Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies

Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a po...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1861; no. 4; pp. 910 - 921
Main Authors Signorelli, Sara, Santini, Simona, Yamada, Tohru, Bizzarri, Anna Rita, Beattie, Craig W., Cannistraro, Salvatore
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. [Display omitted] •A structural investigation of p53 containing single point mutations is proposed.•The interaction between mutants p53 and the anticancer peptide p28 is investigated.•Structural changes in p53 are mutation position-dependent.•Alteration in p53 structure affects the binding of p28 in a position dependent way.
AbstractList Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. [Display omitted] •A structural investigation of p53 containing single point mutations is proposed.•The interaction between mutants p53 and the anticancer peptide p28 is investigated.•Structural changes in p53 are mutation position-dependent.•Alteration in p53 structure affects the binding of p28 in a position dependent way.
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.BACKGROUNDMutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.METHODSMolecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.RESULTSWe show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.CONCLUSIONSThese results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.GENERAL SIGNIFICANCERaman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Author Signorelli, Sara
Santini, Simona
Cannistraro, Salvatore
Bizzarri, Anna Rita
Yamada, Tohru
Beattie, Craig W.
Author_xml – sequence: 1
  givenname: Sara
  surname: Signorelli
  fullname: Signorelli, Sara
  organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
– sequence: 2
  givenname: Simona
  surname: Santini
  fullname: Santini, Simona
  organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
– sequence: 3
  givenname: Tohru
  surname: Yamada
  fullname: Yamada, Tohru
  organization: Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
– sequence: 4
  givenname: Anna Rita
  surname: Bizzarri
  fullname: Bizzarri, Anna Rita
  email: bizzarri@unitus.it
  organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
– sequence: 5
  givenname: Craig W.
  surname: Beattie
  fullname: Beattie, Craig W.
  organization: Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
– sequence: 6
  givenname: Salvatore
  surname: Cannistraro
  fullname: Cannistraro, Salvatore
  organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28126403$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9uFCEYxYmpsdvqGxjDpRfOCszAsF6YrBtbTWrc1BovCX--adnMwDgwJvs0vmrZbHvjheUGPjjnJPzOGToJMQBCrylZUkLF-93SGH0LYckIbZeELgljz9CCypZVkhBxghakJk3VUMFP0VlKO1IWX_EX6JRJykRD6gX6-8kH58Mtjh1eD-OdH3W-8xZvoO_xFgLkSefD-xbG7B3gkUmcI_7le4dv9iNgHRz-NmedweGR11gnnPLsfBnNHl_rQYd3eJ3jUFIv4mSPjh_z1Oly3vY6DTHga0gx6FBu0gg2TzHZOHpIL9HzTvcJXj3s5-jnxeebzZfq6vvl1836qrL1iueqE8RIIzWRK12bxhmuqQDacaJBuLYWNRcgrXbMGM5t1wloV9owYyUlVrP6HL095o5T_D1DymrwyRYIOkCck2KFXS3ZijdPSqkUrBVNw-siffMgnc0ATo2TH_S0V4_8i-DDUWDLj9MEnbK-oPQxFO6-V5SoQ9lqp45lq0PZilBVyi7m5h_zY_4Tto9HGxSefzxMKlkPBb3zU0GvXPT_D7gHCVzGBw
CitedBy_id crossref_primary_10_3390_ijms20123078
crossref_primary_10_3390_cancers14225546
crossref_primary_10_1016_j_jconrel_2019_07_020
crossref_primary_10_1093_hmg_ddab010
crossref_primary_10_1016_j_bbagen_2018_11_003
crossref_primary_10_1021_acs_jpcb_0c06778
crossref_primary_10_3390_ijms241612931
crossref_primary_10_3390_s17112680
crossref_primary_10_1002_psc_3357
crossref_primary_10_1007_s10930_020_09891_3
crossref_primary_10_1039_C8AY00746B
crossref_primary_10_1002_pro_3310
crossref_primary_10_1038_s41392_023_01347_1
crossref_primary_10_3390_biom8030077
crossref_primary_10_1039_D2AN01591A
crossref_primary_10_1093_noajnl_vdad042
Cites_doi 10.1021/ja0356176
10.1002/jmr.869
10.1002/1521-3765(20020402)8:7<1663::AID-CHEM1663>3.0.CO;2-P
10.1016/j.bbrc.2005.05.038
10.2147/IJN.S26155
10.1021/bi047845y
10.1016/S0003-9861(03)00126-7
10.1073/pnas.0505208102
10.1016/j.ab.2005.09.034
10.1016/j.abb.2006.08.014
10.1016/S0076-6879(98)95044-3
10.1038/cdd.2016.48
10.1101/gad.190678.112
10.1073/pnas.241629998
10.1016/S0006-3495(97)78802-7
10.1371/journal.pone.0080221
10.1038/sj.onc.1204457
10.1038/cdd.2010.35
10.3389/fonc.2015.00288
10.1016/S0006-3495(04)74299-X
10.18632/oncotarget.7857
10.1073/pnas.93.8.3477
10.1016/S0065-3233(08)60528-8
10.1002/humu.10081
10.1002/jmr.934
10.1021/jp902421r
10.1002/jmr.2346
10.1002/jrs.1323
10.1021/ja0259335
10.1021/mp500495u
10.1158/1535-7163.MCT-09-0444
10.1039/B811426A
10.1006/abio.1999.4034
10.1002/jmr.840
10.1016/j.str.2013.08.001
10.1006/abio.1993.1355
10.1016/0022-2836(82)90515-0
10.1016/S0022-2836(02)00848-3
10.1021/mp400221r
10.1038/nature14430
10.1021/jp108343g
10.1093/bioinformatics/btn584
10.1002/jmr.1153
10.1038/bjc.2013.266
10.1110/ps.051426605
10.1088/0953-8984/15/18/305
10.1038/bjc.2013.74
10.1006/jmbi.1996.0859
10.1021/bi027166s
10.1016/0022-2836(87)90189-6
10.1016/S0006-3495(00)76668-9
10.1074/jbc.M500179200
10.1002/jmr.975
10.1101/cshperspect.a001008
10.1002/elps.1150181505
10.1126/science.347575
10.1002/prot.22835
10.1016/j.sbi.2011.03.011
10.1101/cshperspect.a001107
10.1073/pnas.070052697
10.1093/neuonc/now047
10.1126/science.8023157
10.1110/ps.8.3.625
10.1063/1.1143970
10.1073/pnas.0607286103
10.1039/C1MB05273J
10.1073/pnas.0510941103
10.1021/jp112235d
10.1021/bi970283g
10.1002/anie.200600611
10.1016/j.bbagen.2014.02.014
10.1074/jbc.M603387200
10.1371/journal.pcbi.1002709
10.1101/cshperspect.a000919
10.1038/nrc2693
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2017.01.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 921
ExternalDocumentID 28126403
10_1016_j_bbagen_2017_01_022
S0304416517300302
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-f60b8b8a089a3b4db5a16e1f50ae6d736356e8cad2bb55cff6e79ab2bc810ca23
IEDL.DBID .~1
ISSN 0304-4165
IngestDate Fri Jul 11 07:11:04 EDT 2025
Fri Jul 11 11:27:14 EDT 2025
Mon Jul 21 05:42:28 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jul 01 00:22:08 EDT 2025
Fri Feb 23 02:32:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Mutations
Docking
Atomic Force Spectroscopy
Cell penetrating peptide
Raman spectroscopy
p53
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-f60b8b8a089a3b4db5a16e1f50ae6d736356e8cad2bb55cff6e79ab2bc810ca23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28126403
PQID 1862764453
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000382954
proquest_miscellaneous_1862764453
pubmed_primary_28126403
crossref_citationtrail_10_1016_j_bbagen_2017_01_022
crossref_primary_10_1016_j_bbagen_2017_01_022
elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_01_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
2017-Apr
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brosh, Rotter (bb0050) 2009
Forman-Kay, Mittag (bb0025) 2013; 21
Zhang, Vasmatzis, Cornette, DeLisi (bb0260) 1997; 267
Inga, Resnick (bb0140) 2001; 20
Parrales, Iwakuma (bb0090) 2015; 5
Zupnick, Prives (bb0145) 2006; 281
Olivier, Eeles, Hollstein, Khan, Harris, Hainaut (bb0035) 2002; 19
Yamada, Das Gupta, Beattie (bb0130) 2013; 10
Carey (bb0325) 1982
Taranta, Bizzarri, Cannistraro (bb0110) 2008; 21
Xiong, Zwier, Myshakina, Burger, Asher, Chong (bb0180) 2011; 115
Sane, Cramer, Przybycien (bb0335) 1999; 272
Olivier, Hollstein, Hainaut (bb0290) 2010; 2
Menendez, Inga, Resnick (bb0060) 2010; 10
Karlsson, Katsamba, Nordin, Pol, Myszka (bb0295) 2006; 349
Yamada, Signorelli, Cannistraro, Beattie, Bizzarri (bb0170) 2015; 12
Camacho, Kimura, DeLisi, Vajda (bb0265) 2000; 78
Fatima, Ahmad, Khan (bb0350) 2006; 454
Laporte, Stultz, Thomas (bb0315) 1997; 36
Maiti, Apetri, Zagorski, Carey, Anderson (bb0165) 2004; 126
O'Shannessy, Brigham-Burke, Soneson, Hensley, Brooks (bb0300) 1993; 212
Hinterdorfer, Baumgartner, Gruber, Schilcher, Schindler (bb0245) 1996; 93
Joerger, Ang, Veprintsev, Blair, Fersht (bb0040) 2005; 280
Díaz, Fioroni, Burger, Berger (bb0345) 2002; 8
Babu, van der Lee, de Groot, Gsponer (bb0020) 2011; 21
.
Miura, Thomas (bb0320) 1995
Lulla, Goldman, Yamada, Beattie, Bressler, Pacini, Pollack, Fisher, Packer, Dunkel, Dhall, Wu, Onar, Boyett, Fouladi (bb0400) 2016; 18
Tal, Eizenberger, Cohen, Goldfinger, Pietrokovski, Oren, Rotter (bb0085) 2016; 7
Santini, Bizzarri, Yamada, Beattie, Cannistraro (bb0275) 2014; 27
Coppari, Yamada, Bizzarri, Beattie, Cannistraro (bb0155) 2014; 9
Munishkina, Phelan, Uversky, Fink (bb0340) 2003; 42
Reynolds, Damerell, Jones (bb0270) 2009; 25
Friedsam, Wehle, Kuehner, Gaub (bb0205) 2003; 15
Guex, Peitsch (bb9000) 1997; 18
Cho, Gorina, Jeffrey, Pavletich (bb0005) 1994; 265
Bizzarri, Cannistraro (bb0215) 2009; 113
Santini, Bizzarri, Cannistraro (bb0160) 2011; 24
Vacic, Markwick, Oldfield, Zhao, Haynes, Uversky, Iakoucheva (bb0195) 2012; 8
Signorelli, Cannistraro, Bizzarri (bb0175) 2016
Kyte, Doolittle (bb0390) 1982; 157
Won, Pripotnev, Ruscito, Ianoul (bb0250) 2011; 115
Friedler, Hansson, Veprintsev, Freund, Rippin, Nikolova, Proctor, Rudiger, Fersht (bb0135) 2002; 99
Gast, Zirwer, Müller-Frohne, Damaschun (bb0355) 2008; 8
Bell, Klein, Mueller, Hansen, Buchner (bb0010) 2002; 322
Apiyo, Wittung-Stafshede (bb0095) 2005; 332
Joerger, Fersht (bb0380) 2010; 2
Taranta, Bizzarri, Cannistraro (bb0115) 2009; 22
Kozakov, Hall, Beglov, Brenke, Comeau, Shen, Li, Zheng, Vakili, Paschalidis, Vajda (bb0255) 2010; 78
Warso, Richards, Mehta, Christov, Schaeffer, Rae Bressler, Yamada, Majumdar, Kennedy, Beattie, Das Gupta (bb0405) 2013; 108
Cooper (bb0185) 2003
Joerger, Ang, Fersht (bb0385) 2006; 103
Evans, Ritchie (bb0240) 1997; 72
Krimm, Bandekar (bb0310) 1986; 38
Roccatano, Fioroni, Zacharias, Colombo (bb0365) 2005; 14
Vuzman, Levy (bb0375) 2012; 8
Hutter, Bechhoefer (bb0200) 1993; 64
Sulchek, Friddle, Langry, Lau, Albrecht, Ratto, DeNardo, Colvin, Noy (bb0220) 2005; 102
Collavin, Lunardi, Del Sal (bb0030) 2010; 17
Yamada, Mehta, Lekmine, Christov, King, Majumdar, Shilkaitis, Green, Bratescu, Beattie, Das Gupta (bb0150) 2009; 8
Alexandrova, Yallowitz, Li, Xu, Schulz, Proia, Lozano, Dobbelstein, Moll (bb0045) 2015; 523
Viadiu, Fronza, Inga (bb0065) 2014
Cañadillas, Tidow, Freund, Rutherford, Ang, Fersht (bb0015) 2006; 103
Freed-Pastor, Prives (bb0070) 2012; 26
Santini, Di Agostino, Coppari, Bizzarri, Blandino, Cannistraro (bb0305) 2014; 1840
Cornette, Cease, Margalit, Spouge, Berzofsky, DeLisi (bb0395) 1987; 195
Bizzarri, Cannistraro (bb0210) 2010; 39
Tuma (bb0330) 2005; 36
Pan, Ma, Venkataraghavan, Levine, Nussinov (bb0370) 2005; 44
Oren, Rotter (bb0055) 2010; 2
Aggarwal, Saxena, Sinclair, Fu, Jacobs, Dyba, Wang, Cruz, Berry, Kallakury, Mueller, Agostino, Blandino, Avantaggiati, Chung (bb0080) 2016; 23
V. De Grandis, A.R. Bizzarri, S. Cannistraro, Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin., J. Mol. Recognit. 20 (n.d.) 215–26. doi
Bizzarri, Santini, Coppari, Bucciantini, Di Agostino, Yamada, Beattie, Cannistraro (bb0120) 2011; 6
Baumgartner, Hinterdorfer, Ness, Raab, Vestweber, Schindler, Drenckhahn (bb0225) 2000; 97
Morton, Myszka (bb0280) 1998; 295
Gupta, Khan, Saleemuddin (bb0360) 2003; 413
Bizzarri, Di Agostino, Andolfi, Cannistraro (bb0100) 2009; 22
Bell (bb0235) 1978; 200
Römer, Klein, Dehner, Kessler, Buchner (bb0075) 2006; 45
Fioroni, Diaz, Burger, Berger (bb0190) 2002; 124
Ratto, Langry, Rudd, Balhorn, Allen (bb0230) 2004; 86
Lukman, Lane, Verma (bb0285) 2013; 8
Yamada, Christov, Shilkaitis, Bratescu, Green, Santini, Bizzarri, Cannistraro, Gupta, Beattie (bb0125) 2013; 108
Kyte (10.1016/j.bbagen.2017.01.022_bb0390) 1982; 157
Viadiu (10.1016/j.bbagen.2017.01.022_bb0065) 2014
Freed-Pastor (10.1016/j.bbagen.2017.01.022_bb0070) 2012; 26
Yamada (10.1016/j.bbagen.2017.01.022_bb0150) 2009; 8
Babu (10.1016/j.bbagen.2017.01.022_bb0020) 2011; 21
Taranta (10.1016/j.bbagen.2017.01.022_bb0110) 2008; 21
Gupta (10.1016/j.bbagen.2017.01.022_bb0360) 2003; 413
Bizzarri (10.1016/j.bbagen.2017.01.022_bb0120) 2011; 6
Yamada (10.1016/j.bbagen.2017.01.022_bb0125) 2013; 108
Warso (10.1016/j.bbagen.2017.01.022_bb0405) 2013; 108
Lulla (10.1016/j.bbagen.2017.01.022_bb0400) 2016; 18
Krimm (10.1016/j.bbagen.2017.01.022_bb0310) 1986; 38
Roccatano (10.1016/j.bbagen.2017.01.022_bb0365) 2005; 14
10.1016/j.bbagen.2017.01.022_bb0105
Munishkina (10.1016/j.bbagen.2017.01.022_bb0340) 2003; 42
Guex (10.1016/j.bbagen.2017.01.022_bb9000) 1997; 18
Bell (10.1016/j.bbagen.2017.01.022_bb0010) 2002; 322
Aggarwal (10.1016/j.bbagen.2017.01.022_bb0080) 2016; 23
Joerger (10.1016/j.bbagen.2017.01.022_bb0385) 2006; 103
Coppari (10.1016/j.bbagen.2017.01.022_bb0155) 2014; 9
Maiti (10.1016/j.bbagen.2017.01.022_bb0165) 2004; 126
Tal (10.1016/j.bbagen.2017.01.022_bb0085) 2016; 7
Menendez (10.1016/j.bbagen.2017.01.022_bb0060) 2010; 10
Reynolds (10.1016/j.bbagen.2017.01.022_bb0270) 2009; 25
Inga (10.1016/j.bbagen.2017.01.022_bb0140) 2001; 20
Baumgartner (10.1016/j.bbagen.2017.01.022_bb0225) 2000; 97
Hinterdorfer (10.1016/j.bbagen.2017.01.022_bb0245) 1996; 93
Bizzarri (10.1016/j.bbagen.2017.01.022_bb0210) 2010; 39
Laporte (10.1016/j.bbagen.2017.01.022_bb0315) 1997; 36
Sulchek (10.1016/j.bbagen.2017.01.022_bb0220) 2005; 102
Bizzarri (10.1016/j.bbagen.2017.01.022_bb0215) 2009; 113
Zhang (10.1016/j.bbagen.2017.01.022_bb0260) 1997; 267
Parrales (10.1016/j.bbagen.2017.01.022_bb0090) 2015; 5
Cho (10.1016/j.bbagen.2017.01.022_bb0005) 1994; 265
Sane (10.1016/j.bbagen.2017.01.022_bb0335) 1999; 272
Bizzarri (10.1016/j.bbagen.2017.01.022_bb0100) 2009; 22
Friedler (10.1016/j.bbagen.2017.01.022_bb0135) 2002; 99
Cornette (10.1016/j.bbagen.2017.01.022_bb0395) 1987; 195
Vacic (10.1016/j.bbagen.2017.01.022_bb0195) 2012; 8
Xiong (10.1016/j.bbagen.2017.01.022_bb0180) 2011; 115
Lukman (10.1016/j.bbagen.2017.01.022_bb0285) 2013; 8
Apiyo (10.1016/j.bbagen.2017.01.022_bb0095) 2005; 332
Fioroni (10.1016/j.bbagen.2017.01.022_bb0190) 2002; 124
Signorelli (10.1016/j.bbagen.2017.01.022_bb0175) 2016
Won (10.1016/j.bbagen.2017.01.022_bb0250) 2011; 115
Römer (10.1016/j.bbagen.2017.01.022_bb0075) 2006; 45
Vuzman (10.1016/j.bbagen.2017.01.022_bb0375) 2012; 8
Taranta (10.1016/j.bbagen.2017.01.022_bb0115) 2009; 22
Brosh (10.1016/j.bbagen.2017.01.022_bb0050) 2009
Yamada (10.1016/j.bbagen.2017.01.022_bb0130) 2013; 10
Zupnick (10.1016/j.bbagen.2017.01.022_bb0145) 2006; 281
Friedsam (10.1016/j.bbagen.2017.01.022_bb0205) 2003; 15
Evans (10.1016/j.bbagen.2017.01.022_bb0240) 1997; 72
Oren (10.1016/j.bbagen.2017.01.022_bb0055) 2010; 2
Olivier (10.1016/j.bbagen.2017.01.022_bb0290) 2010; 2
Miura (10.1016/j.bbagen.2017.01.022_bb0320) 1995
Morton (10.1016/j.bbagen.2017.01.022_bb0280) 1998; 295
Collavin (10.1016/j.bbagen.2017.01.022_bb0030) 2010; 17
Kozakov (10.1016/j.bbagen.2017.01.022_bb0255) 2010; 78
Karlsson (10.1016/j.bbagen.2017.01.022_bb0295) 2006; 349
Cañadillas (10.1016/j.bbagen.2017.01.022_bb0015) 2006; 103
Alexandrova (10.1016/j.bbagen.2017.01.022_bb0045) 2015; 523
Fatima (10.1016/j.bbagen.2017.01.022_bb0350) 2006; 454
Díaz (10.1016/j.bbagen.2017.01.022_bb0345) 2002; 8
Santini (10.1016/j.bbagen.2017.01.022_bb0160) 2011; 24
Hutter (10.1016/j.bbagen.2017.01.022_bb0200) 1993; 64
Santini (10.1016/j.bbagen.2017.01.022_bb0305) 2014; 1840
Bell (10.1016/j.bbagen.2017.01.022_bb0235) 1978; 200
Cooper (10.1016/j.bbagen.2017.01.022_bb0185) 2003
Joerger (10.1016/j.bbagen.2017.01.022_bb0380) 2010; 2
Olivier (10.1016/j.bbagen.2017.01.022_bb0035) 2002; 19
Joerger (10.1016/j.bbagen.2017.01.022_bb0040) 2005; 280
Carey (10.1016/j.bbagen.2017.01.022_bb0325) 1982
Pan (10.1016/j.bbagen.2017.01.022_bb0370) 2005; 44
Tuma (10.1016/j.bbagen.2017.01.022_bb0330) 2005; 36
Camacho (10.1016/j.bbagen.2017.01.022_bb0265) 2000; 78
Santini (10.1016/j.bbagen.2017.01.022_bb0275) 2014; 27
Ratto (10.1016/j.bbagen.2017.01.022_bb0230) 2004; 86
O'Shannessy (10.1016/j.bbagen.2017.01.022_bb0300) 1993; 212
Forman-Kay (10.1016/j.bbagen.2017.01.022_bb0025) 2013; 21
Gast (10.1016/j.bbagen.2017.01.022_bb0355) 2008; 8
Yamada (10.1016/j.bbagen.2017.01.022_bb0170) 2015; 12
References_xml – volume: 26
  start-page: 1268
  year: 2012
  end-page: 1286
  ident: bb0070
  article-title: Mutant p53: one name, many proteins
  publication-title: Genes Dev.
– volume: 8
  start-page: 2947
  year: 2009
  end-page: 2958
  ident: bb0150
  article-title: A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells
  publication-title: Mol. Cancer Ther.
– volume: 21
  start-page: 63
  year: 2008
  end-page: 70
  ident: bb0110
  article-title: Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy
  publication-title: J. Mol. Recognit.
– volume: 38
  start-page: 181
  year: 1986
  end-page: 364
  ident: bb0310
  article-title: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins
  publication-title: Adv. Protein Chem.
– volume: 14
  start-page: 2582
  year: 2005
  end-page: 2589
  ident: bb0365
  article-title: Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study
  publication-title: Protein Sci.
– volume: 349
  start-page: 136
  year: 2006
  end-page: 147
  ident: bb0295
  article-title: Analyzing a kinetic titration series using affinity biosensors
  publication-title: Anal. Biochem.
– volume: 413
  start-page: 199
  year: 2003
  end-page: 206
  ident: bb0360
  article-title: Trifluoroethanol-induced “molten globule”; state in stem bromelain
  publication-title: Arch. Biochem. Biophys.
– volume: 78
  start-page: 1094
  year: 2000
  end-page: 1105
  ident: bb0265
  article-title: Kinetics of desolvation-mediated protein-protein binding
  publication-title: Biophys. J.
– volume: 103
  start-page: 15056
  year: 2006
  end-page: 15061
  ident: bb0385
  article-title: Structural basis for understanding oncogenic p53 mutations and designing rescue drugs
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  start-page: 94
  year: 2010
  end-page: 100
  ident: bb0060
  article-title: Potentiating the p53 network
  publication-title: Discov. Med.
– volume: 22
  start-page: 215
  year: 2009
  end-page: 222
  ident: bb0115
  article-title: Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin
  publication-title: J. Mol. Recognit.
– volume: 108
  start-page: 2495
  year: 2013
  end-page: 2504
  ident: bb0125
  article-title: p28, a first in class peptide inhibitor of cop1 binding to p53
  publication-title: Br. J. Cancer
– volume: 523
  start-page: 352
  year: 2015
  end-page: 356
  ident: bb0045
  article-title: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment
  publication-title: Nature
– volume: 9
  start-page: 1799
  year: 2014
  end-page: 1813
  ident: bb0155
  article-title: A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins
  publication-title: Int. J. Nanomedicine
– volume: 36
  start-page: 8053
  year: 1997
  end-page: 8059
  ident: bb0315
  article-title: Solution conformations and interactions of α and β subunits of the
  publication-title: Biochemistry
– volume: 2
  start-page: a000919
  year: 2010
  ident: bb0380
  article-title: The tumor suppressor p53: from structures to drug discovery
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 19
  start-page: 607
  year: 2002
  end-page: 614
  ident: bb0035
  article-title: The IARC TP53 database: new online mutation analysis and recommendations to users
  publication-title: Hum. Mutat.
– volume: 24
  start-page: 1043
  year: 2011
  end-page: 1055
  ident: bb0160
  article-title: Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of azurin
  publication-title: J. Mol. Recognit.
– volume: 17
  start-page: 901
  year: 2010
  end-page: 911
  ident: bb0030
  article-title: p53-family proteins and their regulators: hubs and spokes in tumor suppression
  publication-title: Cell Death Differ.
– volume: 18
  start-page: 1319
  year: 2016
  end-page: 1325
  ident: bb0400
  article-title: Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a Pediatric Brain Tumor Consortium Study
  publication-title: Neuro-Oncology
– volume: 280
  start-page: 16030
  year: 2005
  end-page: 16037
  ident: bb0040
  article-title: Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 1423
  year: 2005
  end-page: 1432
  ident: bb0370
  article-title: In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L
  publication-title: Biochemistry
– volume: 281
  start-page: 20464
  year: 2006
  end-page: 20473
  ident: bb0145
  article-title: Mutational analysis of the p53 core domain L1 loop
  publication-title: J. Biol. Chem.
– volume: 157
  start-page: 105
  year: 1982
  end-page: 132
  ident: bb0390
  article-title: A simple method for displaying the hydropathic character of a protein
  publication-title: J. Mol. Biol.
– volume: 2
  start-page: a001008
  year: 2010
  ident: bb0290
  article-title: TP53 mutations in human cancers: origins, consequences, and clinical use
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 115
  start-page: 9520
  year: 2011
  end-page: 9527
  ident: bb0180
  article-title: Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations
  publication-title: J. Phys. Chem. A
– volume: 454
  start-page: 170
  year: 2006
  end-page: 180
  ident: bb0350
  article-title: Fluoroalcohols induced unfolding of Succinylated Con A: native like β-structure in partially folded intermediate and α-helix in molten globule like state
  publication-title: Arch. Biochem. Biophys.
– volume: 126
  start-page: 2399
  year: 2004
  end-page: 2408
  ident: bb0165
  article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 506
  year: 2009
  end-page: 515
  ident: bb0100
  article-title: A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and azurin
  publication-title: J. Mol. Recognit.
– volume: 25
  start-page: 413
  year: 2009
  end-page: 414
  ident: bb0270
  article-title: ProtorP: a protein-protein interaction analysis server
  publication-title: Bioinformatics
– volume: 8
  year: 2012
  ident: bb0195
  article-title: Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder
  publication-title: PLoS Comput. Biol.
– volume: 42
  start-page: 2720
  year: 2003
  end-page: 2730
  ident: bb0340
  article-title: Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes
  publication-title: Biochemistry
– volume: 39
  start-page: 734
  year: 2010
  end-page: 749
  ident: bb0210
  article-title: The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 1492
  year: 2013
  end-page: 1499
  ident: bb0025
  article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins
  publication-title: Structure
– reference: V. De Grandis, A.R. Bizzarri, S. Cannistraro, Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin., J. Mol. Recognit. 20 (n.d.) 215–26. doi:
– volume: 10
  start-page: 3375
  year: 2013
  end-page: 3383
  ident: bb0130
  article-title: P28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation
  publication-title: Mol. Pharm.
– volume: 322
  start-page: 917
  year: 2002
  end-page: 927
  ident: bb0010
  article-title: P53 contains large unstructured regions in its native state
  publication-title: J. Mol. Biol.
– volume: 295
  start-page: 268
  year: 1998
  end-page: 294
  ident: bb0280
  article-title: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors
  publication-title: Methods Enzymol.
– volume: 8
  start-page: 47
  year: 2012
  end-page: 57
  ident: bb0375
  article-title: Intrinsically disordered regions as affinity tuners in protein–DNA interactions
  publication-title: Mol. BioSyst.
– volume: 113
  start-page: 16449
  year: 2009
  end-page: 16464
  ident: bb0215
  article-title: Atomic force spectroscopy in biological complex formation: strategies and perspectives
  publication-title: J. Phys. Chem. B
– volume: 45
  start-page: 6440
  year: 2006
  end-page: 6460
  ident: bb0075
  article-title: p53—a natural cancer killer: structural insights and therapeutic concepts
  publication-title: Angew. Chem. Int. Ed.
– volume: 124
  start-page: 7737
  year: 2002
  end-page: 7744
  ident: bb0190
  article-title: Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study
  publication-title: J. Am. Chem. Soc.
– volume: 212
  start-page: 457
  year: 1993
  end-page: 468
  ident: bb0300
  article-title: Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods
  publication-title: Anal. Biochem.
– start-page: 55
  year: 1995
  end-page: 99
  ident: bb0320
  article-title: Raman Spectroscopy of Proteins and Their Assemblies
– volume: 8
  start-page: 1
  year: 2013
  end-page: 19
  ident: bb0285
  article-title: Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics
  publication-title: PLoS One
– volume: 6
  start-page: 3011
  year: 2011
  end-page: 3019
  ident: bb0120
  article-title: Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy
  publication-title: Int. J. Nanomedicine
– volume: 97
  start-page: 4005
  year: 2000
  end-page: 4010
  ident: bb0225
  article-title: Cadherin interaction probed by atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 267
  start-page: 707
  year: 1997
  end-page: 726
  ident: bb0260
  article-title: Determination of atomic desolvation energies from the structures of crystallized proteins
  publication-title: J. Mol. Biol.
– volume: 102
  start-page: 16638
  year: 2005
  end-page: 16643
  ident: bb0220
  article-title: Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1982
  ident: bb0325
  article-title: Biochemical Applications of Raman and Resonance Raman Spectroscopies
– volume: 103
  start-page: 2109
  year: 2006
  end-page: 2114
  ident: bb0015
  article-title: Solution structure of p53 core domain: structural basis for its instability
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 1615
  year: 2016
  end-page: 1627
  ident: bb0080
  article-title: Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth
  publication-title: Cell Death Differ.
– volume: 64
  start-page: 1868
  year: 1993
  ident: bb0200
  article-title: Calibration of atomic-force microscope tips
  publication-title: Rev. Sci. Instrum.
– volume: 72
  start-page: 1541
  year: 1997
  end-page: 1555
  ident: bb0240
  article-title: Dynamic strength of molecular adhesion bonds
  publication-title: Biophys. J.
– volume: 27
  start-page: 124
  year: 2014
  end-page: 130
  ident: bb0275
  article-title: Binding of azurin to cytochrome
  publication-title: J. Mol. Recognit.
– volume: 15
  start-page: S1709
  year: 2003
  end-page: S1723
  ident: bb0205
  article-title: Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length
  publication-title: J. Phys. Condens. Matter
– volume: 5
  start-page: 288
  year: 2015
  ident: bb0090
  article-title: Targeting oncogenic mutant p53 for cancer therapy
  publication-title: Front. Oncol.
– year: 2009
  ident: bb0050
  article-title: When mutants gain new powers: news from the mutant p53 field
  publication-title: Nat. Rev. Cancer
– volume: 20
  start-page: 3409
  year: 2001
  end-page: 3419
  ident: bb0140
  article-title: Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants
  publication-title: Oncogene
– volume: 21
  start-page: 432
  year: 2011
  end-page: 440
  ident: bb0020
  article-title: Intrinsically disordered proteins: regulation and disease
  publication-title: Curr. Opin. Struct. Biol.
– volume: 200
  start-page: 618
  year: 1978
  end-page: 627
  ident: bb0235
  article-title: Models for the specific adhesion of cells to cells
  publication-title: Science
– volume: 272
  start-page: 255
  year: 1999
  end-page: 272
  ident: bb0335
  article-title: A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy
  publication-title: Anal. Biochem.
– start-page: 119
  year: 2014
  end-page: 132
  ident: bb0065
  article-title: Structural Studies on Mechanisms to Activate Mutant p53
– volume: 12
  start-page: 140
  year: 2015
  end-page: 149
  ident: bb0170
  article-title: Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry
  publication-title: Mol. Pharm.
– volume: 2
  year: 2010
  ident: bb0055
  article-title: Mutant p53 gain-of-function in cancer
  publication-title: Cold Spring Harb. Perspect. Biol.
– start-page: 1
  year: 2016
  end-page: 10
  ident: bb0175
  article-title: Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy
  publication-title: Appl. Spectrosc.
– volume: 195
  start-page: 659
  year: 1987
  end-page: 685
  ident: bb0395
  article-title: Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins
  publication-title: J. Mol. Biol.
– volume: 115
  start-page: 2371
  year: 2011
  end-page: 2379
  ident: bb0250
  article-title: Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin
  publication-title: J. Phys. Chem. B
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  ident: bb9000
  article-title: Swiss-model and the Swiss-Pdb Viewer: an environment for comparative protein modeling
  publication-title: Electrophoresis
– volume: 8
  start-page: 625
  year: 2008
  end-page: 634
  ident: bb0355
  article-title: Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between α-lactalbumin and ribonuclease A
  publication-title: Protein Sci.
– volume: 7
  start-page: 11817
  year: 2016
  end-page: 11837
  ident: bb0085
  article-title: Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides
  publication-title: Oncotarget
– reference: .
– start-page: 834
  year: 2003
  end-page: 842
  ident: bb0185
  article-title: Label-free Screening of Bio-molecular Interactions
– volume: 1840
  start-page: 1958
  year: 2014
  end-page: 1964
  ident: bb0305
  article-title: Interaction of mutant p53 with p73: a surface plasmon resonance and atomic force spectroscopy study
  publication-title: Biochim. Biophys. Acta
– volume: 332
  start-page: 965
  year: 2005
  end-page: 968
  ident: bb0095
  article-title: Unique complex between bacterial azurin and tumor-suppressor protein p53
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 265
  start-page: 346
  year: 1994
  end-page: 355
  ident: bb0005
  article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
  publication-title: Science
– volume: 99
  start-page: 937
  year: 2002
  end-page: 942
  ident: bb0135
  article-title: A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants
  publication-title: Proc. Natl. Acad. Sci.
– volume: 78
  start-page: 3124
  year: 2010
  end-page: 3130
  ident: bb0255
  article-title: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19
  publication-title: Proteins Struct. Funct. Bioinforma.
– volume: 8
  start-page: 1663
  year: 2002
  end-page: 1669
  ident: bb0345
  article-title: Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study
  publication-title: Chemistry
– volume: 93
  start-page: 3477
  year: 1996
  end-page: 3481
  ident: bb0245
  article-title: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 86
  start-page: 2430
  year: 2004
  end-page: 2437
  ident: bb0230
  article-title: McElfresh, force spectroscopy of the double-tethered concanavalin-a mannose bond
  publication-title: Biophys. J.
– volume: 36
  start-page: 307
  year: 2005
  end-page: 319
  ident: bb0330
  article-title: Raman spectroscopy of proteins: from peptides to large assemblies
  publication-title: J. Raman Spectrosc.
– volume: 108
  start-page: 1061
  year: 2013
  end-page: 1070
  ident: bb0405
  article-title: A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours
  publication-title: Br. J. Cancer
– volume: 126
  start-page: 2399
  year: 2004
  ident: 10.1016/j.bbagen.2017.01.022_bb0165
  article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0356176
– volume: 21
  start-page: 63
  year: 2008
  ident: 10.1016/j.bbagen.2017.01.022_bb0110
  article-title: Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.869
– volume: 8
  start-page: 1663
  year: 2002
  ident: 10.1016/j.bbagen.2017.01.022_bb0345
  article-title: Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study
  publication-title: Chemistry
  doi: 10.1002/1521-3765(20020402)8:7<1663::AID-CHEM1663>3.0.CO;2-P
– year: 1982
  ident: 10.1016/j.bbagen.2017.01.022_bb0325
– volume: 332
  start-page: 965
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0095
  article-title: Unique complex between bacterial azurin and tumor-suppressor protein p53
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.05.038
– volume: 6
  start-page: 3011
  year: 2011
  ident: 10.1016/j.bbagen.2017.01.022_bb0120
  article-title: Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S26155
– volume: 44
  start-page: 1423
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0370
  article-title: In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1†
  publication-title: Biochemistry
  doi: 10.1021/bi047845y
– volume: 413
  start-page: 199
  year: 2003
  ident: 10.1016/j.bbagen.2017.01.022_bb0360
  article-title: Trifluoroethanol-induced “molten globule”; state in stem bromelain
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/S0003-9861(03)00126-7
– volume: 102
  start-page: 16638
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0220
  article-title: Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0505208102
– volume: 349
  start-page: 136
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0295
  article-title: Analyzing a kinetic titration series using affinity biosensors
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2005.09.034
– volume: 454
  start-page: 170
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0350
  article-title: Fluoroalcohols induced unfolding of Succinylated Con A: native like β-structure in partially folded intermediate and α-helix in molten globule like state
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2006.08.014
– volume: 295
  start-page: 268
  year: 1998
  ident: 10.1016/j.bbagen.2017.01.022_bb0280
  article-title: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(98)95044-3
– volume: 23
  start-page: 1615
  year: 2016
  ident: 10.1016/j.bbagen.2017.01.022_bb0080
  article-title: Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.48
– volume: 26
  start-page: 1268
  year: 2012
  ident: 10.1016/j.bbagen.2017.01.022_bb0070
  article-title: Mutant p53: one name, many proteins
  publication-title: Genes Dev.
  doi: 10.1101/gad.190678.112
– volume: 99
  start-page: 937
  year: 2002
  ident: 10.1016/j.bbagen.2017.01.022_bb0135
  article-title: A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.241629998
– volume: 72
  start-page: 1541
  year: 1997
  ident: 10.1016/j.bbagen.2017.01.022_bb0240
  article-title: Dynamic strength of molecular adhesion bonds
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78802-7
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.bbagen.2017.01.022_bb0285
  article-title: Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080221
– volume: 20
  start-page: 3409
  year: 2001
  ident: 10.1016/j.bbagen.2017.01.022_bb0140
  article-title: Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204457
– volume: 17
  start-page: 901
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0030
  article-title: p53-family proteins and their regulators: hubs and spokes in tumor suppression
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2010.35
– volume: 5
  start-page: 288
  year: 2015
  ident: 10.1016/j.bbagen.2017.01.022_bb0090
  article-title: Targeting oncogenic mutant p53 for cancer therapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2015.00288
– volume: 86
  start-page: 2430
  year: 2004
  ident: 10.1016/j.bbagen.2017.01.022_bb0230
  article-title: McElfresh, force spectroscopy of the double-tethered concanavalin-a mannose bond
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74299-X
– volume: 7
  start-page: 11817
  year: 2016
  ident: 10.1016/j.bbagen.2017.01.022_bb0085
  article-title: Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7857
– volume: 93
  start-page: 3477
  year: 1996
  ident: 10.1016/j.bbagen.2017.01.022_bb0245
  article-title: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.8.3477
– volume: 38
  start-page: 181
  year: 1986
  ident: 10.1016/j.bbagen.2017.01.022_bb0310
  article-title: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60528-8
– volume: 19
  start-page: 607
  year: 2002
  ident: 10.1016/j.bbagen.2017.01.022_bb0035
  article-title: The IARC TP53 database: new online mutation analysis and recommendations to users
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.10081
– volume: 22
  start-page: 215
  year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0115
  article-title: Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.934
– volume: 113
  start-page: 16449
  year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0215
  article-title: Atomic force spectroscopy in biological complex formation: strategies and perspectives
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp902421r
– volume: 27
  start-page: 124
  year: 2014
  ident: 10.1016/j.bbagen.2017.01.022_bb0275
  article-title: Binding of azurin to cytochrome c 551 as investigated by surface plasmon resonance and fluorescence
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.2346
– volume: 36
  start-page: 307
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0330
  article-title: Raman spectroscopy of proteins: from peptides to large assemblies
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1323
– volume: 124
  start-page: 7737
  year: 2002
  ident: 10.1016/j.bbagen.2017.01.022_bb0190
  article-title: Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0259335
– volume: 12
  start-page: 140
  year: 2015
  ident: 10.1016/j.bbagen.2017.01.022_bb0170
  article-title: Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500495u
– volume: 9
  start-page: 1799
  year: 2014
  ident: 10.1016/j.bbagen.2017.01.022_bb0155
  article-title: A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins
  publication-title: Int. J. Nanomedicine
– volume: 8
  start-page: 2947
  year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0150
  article-title: A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-09-0444
– volume: 39
  start-page: 734
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0210
  article-title: The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B811426A
– volume: 272
  start-page: 255
  year: 1999
  ident: 10.1016/j.bbagen.2017.01.022_bb0335
  article-title: A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1999.4034
– ident: 10.1016/j.bbagen.2017.01.022_bb0105
  doi: 10.1002/jmr.840
– volume: 21
  start-page: 1492
  year: 2013
  ident: 10.1016/j.bbagen.2017.01.022_bb0025
  article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins
  publication-title: Structure
  doi: 10.1016/j.str.2013.08.001
– volume: 212
  start-page: 457
  year: 1993
  ident: 10.1016/j.bbagen.2017.01.022_bb0300
  article-title: Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1993.1355
– volume: 157
  start-page: 105
  year: 1982
  ident: 10.1016/j.bbagen.2017.01.022_bb0390
  article-title: A simple method for displaying the hydropathic character of a protein
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(82)90515-0
– volume: 322
  start-page: 917
  year: 2002
  ident: 10.1016/j.bbagen.2017.01.022_bb0010
  article-title: P53 contains large unstructured regions in its native state
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00848-3
– volume: 10
  start-page: 3375
  year: 2013
  ident: 10.1016/j.bbagen.2017.01.022_bb0130
  article-title: P28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400221r
– volume: 523
  start-page: 352
  year: 2015
  ident: 10.1016/j.bbagen.2017.01.022_bb0045
  article-title: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment
  publication-title: Nature
  doi: 10.1038/nature14430
– volume: 10
  start-page: 94
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0060
  article-title: Potentiating the p53 network
  publication-title: Discov. Med.
– volume: 115
  start-page: 2371
  year: 2011
  ident: 10.1016/j.bbagen.2017.01.022_bb0250
  article-title: Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp108343g
– volume: 25
  start-page: 413
  year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0270
  article-title: ProtorP: a protein-protein interaction analysis server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn584
– volume: 24
  start-page: 1043
  year: 2011
  ident: 10.1016/j.bbagen.2017.01.022_bb0160
  article-title: Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of azurin
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.1153
– volume: 108
  start-page: 2495
  year: 2013
  ident: 10.1016/j.bbagen.2017.01.022_bb0125
  article-title: p28, a first in class peptide inhibitor of cop1 binding to p53
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.266
– volume: 14
  start-page: 2582
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0365
  article-title: Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study
  publication-title: Protein Sci.
  doi: 10.1110/ps.051426605
– volume: 15
  start-page: S1709
  year: 2003
  ident: 10.1016/j.bbagen.2017.01.022_bb0205
  article-title: Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/18/305
– start-page: 55
  year: 1995
  ident: 10.1016/j.bbagen.2017.01.022_bb0320
– volume: 108
  start-page: 1061
  year: 2013
  ident: 10.1016/j.bbagen.2017.01.022_bb0405
  article-title: A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.74
– volume: 267
  start-page: 707
  year: 1997
  ident: 10.1016/j.bbagen.2017.01.022_bb0260
  article-title: Determination of atomic desolvation energies from the structures of crystallized proteins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0859
– start-page: 119
  year: 2014
  ident: 10.1016/j.bbagen.2017.01.022_bb0065
– volume: 42
  start-page: 2720
  year: 2003
  ident: 10.1016/j.bbagen.2017.01.022_bb0340
  article-title: Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes†
  publication-title: Biochemistry
  doi: 10.1021/bi027166s
– volume: 195
  start-page: 659
  year: 1987
  ident: 10.1016/j.bbagen.2017.01.022_bb0395
  article-title: Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90189-6
– volume: 78
  start-page: 1094
  year: 2000
  ident: 10.1016/j.bbagen.2017.01.022_bb0265
  article-title: Kinetics of desolvation-mediated protein-protein binding
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76668-9
– volume: 280
  start-page: 16030
  year: 2005
  ident: 10.1016/j.bbagen.2017.01.022_bb0040
  article-title: Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500179200
– volume: 22
  start-page: 506
  year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0100
  article-title: A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and azurin
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.975
– volume: 2
  start-page: a001008
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0290
  article-title: TP53 mutations in human cancers: origins, consequences, and clinical use
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001008
– volume: 18
  start-page: 2714
  year: 1997
  ident: 10.1016/j.bbagen.2017.01.022_bb9000
  article-title: Swiss-model and the Swiss-Pdb Viewer: an environment for comparative protein modeling
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– start-page: 1
  year: 2016
  ident: 10.1016/j.bbagen.2017.01.022_bb0175
  article-title: Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy
  publication-title: Appl. Spectrosc.
– volume: 200
  start-page: 618
  year: 1978
  ident: 10.1016/j.bbagen.2017.01.022_bb0235
  article-title: Models for the specific adhesion of cells to cells
  publication-title: Science
  doi: 10.1126/science.347575
– volume: 78
  start-page: 3124
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0255
  article-title: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19
  publication-title: Proteins Struct. Funct. Bioinforma.
  doi: 10.1002/prot.22835
– volume: 21
  start-page: 432
  year: 2011
  ident: 10.1016/j.bbagen.2017.01.022_bb0020
  article-title: Intrinsically disordered proteins: regulation and disease
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2011.03.011
– volume: 2
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0055
  article-title: Mutant p53 gain-of-function in cancer
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001107
– volume: 97
  start-page: 4005
  year: 2000
  ident: 10.1016/j.bbagen.2017.01.022_bb0225
  article-title: Cadherin interaction probed by atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.070052697
– volume: 18
  start-page: 1319
  year: 2016
  ident: 10.1016/j.bbagen.2017.01.022_bb0400
  article-title: Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a Pediatric Brain Tumor Consortium Study
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/now047
– volume: 265
  start-page: 346
  year: 1994
  ident: 10.1016/j.bbagen.2017.01.022_bb0005
  article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
  publication-title: Science
  doi: 10.1126/science.8023157
– volume: 8
  start-page: 625
  year: 2008
  ident: 10.1016/j.bbagen.2017.01.022_bb0355
  article-title: Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between α-lactalbumin and ribonuclease A
  publication-title: Protein Sci.
  doi: 10.1110/ps.8.3.625
– volume: 64
  start-page: 1868
  year: 1993
  ident: 10.1016/j.bbagen.2017.01.022_bb0200
  article-title: Calibration of atomic-force microscope tips
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1143970
– volume: 103
  start-page: 15056
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0385
  article-title: Structural basis for understanding oncogenic p53 mutations and designing rescue drugs
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0607286103
– volume: 8
  start-page: 47
  year: 2012
  ident: 10.1016/j.bbagen.2017.01.022_bb0375
  article-title: Intrinsically disordered regions as affinity tuners in protein–DNA interactions
  publication-title: Mol. BioSyst.
  doi: 10.1039/C1MB05273J
– volume: 103
  start-page: 2109
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0015
  article-title: Solution structure of p53 core domain: structural basis for its instability
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0510941103
– volume: 115
  start-page: 9520
  year: 2011
  ident: 10.1016/j.bbagen.2017.01.022_bb0180
  article-title: Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp112235d
– start-page: 834
  year: 2003
  ident: 10.1016/j.bbagen.2017.01.022_bb0185
– volume: 36
  start-page: 8053
  year: 1997
  ident: 10.1016/j.bbagen.2017.01.022_bb0315
  article-title: Solution conformations and interactions of α and β subunits of the Oxytricha nova telomere binding protein: investigation by Raman spectroscopy†
  publication-title: Biochemistry
  doi: 10.1021/bi970283g
– volume: 45
  start-page: 6440
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0075
  article-title: p53—a natural cancer killer: structural insights and therapeutic concepts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200600611
– volume: 1840
  start-page: 1958
  year: 2014
  ident: 10.1016/j.bbagen.2017.01.022_bb0305
  article-title: Interaction of mutant p53 with p73: a surface plasmon resonance and atomic force spectroscopy study
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2014.02.014
– volume: 281
  start-page: 20464
  year: 2006
  ident: 10.1016/j.bbagen.2017.01.022_bb0145
  article-title: Mutational analysis of the p53 core domain L1 loop
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603387200
– volume: 8
  year: 2012
  ident: 10.1016/j.bbagen.2017.01.022_bb0195
  article-title: Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002709
– volume: 2
  start-page: a000919
  year: 2010
  ident: 10.1016/j.bbagen.2017.01.022_bb0380
  article-title: The tumor suppressor p53: from structures to drug discovery
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000919
– year: 2009
  ident: 10.1016/j.bbagen.2017.01.022_bb0050
  article-title: When mutants gain new powers: news from the mutant p53 field
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2693
SSID ssj0000595
Score 2.3114107
Snippet Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 910
SubjectTerms Amino Acid Sequence
Atomic Force Spectroscopy
binding capacity
Binding Sites - genetics
Cell Line, Tumor
Cell penetrating peptide
Cell-Penetrating Peptides - metabolism
correlation
DNA-binding domains
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Docking
Humans
Hydrophobic and Hydrophilic Interactions
hydrophobic bonding
hydrophobicity
Microscopy, Atomic Force - methods
Models, Molecular
Molecular Dynamics Simulation
mutants
Mutation - genetics
Mutations
neoplasms
p53
Peptide Fragments - genetics
Peptide Fragments - metabolism
point mutation
Protein Binding - genetics
Protein Structure, Secondary
Raman spectroscopy
surface plasmon resonance
Surface Plasmon Resonance - methods
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies
URI https://dx.doi.org/10.1016/j.bbagen.2017.01.022
https://www.ncbi.nlm.nih.gov/pubmed/28126403
https://www.proquest.com/docview/1862764453
https://www.proquest.com/docview/2000382954
Volume 1861
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLltJeSrt9pY9lCj3WjWVZtnxMQ0PaskvodmFvQi9DltQ2iXPYS_9K_2pHkr2lh7DQg8EPyQjPePQNM_MNIe95USqbKpEoiyYw1-inCOHSpBK2NspwbUP7trPzYnmZf73iV0dkPtbC-LTKwfZHmx6s9XBnOnzNabdeTy98UA_hBKeecp0FQsk8L72Wf_z1N80D4QOPkYQ88aPH8rmQ46U1_rSeBZWWkbwzO7Q9HYKfYRtaPCaPBvwIs7jEJ-TINSfkfuwoeXNCHszHBm5Pye9P61CyAm0NMxTaOnQfNjB3mw2s0MYFxlx8vvKZLdZBlwnoW0BDYcH7p6AaC2d7D0ctdJyB2sEu5B1a0DfwXf1UzQeY9b6wGRbt1sQZF_ttrfB8hcAclRx8hMDTejgIZZ2ePrPt0EF_Ri4Xn3_Ml8nQjyExrOJ9UhepFlqoVFSK6dxqrmjhaM1T5QpbMk9154RRNtOac1PXhSsrpTNtBE2Nythzcty0jXtJwDluNFpWVhmb46GLTJfUGY6vpFlaTggbxSDNQFbue2Zs5JiVdi2j8KQXnkypROFNSHI7q4tkHXeML0cJy3-UTuJ-csfMd6NCSJSqD7KoxrX7naToIpYIMjk7PCYLAVkfYZ2QF1GbbtebIeIq8pS9-u-1vSYP_VVML3pDjvvt3r1F5NTr0_BrnJJ7sy_flud_AHJeGX0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6CQ0kvpU1fTl9T6LHCklarx9E1NU4TG9MkkNuyL4GLKwk_Dvk1-audWUkpPZhADwKh3RWLZjT7DTPzDWNfRJopG6o8UBZNYKLRT8lzFwZFbkujjNDWt2-bL9LZTfLjVtwesUlfC0NplZ3tb226t9bdk1H3NUfNajW6oqAewgkREeU6J0LJY2KnEgN2PD6_mC3-GmThm6_Q_IAW9BV0Ps1La_xviQg1ylr-zvjQCXUIgfqTaPqcPesgJIzbXb5gR646ZU_appJ3p-xk0vdwe8nuv6181QrUJYxRbivfgNjAxK3XsEQz50lzcXxJyS3WQRPnsKsBbYUFclFBVRbme0KkFhrBQW1h61MPLeg7-Kl-q-orjHdU2wzTemPaFVf7TanwfonYHPUcKEhAzB4OfGUnMWjWDfror9jN9Pv1ZBZ0LRkCwwuxC8o01LnOVZgXiuvEaqGi1EWlCJVLbcaJ7c7lRtlYayFMWaYuK5SOtcmj0KiYv2aDqq7cWwbOCaPRuPLC2AQvncY6i5wR-MooDrMh470YpOn4yqltxlr2iWm_ZCs8ScKTYSRReEMWPKxqWr6OR-ZnvYTlP3on8Uh5ZOXnXiEkSpXiLKpy9X4rI_QSM8SZgh-eE_uYLAVZh-xNq00P-40RdKVJyM_-e2-f2Mnsen4pL88XF-_YUxpps43es8Fus3cfEEjt9MfuR_kDBHMcLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+of+Amphipathic+Cell+Penetrating+Peptide+p28+to+Wild+Type+and+Mutated+p53+as+studied+by+Raman%2C+Atomic+Force+and+Surface+Plasmon+Resonance+spectroscopies&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Signorelli%2C+Sara&rft.au=Santini%2C+Simona&rft.au=Yamada%2C+Tohru&rft.au=Bizzarri%2C+Anna+Rita&rft.date=2017-04-01&rft.issn=0304-4165&rft.volume=1861&rft.issue=4&rft.spage=910&rft.epage=921&rft_id=info:doi/10.1016%2Fj.bbagen.2017.01.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2017_01_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon