start-page: 126 year: 1974 end-page: 145 ident: bb0050 article-title: Role of complement in induction of antibody production in vivo Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses publication-title: J. Exp. Med. – volume: 8 year: 2012 ident: bb0095 article-title: The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity publication-title: PLoS Comput. Biol. – volume: 65 start-page: 712 year: 2006 end-page: 725 ident: bb0140 article-title: Comparison of multiple amber force fields and development of improved protein backbone parameters publication-title: Proteins Struct. Funct. Bioinform. – volume: 344 start-page: 1385 year: 2004 end-page: 1396 ident: bb0125 article-title: Interdomain contact regions and angles between adjacent short consensus repeat domains publication-title: J. Mol. Biol. – volume: 51 start-page: 69 year: 2011 end-page: 82 ident: bb0185 article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations publication-title: J. Chem. Inf. Model. – volume: 141 start-page: 2569 year: 1988 end-page: 2576 ident: bb0080 article-title: CR2 ligands modulate human B cell activation publication-title: J. Immunol. – volume: 167 start-page: 1490 year: 2001 end-page: 1499 ident: bb0105 article-title: Kinetic analysis of the interactions of complement receptor 2 (cr2, cd21) with its ligands c3d, ic3b, and the ebv glycoprotein gp350/220 publication-title: J. Immunol. – volume: 18 start-page: 2911 year: 1999 end-page: 2922 ident: bb0045 article-title: Crystal structure of two CD46 domains reveals an extended measles virus-binding surface publication-title: EMBO J. – volume: 56 start-page: 369 year: 1989 end-page: 377 ident: bb0070 article-title: Identification of an epitope in the major envelope protein of Epstein–Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2) publication-title: Cell – volume: 18 start-page: 431 year: 1989 end-page: 492 ident: bb0165 article-title: Free energy via molecular simulation: applications to chemical and biomolecular systems publication-title: Annu. Rev. Biophys. Biophys. Chem. – volume: 23 start-page: 327 year: 1977 end-page: 341 ident: bb0155 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J. Comput. Phys. – volume: 332 start-page: 608 year: 2011 end-page: 611 ident: bb0085 article-title: A crystal structure of the complex between human complement receptor 2 and its ligand C3d publication-title: Science – volume: 120 start-page: 9401 year: 1998 end-page: 9409 ident: bb0205 article-title: Continuum solvent studies of the stability of DNA, rna, and phosphoramidate-DNA helices publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 6228 year: 1999 end-page: 6239 ident: bb0130 article-title: Crystal structure of human β2-glycoprotein i: implications for phospholipid binding and the antiphospholipid syndrome publication-title: EMBO J. – volume: 84 start-page: 9194 year: 1987 end-page: 9198 ident: bb0030 article-title: Molecular cloning of the cDNA encoding the Epstein–Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes publication-title: Proc. Natl. Acad. Sci. – volume: 330 start-page: 891 year: 2003 end-page: 913 ident: bb0195 article-title: Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the ras–raf and ras–ralgds complexes publication-title: J. Mol. Biol. – volume: 180 start-page: 35 year: 2001 end-page: 48 ident: bb0005 article-title: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity publication-title: Immunol. Rev. – volume: 40 start-page: 5931 year: 2001 end-page: 5941 ident: bb0110 article-title: Structural studies in solution of the recombinant N-terminal pair of short consensus/complement repeat domains of complement receptor type 2 (CR2/CD21) and interactions with its ligand C3dg publication-title: Biochemistry – volume: 24 start-page: 1999 year: 2003 end-page: 2012 ident: bb0180 article-title: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations publication-title: J. Comput. Chem. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: bb0145 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. – volume: 90 start-page: 3106 year: 2006 end-page: 3119 ident: bb0250 article-title: Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics publication-title: Biophys. J. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: bb0160 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 52 start-page: 2715 year: 2012 end-page: 2729 ident: bb0200 article-title: Theoretical studies on the susceptibility of oseltamivir against variants of 2009 a/h1n1 influenza neuraminidase publication-title: J. Chem. Inf. Model. – volume: 68 start-page: 16 year: 2003 end-page: 34 ident: bb0175 article-title: Free energy calculations for theophylline binding to an rna aptamer: comparison of mm-pbsa and thermodynamic integration methods publication-title: Biopolymers – volume: 98 start-page: 1978 year: 1994 end-page: 1988 ident: bb0220 article-title: Accurate calculation of hydration free energies using macroscopic solvent models publication-title: J. Phys. Chem. – volume: 147 start-page: 590 year: 1991 end-page: 594 ident: bb0010 article-title: Interaction of iC3b with recombinant isotypic and chimeric forms of CR2 publication-title: J. Immunol. – volume: 7 start-page: 75 year: 2009 end-page: 85 ident: bb0190 article-title: Molecular basis of the interaction for an essential subunit pa publication-title: Mol. Pharm. – volume: 62 start-page: 1442 year: 1988 end-page: 1447 ident: bb0040 article-title: Characterization of a T-lymphocyte Epstein–Barr virus/C3d receptor (CD21) publication-title: J. Virol. – volume: 55 start-page: 620 year: 2004 end-page: 634 ident: bb0215 article-title: Distinguish protein decoys by using a scoring function based on a new amber force field, short molecular dynamics simulations, and the generalized born solvent model publication-title: Proteins Struct. Funct. Bioinform. – volume: 369 start-page: 567 year: 2007 end-page: 583 ident: bb0090 article-title: Immunophysical exploration of C3d–CR2(CCP1-2) interaction using molecular dynamics and electrostatics publication-title: J. Mol. Biol. – volume: 280 start-page: 1277 year: 1998 end-page: 1281 ident: bb0015 article-title: X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2 publication-title: Science – volume: 167 start-page: 1047 year: 1988 end-page: 1066 ident: bb0035 article-title: Structure of the human B lymphocyte receptor for C3d and the Epstein–Barr virus and relatedness to other members of the family of C3/C4 binding proteins publication-title: J. Exp. Med. – volume: 232 start-page: 268 year: 1993 end-page: 284 ident: bb0120 article-title: Solution structure of a pair of complement modules by nuclear magnetic resonance publication-title: J. Mol. Biol. – volume: 15 start-page: 1241 year: 2013 end-page: 1251 ident: bb0260 article-title: Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d publication-title: Phys. Chem. Chem. Phys. – volume: 64 start-page: 112 year: 2015 end-page: 122 ident: bb0255 article-title: A theoretical view of the c3d:Cr2 binding controversy publication-title: Mol. Immunol. – volume: 82 start-page: 11217 year: 2008 end-page: 11227 ident: bb0245 article-title: Molecular basis of the interaction between complement receptor type 2 (cr2/cd21) and Epstein–Barr virus glycoprotein gp350 publication-title: J. Virol. – volume: 117 start-page: 3460 year: 2005 end-page: 3465 ident: bb0230 article-title: Molecular dynamics simulations of protein g challenge nmr-derived correlated backbone motions publication-title: Angew. Chem. – volume: 22 start-page: 184 year: 1989 end-page: 189 ident: bb0170 article-title: Free energy calculations: a breakthrough for modeling organic chemistry in solution publication-title: Acc. Chem. Res. – volume: 26 start-page: 1668 year: 2005 end-page: 1688 ident: bb0135 article-title: The amber biomolecular simulation programs publication-title: J. Comput. Chem. – volume: 104 start-page: 15711 year: 2007 end-page: 15716 ident: bb0235 article-title: A study of communication pathways in methionyl-trna synthetase by molecular dynamics simulations and structure network analysis publication-title: Proc. Natl. Acad. Sci. – volume: 33 start-page: 889 year: 2000 end-page: 897 ident: bb0210 article-title: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models publication-title: Acc. Chem. Res. – volume: 37 start-page: 199 year: 2012 end-page: 207 ident: bb0025 article-title: Regulation of humoral immunity by complement publication-title: Immunity – volume: 3 start-page: 2312 year: 2007 end-page: 2334 ident: bb0225 article-title: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms publication-title: J. Chem. Theory Comput. – volume: 271 start-page: 348 year: 1996 end-page: 349 ident: bb0020 article-title: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity publication-title: Science – volume: 158 start-page: 1021 year: 1983 end-page: 1033 ident: bb0060 article-title: Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody publication-title: J. Exp. Med. – volume: 16 start-page: 545 year: 1998 end-page: 568 ident: bb0055 article-title: The role of complement and complement receptors in induction and regulation of immunity publication-title: Annu. Rev. Immunol. – volume: 358 start-page: 505 year: 1992 end-page: 507 ident: bb0065 article-title: CD21 is a ligand for CD23 and regulates IgE production publication-title: Nature – volume: 10 start-page: 919 year: 1991 end-page: 926 ident: bb0075 article-title: Epstein Barr virus/complement C3d receptor is an interferon alpha receptor publication-title: EMBO J. – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: bb0150 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. – volume: 58 start-page: 9535 year: 2015 end-page: 9545 ident: bb0100 article-title: Discovery of small molecules for fluorescent detection of complement activation product c3d publication-title: J. Med. Chem. – volume: 172 start-page: 7537 year: 2004 end-page: 7547 ident: bb0115 article-title: The electrostatic nature of c3d-complement receptor 2 association publication-title: J. Immunol. – volume: 284 start-page: 9513 year: 2009 end-page: 9520 ident: bb0240 article-title: Mapping of the c3d ligand binding site on complement receptor 2 (cr2/cd21) using nuclear magnetic resonance and chemical shift analysis publication-title: J. Biol. Chem. – volume: 26 start-page: 1668 year: 2005 ident: 10.1016/j.bbagen.2016.05.002_bb0135 article-title: The amber biomolecular simulation programs publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 15 start-page: 1241 year: 2013 ident: 10.1016/j.bbagen.2016.05.002_bb0260 article-title: Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP41388D – volume: 172 start-page: 7537 year: 2004 ident: 10.1016/j.bbagen.2016.05.002_bb0115 article-title: The electrostatic nature of c3d-complement receptor 2 association publication-title: J. Immunol. doi: 10.4049/jimmunol.172.12.7537 – volume: 18 start-page: 431 year: 1989 ident: 10.1016/j.bbagen.2016.05.002_bb0165 article-title: Free energy via molecular simulation: applications to chemical and biomolecular systems publication-title: Annu. Rev. Biophys. Biophys. Chem. doi: 10.1146/annurev.bb.18.060189.002243 – volume: 271 start-page: 348 year: 1996 ident: 10.1016/j.bbagen.2016.05.002_bb0020 article-title: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity publication-title: Science doi: 10.1126/science.271.5247.348 – volume: 117 start-page: 3460 year: 2005 ident: 10.1016/j.bbagen.2016.05.002_bb0230 article-title: Molecular dynamics simulations of protein g challenge nmr-derived correlated backbone motions publication-title: Angew. Chem. doi: 10.1002/ange.200462957 – volume: 103 start-page: 8577 year: 1995 ident: 10.1016/j.bbagen.2016.05.002_bb0150 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 104 start-page: 15711 year: 2007 ident: 10.1016/j.bbagen.2016.05.002_bb0235 article-title: A study of communication pathways in methionyl-trna synthetase by molecular dynamics simulations and structure network analysis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0704459104 – volume: 55 start-page: 620 year: 2004 ident: 10.1016/j.bbagen.2016.05.002_bb0215 article-title: Distinguish protein decoys by using a scoring function based on a new amber force field, short molecular dynamics simulations, and the generalized born solvent model publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.10470 – volume: 147 start-page: 590 year: 1991 ident: 10.1016/j.bbagen.2016.05.002_bb0010 article-title: Interaction of iC3b with recombinant isotypic and chimeric forms of CR2 publication-title: J. Immunol. doi: 10.4049/jimmunol.147.2.590 – volume: 8 year: 2012 ident: 10.1016/j.bbagen.2016.05.002_bb0095 article-title: The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002840 – volume: 369 start-page: 567 year: 2007 ident: 10.1016/j.bbagen.2016.05.002_bb0090 article-title: Immunophysical exploration of C3d–CR2(CCP1-2) interaction using molecular dynamics and electrostatics publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.02.101 – volume: 344 start-page: 1385 year: 2004 ident: 10.1016/j.bbagen.2016.05.002_bb0125 article-title: Interdomain contact regions and angles between adjacent short consensus repeat domains publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.10.017 – volume: 64 start-page: 112 year: 2015 ident: 10.1016/j.bbagen.2016.05.002_bb0255 article-title: A theoretical view of the c3d:Cr2 binding controversy publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.11.006 – volume: 81 start-page: 3684 year: 1984 ident: 10.1016/j.bbagen.2016.05.002_bb0160 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 52 start-page: 2715 year: 2012 ident: 10.1016/j.bbagen.2016.05.002_bb0200 article-title: Theoretical studies on the susceptibility of oseltamivir against variants of 2009 a/h1n1 influenza neuraminidase publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300375k – volume: 90 start-page: 3106 year: 2006 ident: 10.1016/j.bbagen.2016.05.002_bb0250 article-title: Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics publication-title: Biophys. J. doi: 10.1529/biophysj.105.068130 – volume: 120 start-page: 9401 year: 1998 ident: 10.1016/j.bbagen.2016.05.002_bb0205 article-title: Continuum solvent studies of the stability of DNA, rna, and phosphoramidate-DNA helices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981844+ – volume: 3 start-page: 2312 year: 2007 ident: 10.1016/j.bbagen.2016.05.002_bb0225 article-title: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700119m – volume: 180 start-page: 35 year: 2001 ident: 10.1016/j.bbagen.2016.05.002_bb0005 article-title: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity publication-title: Immunol. Rev. doi: 10.1034/j.1600-065X.2001.1800103.x – volume: 167 start-page: 1490 year: 2001 ident: 10.1016/j.bbagen.2016.05.002_bb0105 article-title: Kinetic analysis of the interactions of complement receptor 2 (cr2, cd21) with its ligands c3d, ic3b, and the ebv glycoprotein gp350/220 publication-title: J. Immunol. doi: 10.4049/jimmunol.167.3.1490 – volume: 7 start-page: 75 year: 2009 ident: 10.1016/j.bbagen.2016.05.002_bb0190 article-title: Molecular basis of the interaction for an essential subunit pa−pb1 in influenza virus rna polymerase: insights from molecular dynamics simulation and free energy calculation publication-title: Mol. Pharm. doi: 10.1021/mp900131p – volume: 330 start-page: 891 year: 2003 ident: 10.1016/j.bbagen.2016.05.002_bb0195 article-title: Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the ras–raf and ras–ralgds complexes publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00610-7 – volume: 284 start-page: 9513 year: 2009 ident: 10.1016/j.bbagen.2016.05.002_bb0240 article-title: Mapping of the c3d ligand binding site on complement receptor 2 (cr2/cd21) using nuclear magnetic resonance and chemical shift analysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808404200 – volume: 65 start-page: 712 year: 2006 ident: 10.1016/j.bbagen.2016.05.002_bb0140 article-title: Comparison of multiple amber force fields and development of improved protein backbone parameters publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.21123 – volume: 84 start-page: 9194 year: 1987 ident: 10.1016/j.bbagen.2016.05.002_bb0030 article-title: Molecular cloning of the cDNA encoding the Epstein–Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.84.24.9194 – volume: 232 start-page: 268 year: 1993 ident: 10.1016/j.bbagen.2016.05.002_bb0120 article-title: Solution structure of a pair of complement modules by nuclear magnetic resonance publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1381 – volume: 332 start-page: 608 year: 2011 ident: 10.1016/j.bbagen.2016.05.002_bb0085 article-title: A crystal structure of the complex between human complement receptor 2 and its ligand C3d publication-title: Science doi: 10.1126/science.1201954 – volume: 10 start-page: 919 year: 1991 ident: 10.1016/j.bbagen.2016.05.002_bb0075 article-title: Epstein Barr virus/complement C3d receptor is an interferon alpha receptor publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb08025.x – volume: 51 start-page: 69 year: 2011 ident: 10.1016/j.bbagen.2016.05.002_bb0185 article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations publication-title: J. Chem. Inf. Model. doi: 10.1021/ci100275a – volume: 37 start-page: 199 year: 2012 ident: 10.1016/j.bbagen.2016.05.002_bb0025 article-title: Regulation of humoral immunity by complement publication-title: Immunity doi: 10.1016/j.immuni.2012.08.002 – volume: 68 start-page: 16 year: 2003 ident: 10.1016/j.bbagen.2016.05.002_bb0175 article-title: Free energy calculations for theophylline binding to an rna aptamer: comparison of mm-pbsa and thermodynamic integration methods publication-title: Biopolymers doi: 10.1002/bip.10270 – volume: 141 start-page: 2569 year: 1988 ident: 10.1016/j.bbagen.2016.05.002_bb0080 article-title: CR2 ligands modulate human B cell activation publication-title: J. Immunol. doi: 10.4049/jimmunol.141.8.2569 – volume: 58 start-page: 9535 year: 2015 ident: 10.1016/j.bbagen.2016.05.002_bb0100 article-title: Discovery of small molecules for fluorescent detection of complement activation product c3d publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01062 – volume: 56 start-page: 369 year: 1989 ident: 10.1016/j.bbagen.2016.05.002_bb0070 article-title: Identification of an epitope in the major envelope protein of Epstein–Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2) publication-title: Cell doi: 10.1016/0092-8674(89)90240-7 – volume: 18 start-page: 6228 year: 1999 ident: 10.1016/j.bbagen.2016.05.002_bb0130 article-title: Crystal structure of human β2-glycoprotein i: implications for phospholipid binding and the antiphospholipid syndrome publication-title: EMBO J. doi: 10.1093/emboj/18.22.6228 – volume: 98 start-page: 1978 year: 1994 ident: 10.1016/j.bbagen.2016.05.002_bb0220 article-title: Accurate calculation of hydration free energies using macroscopic solvent models publication-title: J. Phys. Chem. doi: 10.1021/j100058a043 – volume: 280 start-page: 1277 year: 1998 ident: 10.1016/j.bbagen.2016.05.002_bb0015 article-title: X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2 publication-title: Science doi: 10.1126/science.280.5367.1277 – volume: 18 start-page: 2911 year: 1999 ident: 10.1016/j.bbagen.2016.05.002_bb0045 article-title: Crystal structure of two CD46 domains reveals an extended measles virus-binding surface publication-title: EMBO J. doi: 10.1093/emboj/18.11.2911 – volume: 358 start-page: 505 year: 1992 ident: 10.1016/j.bbagen.2016.05.002_bb0065 article-title: CD21 is a ligand for CD23 and regulates IgE production publication-title: Nature doi: 10.1038/358505a0 – volume: 62 start-page: 1442 year: 1988 ident: 10.1016/j.bbagen.2016.05.002_bb0040 article-title: Characterization of a T-lymphocyte Epstein–Barr virus/C3d receptor (CD21) publication-title: J. Virol. doi: 10.1128/JVI.62.4.1442-1447.1988 – volume: 140 start-page: 126 year: 1974 ident: 10.1016/j.bbagen.2016.05.002_bb0050 article-title: Role of complement in induction of antibody production in vivo Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses publication-title: J. Exp. Med. doi: 10.1084/jem.140.1.126 – volume: 158 start-page: 1021 year: 1983 ident: 10.1016/j.bbagen.2016.05.002_bb0060 article-title: Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody publication-title: J. Exp. Med. doi: 10.1084/jem.158.4.1021 – volume: 16 start-page: 545 year: 1998 ident: 10.1016/j.bbagen.2016.05.002_bb0055 article-title: The role of complement and complement receptors in induction and regulation of immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.545 – volume: 40 start-page: 5931 year: 2001 ident: 10.1016/j.bbagen.2016.05.002_bb0110 article-title: Structural studies in solution of the recombinant N-terminal pair of short consensus/complement repeat domains of complement receptor type 2 (CR2/CD21) and interactions with its ligand C3dg publication-title: Biochemistry doi: 10.1021/bi0101749 – volume: 167 start-page: 1047 year: 1988 ident: 10.1016/j.bbagen.2016.05.002_bb0035 article-title: Structure of the human B lymphocyte receptor for C3d and the Epstein–Barr virus and relatedness to other members of the family of C3/C4 binding proteins publication-title: J. Exp. Med. doi: 10.1084/jem.167.3.1047 – volume: 23 start-page: 327 year: 1977 ident: 10.1016/j.bbagen.2016.05.002_bb0155 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 82 start-page: 11217 year: 2008 ident: 10.1016/j.bbagen.2016.05.002_bb0245 article-title: Molecular basis of the interaction between complement receptor type 2 (cr2/cd21) and Epstein–Barr virus glycoprotein gp350 publication-title: J. Virol. doi: 10.1128/JVI.01673-08 – volume: 22 start-page: 184 year: 1989 ident: 10.1016/j.bbagen.2016.05.002_bb0170 article-title: Free energy calculations: a breakthrough for modeling organic chemistry in solution publication-title: Acc. Chem. Res. doi: 10.1021/ar00161a004 – volume: 24 start-page: 1999 year: 2003 ident: 10.1016/j.bbagen.2016.05.002_bb0180 article-title: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations publication-title: J. Comput. Chem. doi: 10.1002/jcc.10349 – volume: 33 start-page: 889 year: 2000 ident: 10.1016/j.bbagen.2016.05.002_bb0210 article-title: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models publication-title: Acc. Chem. Res. doi: 10.1021/ar000033j – volume: 79 start-page: 926 year: 1983 ident: 10.1016/j.bbagen.2016.05.002_bb0145 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2090034 |
Snippet | The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and... BACKGROUNDThe interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2220 |
SubjectTerms | Adaptive Immunity - immunology Antigens - chemistry Antigens - immunology binding sites Binding Sites - immunology C3d Complement Complement C3 - chemistry Complement C3 - immunology Complement C3 - metabolism CR2 Humans immune system Immunity, Innate - immunology ionic strength ions Ions - chemistry Ions - metabolism MM-GBSA molecular dynamics Molecular Dynamics Simulation Multiprotein Complexes - chemistry Multiprotein Complexes - immunology Multiprotein Complexes - metabolism Osmolar Concentration Protein Binding Protein Conformation Receptors, Complement 3d - chemistry Receptors, Complement 3d - immunology Receptors, Complement 3d - metabolism solvents vaccine development Vaccines - chemistry Vaccines - immunology |
Title | The solvent at antigen-binding site regulated C3d–CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation |
URI | https://dx.doi.org/10.1016/j.bbagen.2016.05.002 https://www.ncbi.nlm.nih.gov/pubmed/27154286 https://www.proquest.com/docview/1807280218 https://www.proquest.com/docview/1825432643 |
Volume | 1860 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLUQaNpeEGMfdDDkSXsNTRs7cXhD0VC3Ch7Y0HizbMfeOtEUNeGBl2n_YT-E_8Qv4d7Yhk3ahjSpUtTGjqzcG_ukPvccQt4aLVzNFcx-wuUJ00wnSiNpXChmAd4r0csXHx3nk1P24YyfrZAq1sIgrTLM_X5O72fr8Msw3M3hxWw2_IibegAnOCAKFI1BxU_GCszyve_3NA-AD9zvJLAEW8fyuZ7jpTU8tKiCOsr3fvlz5Q_L09_gZ78MHW6Q9YAf6YEf4lOyYptN8sg7Sl5tksdVNHB7Rq4hBSikFjIaqYJP06H0Jr4L44JFcd-YLr0Xva1pldU3P35WJ2OKEhJLX_DQ0mDkA0dLqyRwZ84pEk_pwmEvvHb0WekodKJYgNJ86b62-3CtFl__W4p1LHQezXhpfdWo-cy0MIp5cBB7Tk4P332qJknwZ0hMVvIucYAmam1UYctMWA5xdbrQxmjUwEedw7FhpXDcjjSrmVFMKZeaWpUuZ0VqbfaCrDaLxm4R6oQpmbFZqoyGc1yXOq0zCGo5YspwMyBZDIs0QbwcPTTOZWSpfZM-mBKDKVMuIZgDktz1uvDiHQ-0L2LE5W9JKGF9eaDnm5ggEqKMmy6qsYvLVo5Eig5ggKT-1QYlCQCaZgPy0mfX3XjHBYDcschf_ffYtskT_OYZiDtktVte2teApDq92z8qu2Tt4P10cozH6cnn6S2fryNF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VrVC5ICh_2x8wEtew2Y2dONyqiGpL2z1AK_Vm2Y4Di7rZapMeeus78CC8E0_CTGK3IAGVkCKtlHgia2cy_hLPfB_AG2tkVQqN2U9WacQNN5E2VDQuNXcI77Xs6IuPZ-n0lH84E2drUIReGCqr9Lm_z-ldtvZnRv7fHF3M56NPtKmHcEIgoiDSmOQerBM7lRjA-t7B4XR2m5BFJ75C4yMyCB10XZmXMfjcEhHqOH37y_eVP6xQf0Og3Uq0_wgeegjJ9vpZPoY1V2_C_V5U8moTNoqg4fYEvmMUMIwuKmpkGo-6JfZNeh2mNYvR1jFb9XL0rmRFUv64_lZ8nDBikVj1PQ8N81o--OtYEfnymXNGtadsWZEV3TtIrbQMjRj1oNSf2y_NO7xXQ18AGkatLGwR9HhZeVXrxdw2OIuFFxF7Cqf770-KaeQlGiKb5KKNKgQUpbE6c3kinUDXViYz1hqiwSeqw4nluayEGxtecqu51lVsS51XKc9i55JnMKiXtXsBrJI259YlsbYGrwmTm7hM0K_5mGsr7BCS4BZlPX85yWicq1Co9lX1zlTkTBULhc4cQnRjddHzd9wxPgseV7_FocIl5g7L1yFAFHqZ9l107ZaXjRrLmETAEEz9awyxEiA6TYbwvI-um_lOMsS5E5lu_ffcXsHG9OT4SB0dzA634QFd6QsSd2DQri7dLgKr1rz0D85PXAUkUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+solvent+at+antigen-binding+site+regulated+C3d%E2%80%93CR2+interactions+through+the+C-terminal+tail+of+C3d+at+different+ion+strengths%3A+insights+from+molecular+dynamics+simulation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Zhang%2C+Yan&rft.au=Guo%2C+Jingjing&rft.au=Li%2C+Lanlan&rft.au=Liu%2C+Xuewei&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1860&rft.issue=10&rft.spage=2220&rft.epage=2231&rft_id=info:doi/10.1016%2Fj.bbagen.2016.05.002&rft.externalDocID=S0304416516301313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |