Tailoring ZnS nanostructures through precipitation-cum-hydrothermal synthesis for enhanced wastewater purification and antibacterial treatment
This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200–700 nm) were synthesized through an innovative blend of precipitation...
Saved in:
Published in | Environmental research Vol. 259; p. 119534 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-9351 1096-0953 1096-0953 |
DOI | 10.1016/j.envres.2024.119534 |
Cover
Loading…
Abstract | This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200–700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm–2.36 nm), modulated the band gap (3.57 eV–3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV–vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200–700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations.
•A novel synthesis approach for the formation of ZnS nanoparticles with controlled shapes.•Development of cauliflower-like ZnS and PVP capped ZnS nanospheres.•Evaluation of the antibacterial and photocatalytic efficiency of ZnS and PVP capped ZnS. |
---|---|
AbstractList | This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200-700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm-2.36 nm), modulated the band gap (3.57 eV-3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV-vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200-700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations. This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200-700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm-2.36 nm), modulated the band gap (3.57 eV-3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV-vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200-700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations.This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200-700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm-2.36 nm), modulated the band gap (3.57 eV-3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV-vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200-700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations. This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200–700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm–2.36 nm), modulated the band gap (3.57 eV–3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV–vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200–700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations. This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies cauliflower-like microstructures (∼4.5 μm) and uniform nanospheres (200–700 nm) were synthesized through an innovative blend of precipitation and hydrothermal techniques. Capping with polyvinylpyrrolidone (PVP) significantly decreased crystallite size (3.93 nm–2.36 nm), modulated the band gap (3.57 eV–3.71 eV), and dramatically influenced morphology, highlighting the novelty of shape-controlled synthesis and its impact on optoelectronic and functional properties. X-ray diffraction confirmed crystallinity and revealed the size-controlling influence of PVP. UV–vis spectroscopy suggested potential tuning of optical properties due to band gap widening upon PVP capping. Field-emission scanning electron microscopy (FESEM) unveiled distinct morphologies: cauliflower-like microstructures for ZnS and uniform nanospheres (200–700 nm) for PVP-ZnS. Both structures were composed of smaller spherical nanoparticles, demonstrating the role of PVP in promoting controlled growth and preventing agglomeration. High-resolution transmission electron microscope (HRTEM) images depicted that the majority of nanoparticles maintain a spherical shape, though slight deviations from perfect sphericity can be discerned. Fourier-transform infrared (FTIR) spectroscopy confirmed that successful PVP encapsulation is crucial for shaping nanospheres and minimizing aggregation through steric hindrance. Photocatalytic activity evaluation using methylene blue (MB) dye degradation revealed significantly faster degradation by PVP-ZnS under ultraviolet (UV) irradiation (within 60 min as compared to 120 min for ZnS), showcasing its superior performance. This improvement can be attributed to the smaller size, higher surface area, and potentially optimized band gap of PVP-ZnS. Additionally, PVP-ZnS exhibited promising antibacterial activity against S. aureus and P. aeruginosa, with increased activity at higher nanoparticle concentrations. •A novel synthesis approach for the formation of ZnS nanoparticles with controlled shapes.•Development of cauliflower-like ZnS and PVP capped ZnS nanospheres.•Evaluation of the antibacterial and photocatalytic efficiency of ZnS and PVP capped ZnS. |
ArticleNumber | 119534 |
Author | Ghfar, Ayman A. Kumar, Sanjeev Kumar, Parul Kaur, Harpreet Bouzid, Gassoumi |
Author_xml | – sequence: 1 givenname: Harpreet orcidid: 0000-0002-9754-3487 surname: Kaur fullname: Kaur, Harpreet email: mann.khant91@gmail.com organization: Department of Physics, Chandigarh University, Gharuan, Mohali, 140413, India – sequence: 2 givenname: Sanjeev surname: Kumar fullname: Kumar, Sanjeev organization: Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India – sequence: 3 givenname: Parul surname: Kumar fullname: Kumar, Parul organization: Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India – sequence: 4 givenname: Ayman A. surname: Ghfar fullname: Ghfar, Ayman A. organization: Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia – sequence: 5 givenname: Gassoumi orcidid: 0000-0002-7913-7768 surname: Bouzid fullname: Bouzid, Gassoumi organization: Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir, Avenue of Environment, 5000, Monastir, Tunisia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38960361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0AoSzYZ7PhvzAIJVeVHqsSCsmFjOc5N41FiB9tpNS_BM-Mh0w0LurDsK59zpHu-C3TmgweEXhO8JZiId_st-PsIadvghm0JUZyyZ2hDsBI1LsMZ2mBMaK0oJ-foIqV9GQmn-AU6pzslMBVkg37fGjeG6Pxd9dN_r7zxIeW42LyU6CoPMSx3QzVHsG522WQXfG2XqR4OXQx5gDiZsUoHX57JpaoPsQI_GG-hqx5MyvBgMsRqXqLrnf3rr4zvysmuNbb8uRKQI5g8gc8v0fPejAlene5L9OPT9e3Vl_rm2-evVx9vaksVz3UvWgGcmFYSYLaRRrKyEjO4Fw0jSqiW4LantFWYSqlUhxuxsxx4T2gn2I5eordr7hzDrwVS1pNLFsbReAhL0rQUJbiUjD0txZJLTLiSRfrmJF3aCTo9RzeZeNCPdRfB-1VgY0gpQq_tqdQcCwdNsD6y1Xu9stVHtnplW8zsH_Nj_hO2D6sNSp_3DqJO1sERkCtUs-6C-3_AHwq2w1E |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_123968 crossref_primary_10_1016_j_radphyschem_2024_112154 crossref_primary_10_1016_j_jwpe_2025_107074 crossref_primary_10_1039_D5SE00220F crossref_primary_10_1016_j_est_2025_115733 |
Cites_doi | 10.1080/03067319.2022.2118586 10.1016/j.chphi.2023.100260 10.1016/j.molliq.2020.113025 10.1039/C9CS00102F 10.3390/ijms131012412 10.1039/C3TB21363C 10.2174/1381612826666200406095246 10.3390/inorganics12060156 10.1007/s43994-024-00165-7 10.1016/j.spmi.2015.04.023 10.1007/s10854-019-02640-y 10.1021/acsanm.3c00417 10.1016/j.crgsc.2021.100163 10.1016/j.inoche.2021.109089 10.1080/01932691.2024.2351907 10.1021/acs.jpcc.9b11656 10.1016/j.seppur.2021.119869 10.3390/nano13010160 10.1016/j.jlumin.2019.02.033 10.1016/j.mseb.2023.116582 10.1088/2053-1591/ab2ec5 10.1016/j.powtec.2017.05.022 10.1021/acsfoodscitech.4c00087 10.1007/s10876-020-01881-w 10.1016/j.optmat.2005.06.003 10.1016/j.colsurfa.2021.127918 10.1016/j.aej.2023.06.054 10.1007/s11051-008-9428-6 10.1016/j.solener.2013.08.023 10.1021/cm900608d 10.1007/s11051-021-05283-5 10.1016/j.molstruc.2022.132514 10.1007/s10876-020-01772-0 10.1186/s12951-020-00704-4 10.1016/j.chemosphere.2023.139106 10.1016/j.nanoso.2023.100999 10.1016/j.ceramint.2015.11.021 10.1007/s12034-017-1405-1 10.1016/j.matchar.2008.04.005 10.1016/j.apsusc.2016.06.042 10.1016/j.ijleo.2018.03.030 10.1016/j.jece.2023.111425 10.1007/s12668-023-01105-1 10.1039/C5TC04192A 10.1016/j.chemosphere.2022.134281 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envres.2024.119534 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 38960361 10_1016_j_envres_2024_119534 S0013935124014397 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC C45 CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT WH7 ZCA ZU3 ~02 ~G- ~KM .GJ 29G 3O- 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABFNM ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ OHT R2- SEN SSH VOH WUQ XOL XPP ZGI ZKB ZMT ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-f6b6e51ab71e4c27a743894a0f6241969b10bf33b9037799d0268c5e5f13d6483 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Fri Jul 11 15:55:15 EDT 2025 Thu Jul 10 19:21:08 EDT 2025 Thu Apr 03 06:57:10 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 04:21:21 EDT 2025 Sat Sep 21 16:00:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Degradation Antibacterial activity Hydrothermal method Nanospheres Methylene blue dye PVP-ZnS |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-f6b6e51ab71e4c27a743894a0f6241969b10bf33b9037799d0268c5e5f13d6483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7913-7768 0000-0002-9754-3487 |
PMID | 38960361 |
PQID | 3075701597 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153657744 proquest_miscellaneous_3075701597 pubmed_primary_38960361 crossref_citationtrail_10_1016_j_envres_2024_119534 crossref_primary_10_1016_j_envres_2024_119534 elsevier_sciencedirect_doi_10_1016_j_envres_2024_119534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Phuruangrat (bib39) 2019; vol. 16 Singh (bib47) 2023; 295 Ali, D. A., et al., Sol-gel synthesized Cu/ZnS nanocomposites for photocatalytic dye degradation and antibacterial activity. J. Dispersion Sci. Technol. 1-14. . Ghosh (bib12) 2006; 28 Ma (bib28) 2016; 42 Haghighatzadeh (bib14) 2020; 31 Minh Huong (bib31) 2024; 22 Ibrahim (bib15) 2016; vol. 222 Vijai Anand (bib53) 2021; 32 Cheng (bib6) 2022; 633 Kaur (bib21) 2019; 6 Rani, Chauhan (bib41) 2022; 33 Sharma, Naushad (bib44) 2020; 310 Chandrakar (bib5) 2015; 84 Soltani (bib48) 2014; vol. 11 Aulakh (bib4) 2022; 281 Wang (bib54) 2016; 4 Lee, Wu (bib24) 2017; 318 Kaur (bib20) 2021; 32 Makhesana (bib29) 2024 Javed (bib17) 2017; 79 Sabah (bib43) 2020; 124 Ye (bib58) 2018; 164 Javed (bib19) 2020; 18 (bib52) 2023 Nayna, Tareq (bib36) 2019 Jamal (bib16) 2023; 6 Mohan (bib33) 2023; 7 Ma (bib27) 2023; 11 Mintcheva (bib32) 2019; vol. 12 Morshedtalab (bib34) 2020; 20 Munyai, Hintsho-Mbita (bib35) 2021; 4 Soltani (bib49) 2012; 13 Ranjit (bib42) 2021 Sharma (bib45) 2012; vol. 86 Xu (bib57) 2009; 21 Pirarath (bib40) 2023; 35 Al-Harbi, Abd-Elrahman (bib1) 2024 Zein (bib59) 2022; vol. 13 Singh (bib46) 2014; 2 Wang (bib55) 2008; 59 Javed (bib18) 2016; 386 Kaur (bib22) 2023; 335 Kumar (bib23) 2022; 298 Liu (bib26) 2022; 1256 Deka (bib9) 2019; 210 Xu (bib56) 2019; 48 Paras (bib38) 2023; 13 Li (bib25) 2024; 12 Ghosh (bib13) 2021; 23 Chepape (bib7) 2017 El Mouchtari (bib10) 2022 Ananthi (bib3) 2024 Martínez-Castañón (bib30) 2008; 10 Soltani (bib50) 2013; 97 Darwish (bib8) 2017; 40 Gbashi (bib11) 2020; vol. 126 Sonawane (bib51) 2023; 13 Zhang (bib60) 2022; 135 Nishat (bib37) 2023; 76 Chepape (10.1016/j.envres.2024.119534_bib7) 2017 Ma (10.1016/j.envres.2024.119534_bib27) 2023; 11 Ghosh (10.1016/j.envres.2024.119534_bib12) 2006; 28 Kaur (10.1016/j.envres.2024.119534_bib21) 2019; 6 Vijai Anand (10.1016/j.envres.2024.119534_bib53) 2021; 32 Javed (10.1016/j.envres.2024.119534_bib19) 2020; 18 El Mouchtari (10.1016/j.envres.2024.119534_bib10) 2022 Minh Huong (10.1016/j.envres.2024.119534_bib31) 2024; 22 (10.1016/j.envres.2024.119534_bib52) 2023 Nishat (10.1016/j.envres.2024.119534_bib37) 2023; 76 Sharma (10.1016/j.envres.2024.119534_bib45) 2012; vol. 86 Kumar (10.1016/j.envres.2024.119534_bib23) 2022; 298 Lee (10.1016/j.envres.2024.119534_bib24) 2017; 318 Soltani (10.1016/j.envres.2024.119534_bib50) 2013; 97 Gbashi (10.1016/j.envres.2024.119534_bib11) 2020; vol. 126 Nayna (10.1016/j.envres.2024.119534_bib36) 2019 Haghighatzadeh (10.1016/j.envres.2024.119534_bib14) 2020; 31 Darwish (10.1016/j.envres.2024.119534_bib8) 2017; 40 Kaur (10.1016/j.envres.2024.119534_bib22) 2023; 335 Al-Harbi (10.1016/j.envres.2024.119534_bib1) 2024 Javed (10.1016/j.envres.2024.119534_bib18) 2016; 386 Paras (10.1016/j.envres.2024.119534_bib38) 2023; 13 Chandrakar (10.1016/j.envres.2024.119534_bib5) 2015; 84 Martínez-Castañón (10.1016/j.envres.2024.119534_bib30) 2008; 10 Zhang (10.1016/j.envres.2024.119534_bib60) 2022; 135 Xu (10.1016/j.envres.2024.119534_bib56) 2019; 48 Makhesana (10.1016/j.envres.2024.119534_bib29) 2024 Jamal (10.1016/j.envres.2024.119534_bib16) 2023; 6 Soltani (10.1016/j.envres.2024.119534_bib49) 2012; 13 Ananthi (10.1016/j.envres.2024.119534_bib3) 2024 Cheng (10.1016/j.envres.2024.119534_bib6) 2022; 633 Singh (10.1016/j.envres.2024.119534_bib47) 2023; 295 Javed (10.1016/j.envres.2024.119534_bib17) 2017; 79 Pirarath (10.1016/j.envres.2024.119534_bib40) 2023; 35 Ibrahim (10.1016/j.envres.2024.119534_bib15) 2016; vol. 222 Sabah (10.1016/j.envres.2024.119534_bib43) 2020; 124 Kaur (10.1016/j.envres.2024.119534_bib20) 2021; 32 Singh (10.1016/j.envres.2024.119534_bib46) 2014; 2 Soltani (10.1016/j.envres.2024.119534_bib48) 2014; vol. 11 Mohan (10.1016/j.envres.2024.119534_bib33) 2023; 7 Liu (10.1016/j.envres.2024.119534_bib26) 2022; 1256 Aulakh (10.1016/j.envres.2024.119534_bib4) 2022; 281 Munyai (10.1016/j.envres.2024.119534_bib35) 2021; 4 Li (10.1016/j.envres.2024.119534_bib25) 2024; 12 Phuruangrat (10.1016/j.envres.2024.119534_bib39) 2019; vol. 16 Wang (10.1016/j.envres.2024.119534_bib55) 2008; 59 Ye (10.1016/j.envres.2024.119534_bib58) 2018; 164 Sharma (10.1016/j.envres.2024.119534_bib44) 2020; 310 Sonawane (10.1016/j.envres.2024.119534_bib51) 2023; 13 10.1016/j.envres.2024.119534_bib2 Ma (10.1016/j.envres.2024.119534_bib28) 2016; 42 Zein (10.1016/j.envres.2024.119534_bib59) 2022; vol. 13 Ranjit (10.1016/j.envres.2024.119534_bib42) 2021 Mintcheva (10.1016/j.envres.2024.119534_bib32) 2019; vol. 12 Deka (10.1016/j.envres.2024.119534_bib9) 2019; 210 Morshedtalab (10.1016/j.envres.2024.119534_bib34) 2020; 20 Ghosh (10.1016/j.envres.2024.119534_bib13) 2021; 23 Wang (10.1016/j.envres.2024.119534_bib54) 2016; 4 Rani (10.1016/j.envres.2024.119534_bib41) 2022; 33 Xu (10.1016/j.envres.2024.119534_bib57) 2009; 21 |
References_xml | – volume: 12 year: 2024 ident: bib25 article-title: Orange peel biochar–CdS composites for photocatalytic hydrogen production publication-title: INORGA – volume: 35 year: 2023 ident: bib40 article-title: Efficient removal of mercury from aqueous medium using polyvinyl pyrrolidone-capped ZnS nanospheres publication-title: Nano-Structures & Nano-Objects – volume: 386 start-page: 319 year: 2016 end-page: 326 ident: bib18 article-title: Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles publication-title: Appl. Surf. Sci. – volume: vol. 86 start-page: 626 year: 2012 end-page: 633 ident: bib45 publication-title: Photocatalytic Degradation of Organic Dyes under UV–Visible Light Using Capped ZnS Nanoparticles – volume: 164 start-page: 345 year: 2018 end-page: 354 ident: bib58 article-title: A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes publication-title: Optik – reference: Ali, D. A., et al., Sol-gel synthesized Cu/ZnS nanocomposites for photocatalytic dye degradation and antibacterial activity. J. Dispersion Sci. Technol. 1-14. . – volume: 32 start-page: 1191 year: 2021 end-page: 1204 ident: bib20 article-title: Eco-friendly approach: synthesis of novel green TiO2 nanoparticles for degradation of reactive green 19 dye and replacement of chemical synthesized TiO2 publication-title: J. Cluster Sci. – year: 2024 ident: bib29 article-title: Applicability of nanomaterials in water and waste-water treatment: a state-of-the-art review and future perspectives publication-title: Materials Today: Proceedings – volume: 2 start-page: 522 year: 2014 end-page: 528 ident: bib46 article-title: Retracted Article: red luminescent manganese-doped zinc sulphide nanocrystals and their antibacterial study publication-title: J. Mater. Chem. B – volume: 84 start-page: 132 year: 2015 end-page: 143 ident: bib5 article-title: Synthesis, characterization and photoluminescence studies of undoped ZnS nanoparticles publication-title: Superlattice. Microst. – volume: 48 start-page: 3868 year: 2019 end-page: 3902 ident: bib56 article-title: Nanostructured materials for photocatalysis publication-title: Chem. Soc. Rev. – volume: vol. 11 start-page: 79 year: 2014 end-page: 90 ident: bib48 publication-title: Structural, Optical and Electrical Properties of ZnS Nanoparticles Affecting by Organic Coating – volume: 13 start-page: 160 year: 2023 ident: bib38 article-title: A review on low-dimensional nanomaterials: nanofabrication, characterization and applications publication-title: Nanomaterials – volume: 22 year: 2024 ident: bib31 article-title: A review on modification of ZnO for highly photoactive catalyst in sustainable energy production processes publication-title: Environ. Nanotechnol. Monit. Manag. – volume: vol. 13 start-page: 777 year: 2022 ident: bib59 publication-title: Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-bacterial Activity of Green Synthesized Silver Nanoparticles – volume: 6 start-page: 7077 year: 2023 end-page: 7106 ident: bib16 article-title: Review of metal sulfide nanostructures and their applications publication-title: ACS Appl. Nano Mater. – volume: vol. 126 start-page: 275 year: 2020 ident: bib11 publication-title: Investigation of Morphological, Optical and Structural Properties of Multi-Layer Coatings for Solar Energy – volume: 97 start-page: 147 year: 2013 end-page: 154 ident: bib50 article-title: Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles publication-title: Sol. Energy – volume: vol. 16 start-page: 387 year: 2019 end-page: 393 ident: bib39 publication-title: Refuxing Synthesis and Characterization of ZnS Nanoparticles and Their Photocatalytic Properties – volume: 298 year: 2022 ident: bib23 article-title: Evaluation of photocatalytic performances of PEG and PVP capped zinc sulfide nanoparticles towards organic environmental pollutant in presence of sunlight publication-title: Chemosphere – volume: 20 start-page: 1042 year: 2020 end-page: 1055 ident: bib34 article-title: Antibacterial assessment of zinc sulfide nanoparticles against Streptococcus pyogenes and acinetobacter baumannii publication-title: Curr. Top. Med. Chem. – volume: vol. 12 start-page: 3313 year: 2019 ident: bib32 publication-title: Preparation and Photocatalytic Properties of CdS and ZnS Nanomaterials Derived from Metal Xanthate – volume: 6 year: 2019 ident: bib21 article-title: Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application publication-title: Mater. Res. Express – volume: 281 year: 2022 ident: bib4 article-title: Influence of capping agents on morphology and photocatalytic response of ZnS nanostructures towards crystal violet degradation under UV and sunlight publication-title: Separ. Purif. Technol. – volume: 31 start-page: 1283 year: 2020 end-page: 1292 ident: bib14 article-title: Facile synthesis of ZnS–Ag2S core–shell nanospheres with enhanced nonlinear refraction publication-title: J. Mater. Sci. Mater. Electron. – volume: 210 start-page: 269 year: 2019 end-page: 275 ident: bib9 article-title: Influence of capping agent on structural, optical and photocatalytic properties of ZnS nanocrystals publication-title: J. Lumin. – year: 2017 ident: bib7 article-title: Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles – volume: 32 start-page: 155 year: 2021 end-page: 161 ident: bib53 article-title: Improved structural, optical and photoluminescence properties of EDTA capped zinc sulfide nanoparticles for optoelectronic applications publication-title: J. Cluster Sci. – volume: 11 year: 2023 ident: bib27 article-title: Photocatalytic properties and antibacterial mechanisms of microbial-derived ZnS/CuS nanocomposites publication-title: J. Environ. Chem. Eng. – volume: 13 start-page: 879 year: 2023 end-page: 890 ident: bib51 article-title: Synthesis of ZnS nanomaterials and their applications via green approaches: an overview publication-title: BioNanoScience – volume: 33 year: 2022 ident: bib41 article-title: Impact of surfactant (EDTA) on the properties of zinc sulphide nanoparticles and their antibacterial activity publication-title: Surface. Interfac. – volume: 59 start-page: 1765 year: 2008 end-page: 1770 ident: bib55 article-title: Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties publication-title: Mater. Char. – volume: 13 start-page: 12412 year: 2012 end-page: 12427 ident: bib49 article-title: Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles sythesized by mcrowave iradiation publication-title: Int. J. Mol. Sci. – start-page: 267 year: 2019 end-page: 290 ident: bib36 article-title: 13 - application of semiconductor nanoparticles for removal of organic pollutants or dyes from wastewater publication-title: Nanotechnology in Water and Wastewater Treatment – volume: 21 start-page: 2875 year: 2009 end-page: 2885 ident: bib57 article-title: ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity publication-title: Chem. Mater. – volume: 4 year: 2021 ident: bib35 article-title: Green derived metal sulphides as photocatalysts for waste water treatment. A review publication-title: Current Research in Green and Sustainable Chemistry – volume: 40 start-page: 513 year: 2017 end-page: 522 ident: bib8 article-title: Partially decomposed PVP as a surface modification of ZnO, CdO, ZnS and CdS nanostructures for enhanced stability and catalytic activity towards sulphamethoxazole degradation publication-title: Bull. Mater. Sci. – volume: 76 start-page: 505 year: 2023 end-page: 516 ident: bib37 article-title: Wastewater treatment: a short assessment on available techniques publication-title: Alex. Eng. J. – volume: 1256 year: 2022 ident: bib26 article-title: Influence of ZnS crystal morphology on adsorption-photocatalytic efficiency of pseudocrystal ZnS nanomaterials for methylene blue degradation publication-title: J. Mol. Struct. – year: 2024 ident: bib1 article-title: Physical methods for preparation of nanomaterials, their characterization and applications: a review publication-title: Journal of Umm Al-Qura University for Applied Sciences – volume: 124 start-page: 9009 year: 2020 end-page: 9020 ident: bib43 article-title: Effect of polymer capping on photonic multi-core–shell quantum dots CdSe/CdS/ZnS: impact of sunlight and antibacterial activity publication-title: J. Phys. Chem. C – volume: 310 year: 2020 ident: bib44 article-title: Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling publication-title: J. Mol. Liq. – volume: 7 year: 2023 ident: bib33 article-title: Investigations on capping-induced changes in structural, optical, and thermal properties of Zn0.96Ni0.04S nanoparticles publication-title: Chemical Physics Impact – volume: 18 start-page: 172 year: 2020 ident: bib19 article-title: Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects publication-title: J. Nanobiotechnol. – volume: 135 year: 2022 ident: bib60 article-title: Synthesis of nano-ZnS by lyotropic liquid crystal template method for enhanced photodegradation of methylene blue publication-title: Inorg. Chem. Commun. – year: 2023 ident: bib52 article-title: G.-A., Wastewater – Turning Problem to Solution. A UNEP Rapid Response Assessment – year: 2024 ident: bib3 article-title: Antibacterial, Biodegradable polymeric Films loaded with Co-MOF/ZnS nanoparticles for Food packaging and photo-degradation applications publication-title: ACS Food Science & Technology – volume: 42 start-page: 2854 year: 2016 end-page: 2860 ident: bib28 article-title: Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures publication-title: Ceram. Int. – volume: 4 start-page: 3321 year: 2016 end-page: 3327 ident: bib54 article-title: Fabrication and characterization of structurally colored pigments based on carbon-modified ZnS nanospheres publication-title: J. Mater. Chem. C – volume: 23 start-page: 160 year: 2021 ident: bib13 article-title: Photocatalytic and sonocatalytic dye degradation by sulfur vacancy rich ZnS nanopowder publication-title: J. Nanoparticle Res. – volume: 79 start-page: 108 year: 2017 end-page: 115 ident: bib17 article-title: PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective – volume: vol. 222 start-page: 463 year: 2016 end-page: 472 ident: bib15 publication-title: Cauliflower-shaped ZnO Nanomaterials for Electrochemical Sensing and Photocatalytic Applications – volume: 335 year: 2023 ident: bib22 article-title: One-pot biogenic synthesis of C. limon/TiO2 with dual applications as an advance photocatalyst and antimicrobial agent publication-title: Chemosphere – volume: 318 start-page: 8 year: 2017 end-page: 22 ident: bib24 article-title: Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — a review publication-title: Powder Technol. – volume: 10 start-page: 1343 year: 2008 end-page: 1348 ident: bib30 article-title: Synthesis and antibacterial activity of silver nanoparticles with different sizes publication-title: J. Nanoparticle Res. – start-page: 455 year: 2021 end-page: 479 ident: bib42 article-title: Conventional wastewater treatment processes publication-title: Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture – volume: 28 start-page: 1047 year: 2006 end-page: 1053 ident: bib12 article-title: Synthesis and characterization of PVP-encapsulated ZnS nanoparticles publication-title: Opt. Mater. – volume: 295 year: 2023 ident: bib47 article-title: Photocatalytic and molecular docking supported antimicrobial investigations of PVP capped MWCNTs/La/ZnO nanostructures publication-title: Mater. Sci. Eng. B – start-page: 1 year: 2022 end-page: 16 ident: bib10 article-title: Hydrothermal synthesis of 3D cauliflower anatase TiO2 and bio sourced activated carbon: adsorption and photocatalytic activity in real water matrices publication-title: Int. J. Environ. Anal. Chem. – volume: 633 year: 2022 ident: bib6 article-title: Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 33 year: 2022 ident: 10.1016/j.envres.2024.119534_bib41 article-title: Impact of surfactant (EDTA) on the properties of zinc sulphide nanoparticles and their antibacterial activity publication-title: Surface. Interfac. – start-page: 1 year: 2022 ident: 10.1016/j.envres.2024.119534_bib10 article-title: Hydrothermal synthesis of 3D cauliflower anatase TiO2 and bio sourced activated carbon: adsorption and photocatalytic activity in real water matrices publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2022.2118586 – volume: 7 year: 2023 ident: 10.1016/j.envres.2024.119534_bib33 article-title: Investigations on capping-induced changes in structural, optical, and thermal properties of Zn0.96Ni0.04S nanoparticles publication-title: Chemical Physics Impact doi: 10.1016/j.chphi.2023.100260 – volume: vol. 222 start-page: 463 year: 2016 ident: 10.1016/j.envres.2024.119534_bib15 – volume: vol. 11 start-page: 79 year: 2014 ident: 10.1016/j.envres.2024.119534_bib48 – volume: vol. 126 start-page: 275 year: 2020 ident: 10.1016/j.envres.2024.119534_bib11 – volume: 310 year: 2020 ident: 10.1016/j.envres.2024.119534_bib44 article-title: Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113025 – volume: 48 start-page: 3868 year: 2019 ident: 10.1016/j.envres.2024.119534_bib56 article-title: Nanostructured materials for photocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00102F – volume: 13 start-page: 12412 year: 2012 ident: 10.1016/j.envres.2024.119534_bib49 article-title: Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles sythesized by mcrowave iradiation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms131012412 – volume: 2 start-page: 522 year: 2014 ident: 10.1016/j.envres.2024.119534_bib46 article-title: Retracted Article: red luminescent manganese-doped zinc sulphide nanocrystals and their antibacterial study publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21363C – volume: 20 start-page: 1042 year: 2020 ident: 10.1016/j.envres.2024.119534_bib34 article-title: Antibacterial assessment of zinc sulfide nanoparticles against Streptococcus pyogenes and acinetobacter baumannii publication-title: Curr. Top. Med. Chem. doi: 10.2174/1381612826666200406095246 – volume: vol. 13 start-page: 777 year: 2022 ident: 10.1016/j.envres.2024.119534_bib59 – volume: 12 year: 2024 ident: 10.1016/j.envres.2024.119534_bib25 article-title: Orange peel biochar–CdS composites for photocatalytic hydrogen production publication-title: INORGA doi: 10.3390/inorganics12060156 – year: 2024 ident: 10.1016/j.envres.2024.119534_bib1 article-title: Physical methods for preparation of nanomaterials, their characterization and applications: a review publication-title: Journal of Umm Al-Qura University for Applied Sciences doi: 10.1007/s43994-024-00165-7 – volume: 84 start-page: 132 year: 2015 ident: 10.1016/j.envres.2024.119534_bib5 article-title: Synthesis, characterization and photoluminescence studies of undoped ZnS nanoparticles publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2015.04.023 – volume: 31 start-page: 1283 year: 2020 ident: 10.1016/j.envres.2024.119534_bib14 article-title: Facile synthesis of ZnS–Ag2S core–shell nanospheres with enhanced nonlinear refraction publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-02640-y – volume: 6 start-page: 7077 year: 2023 ident: 10.1016/j.envres.2024.119534_bib16 article-title: Review of metal sulfide nanostructures and their applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c00417 – year: 2024 ident: 10.1016/j.envres.2024.119534_bib29 article-title: Applicability of nanomaterials in water and waste-water treatment: a state-of-the-art review and future perspectives – volume: vol. 12 start-page: 3313 year: 2019 ident: 10.1016/j.envres.2024.119534_bib32 – volume: 4 year: 2021 ident: 10.1016/j.envres.2024.119534_bib35 article-title: Green derived metal sulphides as photocatalysts for waste water treatment. A review publication-title: Current Research in Green and Sustainable Chemistry doi: 10.1016/j.crgsc.2021.100163 – volume: 135 year: 2022 ident: 10.1016/j.envres.2024.119534_bib60 article-title: Synthesis of nano-ZnS by lyotropic liquid crystal template method for enhanced photodegradation of methylene blue publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2021.109089 – ident: 10.1016/j.envres.2024.119534_bib2 doi: 10.1080/01932691.2024.2351907 – start-page: 455 year: 2021 ident: 10.1016/j.envres.2024.119534_bib42 article-title: Conventional wastewater treatment processes – volume: 124 start-page: 9009 year: 2020 ident: 10.1016/j.envres.2024.119534_bib43 article-title: Effect of polymer capping on photonic multi-core–shell quantum dots CdSe/CdS/ZnS: impact of sunlight and antibacterial activity publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11656 – volume: 281 year: 2022 ident: 10.1016/j.envres.2024.119534_bib4 article-title: Influence of capping agents on morphology and photocatalytic response of ZnS nanostructures towards crystal violet degradation under UV and sunlight publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.119869 – volume: 13 start-page: 160 year: 2023 ident: 10.1016/j.envres.2024.119534_bib38 article-title: A review on low-dimensional nanomaterials: nanofabrication, characterization and applications publication-title: Nanomaterials doi: 10.3390/nano13010160 – volume: 210 start-page: 269 year: 2019 ident: 10.1016/j.envres.2024.119534_bib9 article-title: Influence of capping agent on structural, optical and photocatalytic properties of ZnS nanocrystals publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.02.033 – volume: 295 year: 2023 ident: 10.1016/j.envres.2024.119534_bib47 article-title: Photocatalytic and molecular docking supported antimicrobial investigations of PVP capped MWCNTs/La/ZnO nanostructures publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2023.116582 – volume: vol. 86 start-page: 626 year: 2012 ident: 10.1016/j.envres.2024.119534_bib45 – volume: 6 year: 2019 ident: 10.1016/j.envres.2024.119534_bib21 article-title: Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab2ec5 – volume: 318 start-page: 8 year: 2017 ident: 10.1016/j.envres.2024.119534_bib24 article-title: Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — a review publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.05.022 – year: 2024 ident: 10.1016/j.envres.2024.119534_bib3 article-title: Antibacterial, Biodegradable polymeric Films loaded with Co-MOF/ZnS nanoparticles for Food packaging and photo-degradation applications publication-title: ACS Food Science & Technology doi: 10.1021/acsfoodscitech.4c00087 – volume: 32 start-page: 1191 year: 2021 ident: 10.1016/j.envres.2024.119534_bib20 article-title: Eco-friendly approach: synthesis of novel green TiO2 nanoparticles for degradation of reactive green 19 dye and replacement of chemical synthesized TiO2 publication-title: J. Cluster Sci. doi: 10.1007/s10876-020-01881-w – start-page: 267 year: 2019 ident: 10.1016/j.envres.2024.119534_bib36 article-title: 13 - application of semiconductor nanoparticles for removal of organic pollutants or dyes from wastewater – volume: 28 start-page: 1047 year: 2006 ident: 10.1016/j.envres.2024.119534_bib12 article-title: Synthesis and characterization of PVP-encapsulated ZnS nanoparticles publication-title: Opt. Mater. doi: 10.1016/j.optmat.2005.06.003 – volume: 633 year: 2022 ident: 10.1016/j.envres.2024.119534_bib6 article-title: Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127918 – volume: 76 start-page: 505 year: 2023 ident: 10.1016/j.envres.2024.119534_bib37 article-title: Wastewater treatment: a short assessment on available techniques publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.06.054 – volume: 10 start-page: 1343 year: 2008 ident: 10.1016/j.envres.2024.119534_bib30 article-title: Synthesis and antibacterial activity of silver nanoparticles with different sizes publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-008-9428-6 – volume: 97 start-page: 147 year: 2013 ident: 10.1016/j.envres.2024.119534_bib50 article-title: Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.023 – year: 2023 ident: 10.1016/j.envres.2024.119534_bib52 – volume: 21 start-page: 2875 year: 2009 ident: 10.1016/j.envres.2024.119534_bib57 article-title: ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity publication-title: Chem. Mater. doi: 10.1021/cm900608d – volume: 23 start-page: 160 year: 2021 ident: 10.1016/j.envres.2024.119534_bib13 article-title: Photocatalytic and sonocatalytic dye degradation by sulfur vacancy rich ZnS nanopowder publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-021-05283-5 – volume: 1256 year: 2022 ident: 10.1016/j.envres.2024.119534_bib26 article-title: Influence of ZnS crystal morphology on adsorption-photocatalytic efficiency of pseudocrystal ZnS nanomaterials for methylene blue degradation publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2022.132514 – volume: 32 start-page: 155 year: 2021 ident: 10.1016/j.envres.2024.119534_bib53 article-title: Improved structural, optical and photoluminescence properties of EDTA capped zinc sulfide nanoparticles for optoelectronic applications publication-title: J. Cluster Sci. doi: 10.1007/s10876-020-01772-0 – volume: 79 start-page: 108 year: 2017 ident: 10.1016/j.envres.2024.119534_bib17 article-title: PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective – volume: 18 start-page: 172 year: 2020 ident: 10.1016/j.envres.2024.119534_bib19 article-title: Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-00704-4 – volume: 335 year: 2023 ident: 10.1016/j.envres.2024.119534_bib22 article-title: One-pot biogenic synthesis of C. limon/TiO2 with dual applications as an advance photocatalyst and antimicrobial agent publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.139106 – volume: 35 year: 2023 ident: 10.1016/j.envres.2024.119534_bib40 article-title: Efficient removal of mercury from aqueous medium using polyvinyl pyrrolidone-capped ZnS nanospheres publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2023.100999 – volume: 42 start-page: 2854 year: 2016 ident: 10.1016/j.envres.2024.119534_bib28 article-title: Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.11.021 – volume: 40 start-page: 513 year: 2017 ident: 10.1016/j.envres.2024.119534_bib8 article-title: Partially decomposed PVP as a surface modification of ZnO, CdO, ZnS and CdS nanostructures for enhanced stability and catalytic activity towards sulphamethoxazole degradation publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-017-1405-1 – volume: 59 start-page: 1765 year: 2008 ident: 10.1016/j.envres.2024.119534_bib55 article-title: Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties publication-title: Mater. Char. doi: 10.1016/j.matchar.2008.04.005 – volume: 386 start-page: 319 year: 2016 ident: 10.1016/j.envres.2024.119534_bib18 article-title: Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.042 – volume: 22 year: 2024 ident: 10.1016/j.envres.2024.119534_bib31 article-title: A review on modification of ZnO for highly photoactive catalyst in sustainable energy production processes publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 164 start-page: 345 year: 2018 ident: 10.1016/j.envres.2024.119534_bib58 article-title: A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes publication-title: Optik doi: 10.1016/j.ijleo.2018.03.030 – volume: 11 year: 2023 ident: 10.1016/j.envres.2024.119534_bib27 article-title: Photocatalytic properties and antibacterial mechanisms of microbial-derived ZnS/CuS nanocomposites publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.111425 – volume: 13 start-page: 879 year: 2023 ident: 10.1016/j.envres.2024.119534_bib51 article-title: Synthesis of ZnS nanomaterials and their applications via green approaches: an overview publication-title: BioNanoScience doi: 10.1007/s12668-023-01105-1 – year: 2017 ident: 10.1016/j.envres.2024.119534_bib7 – volume: vol. 16 start-page: 387 year: 2019 ident: 10.1016/j.envres.2024.119534_bib39 – volume: 4 start-page: 3321 year: 2016 ident: 10.1016/j.envres.2024.119534_bib54 article-title: Fabrication and characterization of structurally colored pigments based on carbon-modified ZnS nanospheres publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04192A – volume: 298 year: 2022 ident: 10.1016/j.envres.2024.119534_bib23 article-title: Evaluation of photocatalytic performances of PEG and PVP capped zinc sulfide nanoparticles towards organic environmental pollutant in presence of sunlight publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134281 |
SSID | ssj0011530 |
Score | 2.4715104 |
Snippet | This study presents a novel blend of synthesis techniques for shape-controlled ZnS nanoparticles. Zinc sulfide (ZnS) nanoparticles with distinct morphologies... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119534 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibacterial activity antibacterial properties Chemical Precipitation crystal structure crystallites Degradation electron microscopy encapsulation Hydrothermal method irradiation methylene blue Methylene blue dye nanoparticles Nanospheres Nanostructures - chemistry photocatalysis polyvinylpyrrolidone Povidone - chemistry PVP-ZnS Sulfides - chemistry surface area transmission electron microscopes ultraviolet-visible spectroscopy wastewater Wastewater - chemistry Water Purification - methods X-ray diffraction Zinc Compounds - chemistry zinc sulfide |
Title | Tailoring ZnS nanostructures through precipitation-cum-hydrothermal synthesis for enhanced wastewater purification and antibacterial treatment |
URI | https://dx.doi.org/10.1016/j.envres.2024.119534 https://www.ncbi.nlm.nih.gov/pubmed/38960361 https://www.proquest.com/docview/3075701597 https://www.proquest.com/docview/3153657744 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvVSqKkoL5SlX6tUQrx_ZHBECbanKpSChXiw7cUSq4o3ILogLP4HfzEzsLOoBkDhEysO2nMzYM3bm-4aQ77XPrBVj_OUvR0y6WjFbWMuQ-Ztr1BCOeOdfp3pyLk8u1MUSORywMBhWmeb-OKf3s3W6s5--5n7bNIjx5YgrBQOFHHUFIsqlzFHL9-4XYR7g8IhsyGKApQf4XB_j5cMNLGphlTiSe8h9JuRz5uk597M3Q8cr5GPyH-lB7OInsuTDKlk7eoKrwcM0XrtV8iHuytEINvpMHs5sE0Pu6J_wmwYbppFAdg4dpClnD22R8aJN5N2snF-xy7vquodqXUHz3V2A067pKDi81IfLPoiA3toON-JATrSdX2MEUl-f2lDBMWtc5IWGBhbB7V_I-fHR2eGEpYwMrBSFmrFaO-0Vty7nXpaj3OaYPF3arNbgCRS6cDxztRCuyJDIsKhghTculVc1F5WWY7FGlsM0-K-E1qpUTo210KqWvCyhmK5s5S23Nh9JtUHEIAhTpjfGrBn_zBCX9tdE8RkUn4ni2yBsUauNdB2vlM8HGZv_1M6ARXml5rdBJQyMSPzNYoOfzjsDs6YCFYeV2gtlQC21Atcb2lmP-rToL3xRDX4F33xz37bIe7xCE8vVNlkGRfI74DvN3G4_OHbJu4MfPyenj2N9HLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmilqmppaenTlXp1idePbI4IgZYCe-kioV4sO3FEUPFGZBfEn-hv7kzsbNUDReohUhQ_5HjGnhl75htCvtQ-s1ZM8Mpfjpl0tWK2sJYh8jfXyCEc451PZ3p6Jr-dq_MNsj_EwqBbZdr7457e79bpy26azd22aTDGl2NcKQgoxKgr8kdkE9Gp1Ihs7h0dT2frywRY1NmQyAAbDBF0vZuXDzdg14KhOJZfEf5MyPsk1H0aaC-JDp-TZ0mFpHtxlC_Ihg9bZPvgT8QaFKYl222Rp_FgjsZ4o5fk19w20euO_gjfabBhETFkVzBAmtL20BZBL9qE383K1RW7uKuu-2itK-i-uwvw2jUdBZ2X-nDR-xHQW9vhWRyQirara3RC6ttTGyp4lo2L0NDQwdq__RU5OzyY709ZSsrASlGoJau1015x63LuZTnObY7506XNag3KQKELxzNXC-GKDLEMiwqMvEmpvKq5qLSciG0yCovg3xBaq1I5NdFCq1rysoRqurKVt9zafCzVDhEDIUyZ_hgTZ_w0g2vapYnkM0g-E8m3Q9i6VRsROx6onw80Nn9xngGh8kDLzwNLGFiUeNNig1-sOgMbpwIuB2PtH3WALbUC7Rv6eR35aT1emFENqgV_-99j-0QeT-enJ-bkaHb8jjzBEpS4XL0nI2Aq_wFUqaX7mJbKbwfYH2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+ZnS+nanostructures+through+precipitation-cum-hydrothermal+synthesis+for+enhanced+wastewater+purification+and+antibacterial+treatment&rft.jtitle=Environmental+research&rft.au=Kaur%2C+Harpreet&rft.au=Kumar%2C+Sanjeev&rft.au=Kumar%2C+Parul&rft.au=Ghfar%2C+Ayman+A&rft.date=2024-10-15&rft.eissn=1096-0953&rft.volume=259&rft.spage=119534&rft_id=info:doi/10.1016%2Fj.envres.2024.119534&rft_id=info%3Apmid%2F38960361&rft.externalDocID=38960361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |