Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a po...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1861; no. 4; pp. 910 - 921 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.
Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.
We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.
These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.
Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
[Display omitted]
•A structural investigation of p53 containing single point mutations is proposed.•The interaction between mutants p53 and the anticancer peptide p28 is investigated.•Structural changes in p53 are mutation position-dependent.•Alteration in p53 structure affects the binding of p28 in a position dependent way. |
---|---|
AbstractList | Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.
Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.
We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.
These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.
Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. [Display omitted] •A structural investigation of p53 containing single point mutations is proposed.•The interaction between mutants p53 and the anticancer peptide p28 is investigated.•Structural changes in p53 are mutation position-dependent.•Alteration in p53 structure affects the binding of p28 in a position dependent way. Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.BACKGROUNDMutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.METHODSMolecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.RESULTSWe show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.CONCLUSIONSThese results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.GENERAL SIGNIFICANCERaman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. |
Author | Signorelli, Sara Santini, Simona Cannistraro, Salvatore Bizzarri, Anna Rita Yamada, Tohru Beattie, Craig W. |
Author_xml | – sequence: 1 givenname: Sara surname: Signorelli fullname: Signorelli, Sara organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy – sequence: 2 givenname: Simona surname: Santini fullname: Santini, Simona organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy – sequence: 3 givenname: Tohru surname: Yamada fullname: Yamada, Tohru organization: Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA – sequence: 4 givenname: Anna Rita surname: Bizzarri fullname: Bizzarri, Anna Rita email: bizzarri@unitus.it organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy – sequence: 5 givenname: Craig W. surname: Beattie fullname: Beattie, Craig W. organization: Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA – sequence: 6 givenname: Salvatore surname: Cannistraro fullname: Cannistraro, Salvatore organization: Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28126403$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9uFCEYxYmpsdvqGxjDpRfOCszAsF6YrBtbTWrc1BovCX--adnMwDgwJvs0vmrZbHvjheUGPjjnJPzOGToJMQBCrylZUkLF-93SGH0LYckIbZeELgljz9CCypZVkhBxghakJk3VUMFP0VlKO1IWX_EX6JRJykRD6gX6-8kH58Mtjh1eD-OdH3W-8xZvoO_xFgLkSefD-xbG7B3gkUmcI_7le4dv9iNgHRz-NmedweGR11gnnPLsfBnNHl_rQYd3eJ3jUFIv4mSPjh_z1Oly3vY6DTHga0gx6FBu0gg2TzHZOHpIL9HzTvcJXj3s5-jnxeebzZfq6vvl1836qrL1iueqE8RIIzWRK12bxhmuqQDacaJBuLYWNRcgrXbMGM5t1wloV9owYyUlVrP6HL095o5T_D1DymrwyRYIOkCck2KFXS3ZijdPSqkUrBVNw-siffMgnc0ATo2TH_S0V4_8i-DDUWDLj9MEnbK-oPQxFO6-V5SoQ9lqp45lq0PZilBVyi7m5h_zY_4Tto9HGxSefzxMKlkPBb3zU0GvXPT_D7gHCVzGBw |
CitedBy_id | crossref_primary_10_3390_ijms20123078 crossref_primary_10_3390_cancers14225546 crossref_primary_10_1016_j_jconrel_2019_07_020 crossref_primary_10_1093_hmg_ddab010 crossref_primary_10_1016_j_bbagen_2018_11_003 crossref_primary_10_1021_acs_jpcb_0c06778 crossref_primary_10_3390_ijms241612931 crossref_primary_10_3390_s17112680 crossref_primary_10_1002_psc_3357 crossref_primary_10_1007_s10930_020_09891_3 crossref_primary_10_1039_C8AY00746B crossref_primary_10_1002_pro_3310 crossref_primary_10_1038_s41392_023_01347_1 crossref_primary_10_3390_biom8030077 crossref_primary_10_1039_D2AN01591A crossref_primary_10_1093_noajnl_vdad042 |
Cites_doi | 10.1021/ja0356176 10.1002/jmr.869 10.1002/1521-3765(20020402)8:7<1663::AID-CHEM1663>3.0.CO;2-P 10.1016/j.bbrc.2005.05.038 10.2147/IJN.S26155 10.1021/bi047845y 10.1016/S0003-9861(03)00126-7 10.1073/pnas.0505208102 10.1016/j.ab.2005.09.034 10.1016/j.abb.2006.08.014 10.1016/S0076-6879(98)95044-3 10.1038/cdd.2016.48 10.1101/gad.190678.112 10.1073/pnas.241629998 10.1016/S0006-3495(97)78802-7 10.1371/journal.pone.0080221 10.1038/sj.onc.1204457 10.1038/cdd.2010.35 10.3389/fonc.2015.00288 10.1016/S0006-3495(04)74299-X 10.18632/oncotarget.7857 10.1073/pnas.93.8.3477 10.1016/S0065-3233(08)60528-8 10.1002/humu.10081 10.1002/jmr.934 10.1021/jp902421r 10.1002/jmr.2346 10.1002/jrs.1323 10.1021/ja0259335 10.1021/mp500495u 10.1158/1535-7163.MCT-09-0444 10.1039/B811426A 10.1006/abio.1999.4034 10.1002/jmr.840 10.1016/j.str.2013.08.001 10.1006/abio.1993.1355 10.1016/0022-2836(82)90515-0 10.1016/S0022-2836(02)00848-3 10.1021/mp400221r 10.1038/nature14430 10.1021/jp108343g 10.1093/bioinformatics/btn584 10.1002/jmr.1153 10.1038/bjc.2013.266 10.1110/ps.051426605 10.1088/0953-8984/15/18/305 10.1038/bjc.2013.74 10.1006/jmbi.1996.0859 10.1021/bi027166s 10.1016/0022-2836(87)90189-6 10.1016/S0006-3495(00)76668-9 10.1074/jbc.M500179200 10.1002/jmr.975 10.1101/cshperspect.a001008 10.1002/elps.1150181505 10.1126/science.347575 10.1002/prot.22835 10.1016/j.sbi.2011.03.011 10.1101/cshperspect.a001107 10.1073/pnas.070052697 10.1093/neuonc/now047 10.1126/science.8023157 10.1110/ps.8.3.625 10.1063/1.1143970 10.1073/pnas.0607286103 10.1039/C1MB05273J 10.1073/pnas.0510941103 10.1021/jp112235d 10.1021/bi970283g 10.1002/anie.200600611 10.1016/j.bbagen.2014.02.014 10.1074/jbc.M603387200 10.1371/journal.pcbi.1002709 10.1101/cshperspect.a000919 10.1038/nrc2693 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2017.01.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 921 |
ExternalDocumentID | 28126403 10_1016_j_bbagen_2017_01_022 S0304416517300302 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-f60b8b8a089a3b4db5a16e1f50ae6d736356e8cad2bb55cff6e79ab2bc810ca23 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Fri Jul 11 07:11:04 EDT 2025 Fri Jul 11 11:27:14 EDT 2025 Mon Jul 21 05:42:28 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Tue Jul 01 00:22:08 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mutations Docking Atomic Force Spectroscopy Cell penetrating peptide Raman spectroscopy p53 |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-f60b8b8a089a3b4db5a16e1f50ae6d736356e8cad2bb55cff6e79ab2bc810ca23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28126403 |
PQID | 1862764453 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000382954 proquest_miscellaneous_1862764453 pubmed_primary_28126403 crossref_citationtrail_10_1016_j_bbagen_2017_01_022 crossref_primary_10_1016_j_bbagen_2017_01_022 elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_01_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 2017-04-00 2017-Apr 20170401 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brosh, Rotter (bb0050) 2009 Forman-Kay, Mittag (bb0025) 2013; 21 Zhang, Vasmatzis, Cornette, DeLisi (bb0260) 1997; 267 Inga, Resnick (bb0140) 2001; 20 Parrales, Iwakuma (bb0090) 2015; 5 Zupnick, Prives (bb0145) 2006; 281 Olivier, Eeles, Hollstein, Khan, Harris, Hainaut (bb0035) 2002; 19 Yamada, Das Gupta, Beattie (bb0130) 2013; 10 Carey (bb0325) 1982 Taranta, Bizzarri, Cannistraro (bb0110) 2008; 21 Xiong, Zwier, Myshakina, Burger, Asher, Chong (bb0180) 2011; 115 Sane, Cramer, Przybycien (bb0335) 1999; 272 Olivier, Hollstein, Hainaut (bb0290) 2010; 2 Menendez, Inga, Resnick (bb0060) 2010; 10 Karlsson, Katsamba, Nordin, Pol, Myszka (bb0295) 2006; 349 Yamada, Signorelli, Cannistraro, Beattie, Bizzarri (bb0170) 2015; 12 Camacho, Kimura, DeLisi, Vajda (bb0265) 2000; 78 Fatima, Ahmad, Khan (bb0350) 2006; 454 Laporte, Stultz, Thomas (bb0315) 1997; 36 Maiti, Apetri, Zagorski, Carey, Anderson (bb0165) 2004; 126 O'Shannessy, Brigham-Burke, Soneson, Hensley, Brooks (bb0300) 1993; 212 Hinterdorfer, Baumgartner, Gruber, Schilcher, Schindler (bb0245) 1996; 93 Joerger, Ang, Veprintsev, Blair, Fersht (bb0040) 2005; 280 Díaz, Fioroni, Burger, Berger (bb0345) 2002; 8 Babu, van der Lee, de Groot, Gsponer (bb0020) 2011; 21 . Miura, Thomas (bb0320) 1995 Lulla, Goldman, Yamada, Beattie, Bressler, Pacini, Pollack, Fisher, Packer, Dunkel, Dhall, Wu, Onar, Boyett, Fouladi (bb0400) 2016; 18 Tal, Eizenberger, Cohen, Goldfinger, Pietrokovski, Oren, Rotter (bb0085) 2016; 7 Santini, Bizzarri, Yamada, Beattie, Cannistraro (bb0275) 2014; 27 Coppari, Yamada, Bizzarri, Beattie, Cannistraro (bb0155) 2014; 9 Munishkina, Phelan, Uversky, Fink (bb0340) 2003; 42 Reynolds, Damerell, Jones (bb0270) 2009; 25 Friedsam, Wehle, Kuehner, Gaub (bb0205) 2003; 15 Guex, Peitsch (bb9000) 1997; 18 Cho, Gorina, Jeffrey, Pavletich (bb0005) 1994; 265 Bizzarri, Cannistraro (bb0215) 2009; 113 Santini, Bizzarri, Cannistraro (bb0160) 2011; 24 Vacic, Markwick, Oldfield, Zhao, Haynes, Uversky, Iakoucheva (bb0195) 2012; 8 Signorelli, Cannistraro, Bizzarri (bb0175) 2016 Kyte, Doolittle (bb0390) 1982; 157 Won, Pripotnev, Ruscito, Ianoul (bb0250) 2011; 115 Friedler, Hansson, Veprintsev, Freund, Rippin, Nikolova, Proctor, Rudiger, Fersht (bb0135) 2002; 99 Gast, Zirwer, Müller-Frohne, Damaschun (bb0355) 2008; 8 Bell, Klein, Mueller, Hansen, Buchner (bb0010) 2002; 322 Apiyo, Wittung-Stafshede (bb0095) 2005; 332 Joerger, Fersht (bb0380) 2010; 2 Taranta, Bizzarri, Cannistraro (bb0115) 2009; 22 Kozakov, Hall, Beglov, Brenke, Comeau, Shen, Li, Zheng, Vakili, Paschalidis, Vajda (bb0255) 2010; 78 Warso, Richards, Mehta, Christov, Schaeffer, Rae Bressler, Yamada, Majumdar, Kennedy, Beattie, Das Gupta (bb0405) 2013; 108 Cooper (bb0185) 2003 Joerger, Ang, Fersht (bb0385) 2006; 103 Evans, Ritchie (bb0240) 1997; 72 Krimm, Bandekar (bb0310) 1986; 38 Roccatano, Fioroni, Zacharias, Colombo (bb0365) 2005; 14 Vuzman, Levy (bb0375) 2012; 8 Hutter, Bechhoefer (bb0200) 1993; 64 Sulchek, Friddle, Langry, Lau, Albrecht, Ratto, DeNardo, Colvin, Noy (bb0220) 2005; 102 Collavin, Lunardi, Del Sal (bb0030) 2010; 17 Yamada, Mehta, Lekmine, Christov, King, Majumdar, Shilkaitis, Green, Bratescu, Beattie, Das Gupta (bb0150) 2009; 8 Alexandrova, Yallowitz, Li, Xu, Schulz, Proia, Lozano, Dobbelstein, Moll (bb0045) 2015; 523 Viadiu, Fronza, Inga (bb0065) 2014 Cañadillas, Tidow, Freund, Rutherford, Ang, Fersht (bb0015) 2006; 103 Freed-Pastor, Prives (bb0070) 2012; 26 Santini, Di Agostino, Coppari, Bizzarri, Blandino, Cannistraro (bb0305) 2014; 1840 Cornette, Cease, Margalit, Spouge, Berzofsky, DeLisi (bb0395) 1987; 195 Bizzarri, Cannistraro (bb0210) 2010; 39 Tuma (bb0330) 2005; 36 Pan, Ma, Venkataraghavan, Levine, Nussinov (bb0370) 2005; 44 Oren, Rotter (bb0055) 2010; 2 Aggarwal, Saxena, Sinclair, Fu, Jacobs, Dyba, Wang, Cruz, Berry, Kallakury, Mueller, Agostino, Blandino, Avantaggiati, Chung (bb0080) 2016; 23 V. De Grandis, A.R. Bizzarri, S. Cannistraro, Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin., J. Mol. Recognit. 20 (n.d.) 215–26. doi Bizzarri, Santini, Coppari, Bucciantini, Di Agostino, Yamada, Beattie, Cannistraro (bb0120) 2011; 6 Baumgartner, Hinterdorfer, Ness, Raab, Vestweber, Schindler, Drenckhahn (bb0225) 2000; 97 Morton, Myszka (bb0280) 1998; 295 Gupta, Khan, Saleemuddin (bb0360) 2003; 413 Bizzarri, Di Agostino, Andolfi, Cannistraro (bb0100) 2009; 22 Bell (bb0235) 1978; 200 Römer, Klein, Dehner, Kessler, Buchner (bb0075) 2006; 45 Fioroni, Diaz, Burger, Berger (bb0190) 2002; 124 Ratto, Langry, Rudd, Balhorn, Allen (bb0230) 2004; 86 Lukman, Lane, Verma (bb0285) 2013; 8 Yamada, Christov, Shilkaitis, Bratescu, Green, Santini, Bizzarri, Cannistraro, Gupta, Beattie (bb0125) 2013; 108 Kyte (10.1016/j.bbagen.2017.01.022_bb0390) 1982; 157 Viadiu (10.1016/j.bbagen.2017.01.022_bb0065) 2014 Freed-Pastor (10.1016/j.bbagen.2017.01.022_bb0070) 2012; 26 Yamada (10.1016/j.bbagen.2017.01.022_bb0150) 2009; 8 Babu (10.1016/j.bbagen.2017.01.022_bb0020) 2011; 21 Taranta (10.1016/j.bbagen.2017.01.022_bb0110) 2008; 21 Gupta (10.1016/j.bbagen.2017.01.022_bb0360) 2003; 413 Bizzarri (10.1016/j.bbagen.2017.01.022_bb0120) 2011; 6 Yamada (10.1016/j.bbagen.2017.01.022_bb0125) 2013; 108 Warso (10.1016/j.bbagen.2017.01.022_bb0405) 2013; 108 Lulla (10.1016/j.bbagen.2017.01.022_bb0400) 2016; 18 Krimm (10.1016/j.bbagen.2017.01.022_bb0310) 1986; 38 Roccatano (10.1016/j.bbagen.2017.01.022_bb0365) 2005; 14 10.1016/j.bbagen.2017.01.022_bb0105 Munishkina (10.1016/j.bbagen.2017.01.022_bb0340) 2003; 42 Guex (10.1016/j.bbagen.2017.01.022_bb9000) 1997; 18 Bell (10.1016/j.bbagen.2017.01.022_bb0010) 2002; 322 Aggarwal (10.1016/j.bbagen.2017.01.022_bb0080) 2016; 23 Joerger (10.1016/j.bbagen.2017.01.022_bb0385) 2006; 103 Coppari (10.1016/j.bbagen.2017.01.022_bb0155) 2014; 9 Maiti (10.1016/j.bbagen.2017.01.022_bb0165) 2004; 126 Tal (10.1016/j.bbagen.2017.01.022_bb0085) 2016; 7 Menendez (10.1016/j.bbagen.2017.01.022_bb0060) 2010; 10 Reynolds (10.1016/j.bbagen.2017.01.022_bb0270) 2009; 25 Inga (10.1016/j.bbagen.2017.01.022_bb0140) 2001; 20 Baumgartner (10.1016/j.bbagen.2017.01.022_bb0225) 2000; 97 Hinterdorfer (10.1016/j.bbagen.2017.01.022_bb0245) 1996; 93 Bizzarri (10.1016/j.bbagen.2017.01.022_bb0210) 2010; 39 Laporte (10.1016/j.bbagen.2017.01.022_bb0315) 1997; 36 Sulchek (10.1016/j.bbagen.2017.01.022_bb0220) 2005; 102 Bizzarri (10.1016/j.bbagen.2017.01.022_bb0215) 2009; 113 Zhang (10.1016/j.bbagen.2017.01.022_bb0260) 1997; 267 Parrales (10.1016/j.bbagen.2017.01.022_bb0090) 2015; 5 Cho (10.1016/j.bbagen.2017.01.022_bb0005) 1994; 265 Sane (10.1016/j.bbagen.2017.01.022_bb0335) 1999; 272 Bizzarri (10.1016/j.bbagen.2017.01.022_bb0100) 2009; 22 Friedler (10.1016/j.bbagen.2017.01.022_bb0135) 2002; 99 Cornette (10.1016/j.bbagen.2017.01.022_bb0395) 1987; 195 Vacic (10.1016/j.bbagen.2017.01.022_bb0195) 2012; 8 Xiong (10.1016/j.bbagen.2017.01.022_bb0180) 2011; 115 Lukman (10.1016/j.bbagen.2017.01.022_bb0285) 2013; 8 Apiyo (10.1016/j.bbagen.2017.01.022_bb0095) 2005; 332 Fioroni (10.1016/j.bbagen.2017.01.022_bb0190) 2002; 124 Signorelli (10.1016/j.bbagen.2017.01.022_bb0175) 2016 Won (10.1016/j.bbagen.2017.01.022_bb0250) 2011; 115 Römer (10.1016/j.bbagen.2017.01.022_bb0075) 2006; 45 Vuzman (10.1016/j.bbagen.2017.01.022_bb0375) 2012; 8 Taranta (10.1016/j.bbagen.2017.01.022_bb0115) 2009; 22 Brosh (10.1016/j.bbagen.2017.01.022_bb0050) 2009 Yamada (10.1016/j.bbagen.2017.01.022_bb0130) 2013; 10 Zupnick (10.1016/j.bbagen.2017.01.022_bb0145) 2006; 281 Friedsam (10.1016/j.bbagen.2017.01.022_bb0205) 2003; 15 Evans (10.1016/j.bbagen.2017.01.022_bb0240) 1997; 72 Oren (10.1016/j.bbagen.2017.01.022_bb0055) 2010; 2 Olivier (10.1016/j.bbagen.2017.01.022_bb0290) 2010; 2 Miura (10.1016/j.bbagen.2017.01.022_bb0320) 1995 Morton (10.1016/j.bbagen.2017.01.022_bb0280) 1998; 295 Collavin (10.1016/j.bbagen.2017.01.022_bb0030) 2010; 17 Kozakov (10.1016/j.bbagen.2017.01.022_bb0255) 2010; 78 Karlsson (10.1016/j.bbagen.2017.01.022_bb0295) 2006; 349 Cañadillas (10.1016/j.bbagen.2017.01.022_bb0015) 2006; 103 Alexandrova (10.1016/j.bbagen.2017.01.022_bb0045) 2015; 523 Fatima (10.1016/j.bbagen.2017.01.022_bb0350) 2006; 454 Díaz (10.1016/j.bbagen.2017.01.022_bb0345) 2002; 8 Santini (10.1016/j.bbagen.2017.01.022_bb0160) 2011; 24 Hutter (10.1016/j.bbagen.2017.01.022_bb0200) 1993; 64 Santini (10.1016/j.bbagen.2017.01.022_bb0305) 2014; 1840 Bell (10.1016/j.bbagen.2017.01.022_bb0235) 1978; 200 Cooper (10.1016/j.bbagen.2017.01.022_bb0185) 2003 Joerger (10.1016/j.bbagen.2017.01.022_bb0380) 2010; 2 Olivier (10.1016/j.bbagen.2017.01.022_bb0035) 2002; 19 Joerger (10.1016/j.bbagen.2017.01.022_bb0040) 2005; 280 Carey (10.1016/j.bbagen.2017.01.022_bb0325) 1982 Pan (10.1016/j.bbagen.2017.01.022_bb0370) 2005; 44 Tuma (10.1016/j.bbagen.2017.01.022_bb0330) 2005; 36 Camacho (10.1016/j.bbagen.2017.01.022_bb0265) 2000; 78 Santini (10.1016/j.bbagen.2017.01.022_bb0275) 2014; 27 Ratto (10.1016/j.bbagen.2017.01.022_bb0230) 2004; 86 O'Shannessy (10.1016/j.bbagen.2017.01.022_bb0300) 1993; 212 Forman-Kay (10.1016/j.bbagen.2017.01.022_bb0025) 2013; 21 Gast (10.1016/j.bbagen.2017.01.022_bb0355) 2008; 8 Yamada (10.1016/j.bbagen.2017.01.022_bb0170) 2015; 12 |
References_xml | – volume: 26 start-page: 1268 year: 2012 end-page: 1286 ident: bb0070 article-title: Mutant p53: one name, many proteins publication-title: Genes Dev. – volume: 8 start-page: 2947 year: 2009 end-page: 2958 ident: bb0150 article-title: A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells publication-title: Mol. Cancer Ther. – volume: 21 start-page: 63 year: 2008 end-page: 70 ident: bb0110 article-title: Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy publication-title: J. Mol. Recognit. – volume: 38 start-page: 181 year: 1986 end-page: 364 ident: bb0310 article-title: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins publication-title: Adv. Protein Chem. – volume: 14 start-page: 2582 year: 2005 end-page: 2589 ident: bb0365 article-title: Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study publication-title: Protein Sci. – volume: 349 start-page: 136 year: 2006 end-page: 147 ident: bb0295 article-title: Analyzing a kinetic titration series using affinity biosensors publication-title: Anal. Biochem. – volume: 413 start-page: 199 year: 2003 end-page: 206 ident: bb0360 article-title: Trifluoroethanol-induced “molten globule”; state in stem bromelain publication-title: Arch. Biochem. Biophys. – volume: 78 start-page: 1094 year: 2000 end-page: 1105 ident: bb0265 article-title: Kinetics of desolvation-mediated protein-protein binding publication-title: Biophys. J. – volume: 103 start-page: 15056 year: 2006 end-page: 15061 ident: bb0385 article-title: Structural basis for understanding oncogenic p53 mutations and designing rescue drugs publication-title: Proc. Natl. Acad. Sci. – volume: 10 start-page: 94 year: 2010 end-page: 100 ident: bb0060 article-title: Potentiating the p53 network publication-title: Discov. Med. – volume: 22 start-page: 215 year: 2009 end-page: 222 ident: bb0115 article-title: Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin publication-title: J. Mol. Recognit. – volume: 108 start-page: 2495 year: 2013 end-page: 2504 ident: bb0125 article-title: p28, a first in class peptide inhibitor of cop1 binding to p53 publication-title: Br. J. Cancer – volume: 523 start-page: 352 year: 2015 end-page: 356 ident: bb0045 article-title: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment publication-title: Nature – volume: 9 start-page: 1799 year: 2014 end-page: 1813 ident: bb0155 article-title: A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins publication-title: Int. J. Nanomedicine – volume: 36 start-page: 8053 year: 1997 end-page: 8059 ident: bb0315 article-title: Solution conformations and interactions of α and β subunits of the publication-title: Biochemistry – volume: 2 start-page: a000919 year: 2010 ident: bb0380 article-title: The tumor suppressor p53: from structures to drug discovery publication-title: Cold Spring Harb. Perspect. Biol. – volume: 19 start-page: 607 year: 2002 end-page: 614 ident: bb0035 article-title: The IARC TP53 database: new online mutation analysis and recommendations to users publication-title: Hum. Mutat. – volume: 24 start-page: 1043 year: 2011 end-page: 1055 ident: bb0160 article-title: Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of azurin publication-title: J. Mol. Recognit. – volume: 17 start-page: 901 year: 2010 end-page: 911 ident: bb0030 article-title: p53-family proteins and their regulators: hubs and spokes in tumor suppression publication-title: Cell Death Differ. – volume: 18 start-page: 1319 year: 2016 end-page: 1325 ident: bb0400 article-title: Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a Pediatric Brain Tumor Consortium Study publication-title: Neuro-Oncology – volume: 280 start-page: 16030 year: 2005 end-page: 16037 ident: bb0040 article-title: Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations publication-title: J. Biol. Chem. – volume: 44 start-page: 1423 year: 2005 end-page: 1432 ident: bb0370 article-title: In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L publication-title: Biochemistry – volume: 281 start-page: 20464 year: 2006 end-page: 20473 ident: bb0145 article-title: Mutational analysis of the p53 core domain L1 loop publication-title: J. Biol. Chem. – volume: 157 start-page: 105 year: 1982 end-page: 132 ident: bb0390 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol. – volume: 2 start-page: a001008 year: 2010 ident: bb0290 article-title: TP53 mutations in human cancers: origins, consequences, and clinical use publication-title: Cold Spring Harb. Perspect. Biol. – volume: 115 start-page: 9520 year: 2011 end-page: 9527 ident: bb0180 article-title: Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations publication-title: J. Phys. Chem. A – volume: 454 start-page: 170 year: 2006 end-page: 180 ident: bb0350 article-title: Fluoroalcohols induced unfolding of Succinylated Con A: native like β-structure in partially folded intermediate and α-helix in molten globule like state publication-title: Arch. Biochem. Biophys. – volume: 126 start-page: 2399 year: 2004 end-page: 2408 ident: bb0165 article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 506 year: 2009 end-page: 515 ident: bb0100 article-title: A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and azurin publication-title: J. Mol. Recognit. – volume: 25 start-page: 413 year: 2009 end-page: 414 ident: bb0270 article-title: ProtorP: a protein-protein interaction analysis server publication-title: Bioinformatics – volume: 8 year: 2012 ident: bb0195 article-title: Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder publication-title: PLoS Comput. Biol. – volume: 42 start-page: 2720 year: 2003 end-page: 2730 ident: bb0340 article-title: Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes publication-title: Biochemistry – volume: 39 start-page: 734 year: 2010 end-page: 749 ident: bb0210 article-title: The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process publication-title: Chem. Soc. Rev. – volume: 21 start-page: 1492 year: 2013 end-page: 1499 ident: bb0025 article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins publication-title: Structure – reference: V. De Grandis, A.R. Bizzarri, S. Cannistraro, Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin., J. Mol. Recognit. 20 (n.d.) 215–26. doi: – volume: 10 start-page: 3375 year: 2013 end-page: 3383 ident: bb0130 article-title: P28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation publication-title: Mol. Pharm. – volume: 322 start-page: 917 year: 2002 end-page: 927 ident: bb0010 article-title: P53 contains large unstructured regions in its native state publication-title: J. Mol. Biol. – volume: 295 start-page: 268 year: 1998 end-page: 294 ident: bb0280 article-title: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors publication-title: Methods Enzymol. – volume: 8 start-page: 47 year: 2012 end-page: 57 ident: bb0375 article-title: Intrinsically disordered regions as affinity tuners in protein–DNA interactions publication-title: Mol. BioSyst. – volume: 113 start-page: 16449 year: 2009 end-page: 16464 ident: bb0215 article-title: Atomic force spectroscopy in biological complex formation: strategies and perspectives publication-title: J. Phys. Chem. B – volume: 45 start-page: 6440 year: 2006 end-page: 6460 ident: bb0075 article-title: p53—a natural cancer killer: structural insights and therapeutic concepts publication-title: Angew. Chem. Int. Ed. – volume: 124 start-page: 7737 year: 2002 end-page: 7744 ident: bb0190 article-title: Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study publication-title: J. Am. Chem. Soc. – volume: 212 start-page: 457 year: 1993 end-page: 468 ident: bb0300 article-title: Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods publication-title: Anal. Biochem. – start-page: 55 year: 1995 end-page: 99 ident: bb0320 article-title: Raman Spectroscopy of Proteins and Their Assemblies – volume: 8 start-page: 1 year: 2013 end-page: 19 ident: bb0285 article-title: Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics publication-title: PLoS One – volume: 6 start-page: 3011 year: 2011 end-page: 3019 ident: bb0120 article-title: Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy publication-title: Int. J. Nanomedicine – volume: 97 start-page: 4005 year: 2000 end-page: 4010 ident: bb0225 article-title: Cadherin interaction probed by atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 267 start-page: 707 year: 1997 end-page: 726 ident: bb0260 article-title: Determination of atomic desolvation energies from the structures of crystallized proteins publication-title: J. Mol. Biol. – volume: 102 start-page: 16638 year: 2005 end-page: 16643 ident: bb0220 article-title: Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 1982 ident: bb0325 article-title: Biochemical Applications of Raman and Resonance Raman Spectroscopies – volume: 103 start-page: 2109 year: 2006 end-page: 2114 ident: bb0015 article-title: Solution structure of p53 core domain: structural basis for its instability publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 1615 year: 2016 end-page: 1627 ident: bb0080 article-title: Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth publication-title: Cell Death Differ. – volume: 64 start-page: 1868 year: 1993 ident: bb0200 article-title: Calibration of atomic-force microscope tips publication-title: Rev. Sci. Instrum. – volume: 72 start-page: 1541 year: 1997 end-page: 1555 ident: bb0240 article-title: Dynamic strength of molecular adhesion bonds publication-title: Biophys. J. – volume: 27 start-page: 124 year: 2014 end-page: 130 ident: bb0275 article-title: Binding of azurin to cytochrome publication-title: J. Mol. Recognit. – volume: 15 start-page: S1709 year: 2003 end-page: S1723 ident: bb0205 article-title: Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length publication-title: J. Phys. Condens. Matter – volume: 5 start-page: 288 year: 2015 ident: bb0090 article-title: Targeting oncogenic mutant p53 for cancer therapy publication-title: Front. Oncol. – year: 2009 ident: bb0050 article-title: When mutants gain new powers: news from the mutant p53 field publication-title: Nat. Rev. Cancer – volume: 20 start-page: 3409 year: 2001 end-page: 3419 ident: bb0140 article-title: Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants publication-title: Oncogene – volume: 21 start-page: 432 year: 2011 end-page: 440 ident: bb0020 article-title: Intrinsically disordered proteins: regulation and disease publication-title: Curr. Opin. Struct. Biol. – volume: 200 start-page: 618 year: 1978 end-page: 627 ident: bb0235 article-title: Models for the specific adhesion of cells to cells publication-title: Science – volume: 272 start-page: 255 year: 1999 end-page: 272 ident: bb0335 article-title: A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy publication-title: Anal. Biochem. – start-page: 119 year: 2014 end-page: 132 ident: bb0065 article-title: Structural Studies on Mechanisms to Activate Mutant p53 – volume: 12 start-page: 140 year: 2015 end-page: 149 ident: bb0170 article-title: Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry publication-title: Mol. Pharm. – volume: 2 year: 2010 ident: bb0055 article-title: Mutant p53 gain-of-function in cancer publication-title: Cold Spring Harb. Perspect. Biol. – start-page: 1 year: 2016 end-page: 10 ident: bb0175 article-title: Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy publication-title: Appl. Spectrosc. – volume: 195 start-page: 659 year: 1987 end-page: 685 ident: bb0395 article-title: Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins publication-title: J. Mol. Biol. – volume: 115 start-page: 2371 year: 2011 end-page: 2379 ident: bb0250 article-title: Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin publication-title: J. Phys. Chem. B – volume: 18 start-page: 2714 year: 1997 end-page: 2723 ident: bb9000 article-title: Swiss-model and the Swiss-Pdb Viewer: an environment for comparative protein modeling publication-title: Electrophoresis – volume: 8 start-page: 625 year: 2008 end-page: 634 ident: bb0355 article-title: Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between α-lactalbumin and ribonuclease A publication-title: Protein Sci. – volume: 7 start-page: 11817 year: 2016 end-page: 11837 ident: bb0085 article-title: Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides publication-title: Oncotarget – reference: . – start-page: 834 year: 2003 end-page: 842 ident: bb0185 article-title: Label-free Screening of Bio-molecular Interactions – volume: 1840 start-page: 1958 year: 2014 end-page: 1964 ident: bb0305 article-title: Interaction of mutant p53 with p73: a surface plasmon resonance and atomic force spectroscopy study publication-title: Biochim. Biophys. Acta – volume: 332 start-page: 965 year: 2005 end-page: 968 ident: bb0095 article-title: Unique complex between bacterial azurin and tumor-suppressor protein p53 publication-title: Biochem. Biophys. Res. Commun. – volume: 265 start-page: 346 year: 1994 end-page: 355 ident: bb0005 article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations publication-title: Science – volume: 99 start-page: 937 year: 2002 end-page: 942 ident: bb0135 article-title: A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants publication-title: Proc. Natl. Acad. Sci. – volume: 78 start-page: 3124 year: 2010 end-page: 3130 ident: bb0255 article-title: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19 publication-title: Proteins Struct. Funct. Bioinforma. – volume: 8 start-page: 1663 year: 2002 end-page: 1669 ident: bb0345 article-title: Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study publication-title: Chemistry – volume: 93 start-page: 3477 year: 1996 end-page: 3481 ident: bb0245 article-title: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 86 start-page: 2430 year: 2004 end-page: 2437 ident: bb0230 article-title: McElfresh, force spectroscopy of the double-tethered concanavalin-a mannose bond publication-title: Biophys. J. – volume: 36 start-page: 307 year: 2005 end-page: 319 ident: bb0330 article-title: Raman spectroscopy of proteins: from peptides to large assemblies publication-title: J. Raman Spectrosc. – volume: 108 start-page: 1061 year: 2013 end-page: 1070 ident: bb0405 article-title: A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours publication-title: Br. J. Cancer – volume: 126 start-page: 2399 year: 2004 ident: 10.1016/j.bbagen.2017.01.022_bb0165 article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0356176 – volume: 21 start-page: 63 year: 2008 ident: 10.1016/j.bbagen.2017.01.022_bb0110 article-title: Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy publication-title: J. Mol. Recognit. doi: 10.1002/jmr.869 – volume: 8 start-page: 1663 year: 2002 ident: 10.1016/j.bbagen.2017.01.022_bb0345 article-title: Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study publication-title: Chemistry doi: 10.1002/1521-3765(20020402)8:7<1663::AID-CHEM1663>3.0.CO;2-P – year: 1982 ident: 10.1016/j.bbagen.2017.01.022_bb0325 – volume: 332 start-page: 965 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0095 article-title: Unique complex between bacterial azurin and tumor-suppressor protein p53 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.05.038 – volume: 6 start-page: 3011 year: 2011 ident: 10.1016/j.bbagen.2017.01.022_bb0120 article-title: Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S26155 – volume: 44 start-page: 1423 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0370 article-title: In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1† publication-title: Biochemistry doi: 10.1021/bi047845y – volume: 413 start-page: 199 year: 2003 ident: 10.1016/j.bbagen.2017.01.022_bb0360 article-title: Trifluoroethanol-induced “molten globule”; state in stem bromelain publication-title: Arch. Biochem. Biophys. doi: 10.1016/S0003-9861(03)00126-7 – volume: 102 start-page: 16638 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0220 article-title: Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0505208102 – volume: 349 start-page: 136 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0295 article-title: Analyzing a kinetic titration series using affinity biosensors publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.09.034 – volume: 454 start-page: 170 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0350 article-title: Fluoroalcohols induced unfolding of Succinylated Con A: native like β-structure in partially folded intermediate and α-helix in molten globule like state publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2006.08.014 – volume: 295 start-page: 268 year: 1998 ident: 10.1016/j.bbagen.2017.01.022_bb0280 article-title: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(98)95044-3 – volume: 23 start-page: 1615 year: 2016 ident: 10.1016/j.bbagen.2017.01.022_bb0080 article-title: Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth publication-title: Cell Death Differ. doi: 10.1038/cdd.2016.48 – volume: 26 start-page: 1268 year: 2012 ident: 10.1016/j.bbagen.2017.01.022_bb0070 article-title: Mutant p53: one name, many proteins publication-title: Genes Dev. doi: 10.1101/gad.190678.112 – volume: 99 start-page: 937 year: 2002 ident: 10.1016/j.bbagen.2017.01.022_bb0135 article-title: A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.241629998 – volume: 72 start-page: 1541 year: 1997 ident: 10.1016/j.bbagen.2017.01.022_bb0240 article-title: Dynamic strength of molecular adhesion bonds publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78802-7 – volume: 8 start-page: 1 year: 2013 ident: 10.1016/j.bbagen.2017.01.022_bb0285 article-title: Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics publication-title: PLoS One doi: 10.1371/journal.pone.0080221 – volume: 20 start-page: 3409 year: 2001 ident: 10.1016/j.bbagen.2017.01.022_bb0140 article-title: Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants publication-title: Oncogene doi: 10.1038/sj.onc.1204457 – volume: 17 start-page: 901 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0030 article-title: p53-family proteins and their regulators: hubs and spokes in tumor suppression publication-title: Cell Death Differ. doi: 10.1038/cdd.2010.35 – volume: 5 start-page: 288 year: 2015 ident: 10.1016/j.bbagen.2017.01.022_bb0090 article-title: Targeting oncogenic mutant p53 for cancer therapy publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00288 – volume: 86 start-page: 2430 year: 2004 ident: 10.1016/j.bbagen.2017.01.022_bb0230 article-title: McElfresh, force spectroscopy of the double-tethered concanavalin-a mannose bond publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74299-X – volume: 7 start-page: 11817 year: 2016 ident: 10.1016/j.bbagen.2017.01.022_bb0085 article-title: Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides publication-title: Oncotarget doi: 10.18632/oncotarget.7857 – volume: 93 start-page: 3477 year: 1996 ident: 10.1016/j.bbagen.2017.01.022_bb0245 article-title: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.8.3477 – volume: 38 start-page: 181 year: 1986 ident: 10.1016/j.bbagen.2017.01.022_bb0310 article-title: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60528-8 – volume: 19 start-page: 607 year: 2002 ident: 10.1016/j.bbagen.2017.01.022_bb0035 article-title: The IARC TP53 database: new online mutation analysis and recommendations to users publication-title: Hum. Mutat. doi: 10.1002/humu.10081 – volume: 22 start-page: 215 year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0115 article-title: Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin publication-title: J. Mol. Recognit. doi: 10.1002/jmr.934 – volume: 113 start-page: 16449 year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0215 article-title: Atomic force spectroscopy in biological complex formation: strategies and perspectives publication-title: J. Phys. Chem. B doi: 10.1021/jp902421r – volume: 27 start-page: 124 year: 2014 ident: 10.1016/j.bbagen.2017.01.022_bb0275 article-title: Binding of azurin to cytochrome c 551 as investigated by surface plasmon resonance and fluorescence publication-title: J. Mol. Recognit. doi: 10.1002/jmr.2346 – volume: 36 start-page: 307 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0330 article-title: Raman spectroscopy of proteins: from peptides to large assemblies publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1323 – volume: 124 start-page: 7737 year: 2002 ident: 10.1016/j.bbagen.2017.01.022_bb0190 article-title: Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0259335 – volume: 12 start-page: 140 year: 2015 ident: 10.1016/j.bbagen.2017.01.022_bb0170 article-title: Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry publication-title: Mol. Pharm. doi: 10.1021/mp500495u – volume: 9 start-page: 1799 year: 2014 ident: 10.1016/j.bbagen.2017.01.022_bb0155 article-title: A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins publication-title: Int. J. Nanomedicine – volume: 8 start-page: 2947 year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0150 article-title: A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-09-0444 – volume: 39 start-page: 734 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0210 article-title: The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process publication-title: Chem. Soc. Rev. doi: 10.1039/B811426A – volume: 272 start-page: 255 year: 1999 ident: 10.1016/j.bbagen.2017.01.022_bb0335 article-title: A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy publication-title: Anal. Biochem. doi: 10.1006/abio.1999.4034 – ident: 10.1016/j.bbagen.2017.01.022_bb0105 doi: 10.1002/jmr.840 – volume: 21 start-page: 1492 year: 2013 ident: 10.1016/j.bbagen.2017.01.022_bb0025 article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins publication-title: Structure doi: 10.1016/j.str.2013.08.001 – volume: 212 start-page: 457 year: 1993 ident: 10.1016/j.bbagen.2017.01.022_bb0300 article-title: Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods publication-title: Anal. Biochem. doi: 10.1006/abio.1993.1355 – volume: 157 start-page: 105 year: 1982 ident: 10.1016/j.bbagen.2017.01.022_bb0390 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(82)90515-0 – volume: 322 start-page: 917 year: 2002 ident: 10.1016/j.bbagen.2017.01.022_bb0010 article-title: P53 contains large unstructured regions in its native state publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00848-3 – volume: 10 start-page: 3375 year: 2013 ident: 10.1016/j.bbagen.2017.01.022_bb0130 article-title: P28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation publication-title: Mol. Pharm. doi: 10.1021/mp400221r – volume: 523 start-page: 352 year: 2015 ident: 10.1016/j.bbagen.2017.01.022_bb0045 article-title: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment publication-title: Nature doi: 10.1038/nature14430 – volume: 10 start-page: 94 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0060 article-title: Potentiating the p53 network publication-title: Discov. Med. – volume: 115 start-page: 2371 year: 2011 ident: 10.1016/j.bbagen.2017.01.022_bb0250 article-title: Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin publication-title: J. Phys. Chem. B doi: 10.1021/jp108343g – volume: 25 start-page: 413 year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0270 article-title: ProtorP: a protein-protein interaction analysis server publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn584 – volume: 24 start-page: 1043 year: 2011 ident: 10.1016/j.bbagen.2017.01.022_bb0160 article-title: Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of azurin publication-title: J. Mol. Recognit. doi: 10.1002/jmr.1153 – volume: 108 start-page: 2495 year: 2013 ident: 10.1016/j.bbagen.2017.01.022_bb0125 article-title: p28, a first in class peptide inhibitor of cop1 binding to p53 publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.266 – volume: 14 start-page: 2582 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0365 article-title: Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study publication-title: Protein Sci. doi: 10.1110/ps.051426605 – volume: 15 start-page: S1709 year: 2003 ident: 10.1016/j.bbagen.2017.01.022_bb0205 article-title: Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/18/305 – start-page: 55 year: 1995 ident: 10.1016/j.bbagen.2017.01.022_bb0320 – volume: 108 start-page: 1061 year: 2013 ident: 10.1016/j.bbagen.2017.01.022_bb0405 article-title: A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.74 – volume: 267 start-page: 707 year: 1997 ident: 10.1016/j.bbagen.2017.01.022_bb0260 article-title: Determination of atomic desolvation energies from the structures of crystallized proteins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0859 – start-page: 119 year: 2014 ident: 10.1016/j.bbagen.2017.01.022_bb0065 – volume: 42 start-page: 2720 year: 2003 ident: 10.1016/j.bbagen.2017.01.022_bb0340 article-title: Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes† publication-title: Biochemistry doi: 10.1021/bi027166s – volume: 195 start-page: 659 year: 1987 ident: 10.1016/j.bbagen.2017.01.022_bb0395 article-title: Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90189-6 – volume: 78 start-page: 1094 year: 2000 ident: 10.1016/j.bbagen.2017.01.022_bb0265 article-title: Kinetics of desolvation-mediated protein-protein binding publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76668-9 – volume: 280 start-page: 16030 year: 2005 ident: 10.1016/j.bbagen.2017.01.022_bb0040 article-title: Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500179200 – volume: 22 start-page: 506 year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0100 article-title: A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and azurin publication-title: J. Mol. Recognit. doi: 10.1002/jmr.975 – volume: 2 start-page: a001008 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0290 article-title: TP53 mutations in human cancers: origins, consequences, and clinical use publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001008 – volume: 18 start-page: 2714 year: 1997 ident: 10.1016/j.bbagen.2017.01.022_bb9000 article-title: Swiss-model and the Swiss-Pdb Viewer: an environment for comparative protein modeling publication-title: Electrophoresis doi: 10.1002/elps.1150181505 – start-page: 1 year: 2016 ident: 10.1016/j.bbagen.2017.01.022_bb0175 article-title: Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy publication-title: Appl. Spectrosc. – volume: 200 start-page: 618 year: 1978 ident: 10.1016/j.bbagen.2017.01.022_bb0235 article-title: Models for the specific adhesion of cells to cells publication-title: Science doi: 10.1126/science.347575 – volume: 78 start-page: 3124 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0255 article-title: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19 publication-title: Proteins Struct. Funct. Bioinforma. doi: 10.1002/prot.22835 – volume: 21 start-page: 432 year: 2011 ident: 10.1016/j.bbagen.2017.01.022_bb0020 article-title: Intrinsically disordered proteins: regulation and disease publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2011.03.011 – volume: 2 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0055 article-title: Mutant p53 gain-of-function in cancer publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001107 – volume: 97 start-page: 4005 year: 2000 ident: 10.1016/j.bbagen.2017.01.022_bb0225 article-title: Cadherin interaction probed by atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.070052697 – volume: 18 start-page: 1319 year: 2016 ident: 10.1016/j.bbagen.2017.01.022_bb0400 article-title: Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a Pediatric Brain Tumor Consortium Study publication-title: Neuro-Oncology doi: 10.1093/neuonc/now047 – volume: 265 start-page: 346 year: 1994 ident: 10.1016/j.bbagen.2017.01.022_bb0005 article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations publication-title: Science doi: 10.1126/science.8023157 – volume: 8 start-page: 625 year: 2008 ident: 10.1016/j.bbagen.2017.01.022_bb0355 article-title: Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between α-lactalbumin and ribonuclease A publication-title: Protein Sci. doi: 10.1110/ps.8.3.625 – volume: 64 start-page: 1868 year: 1993 ident: 10.1016/j.bbagen.2017.01.022_bb0200 article-title: Calibration of atomic-force microscope tips publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1143970 – volume: 103 start-page: 15056 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0385 article-title: Structural basis for understanding oncogenic p53 mutations and designing rescue drugs publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0607286103 – volume: 8 start-page: 47 year: 2012 ident: 10.1016/j.bbagen.2017.01.022_bb0375 article-title: Intrinsically disordered regions as affinity tuners in protein–DNA interactions publication-title: Mol. BioSyst. doi: 10.1039/C1MB05273J – volume: 103 start-page: 2109 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0015 article-title: Solution structure of p53 core domain: structural basis for its instability publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0510941103 – volume: 115 start-page: 9520 year: 2011 ident: 10.1016/j.bbagen.2017.01.022_bb0180 article-title: Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations publication-title: J. Phys. Chem. A doi: 10.1021/jp112235d – start-page: 834 year: 2003 ident: 10.1016/j.bbagen.2017.01.022_bb0185 – volume: 36 start-page: 8053 year: 1997 ident: 10.1016/j.bbagen.2017.01.022_bb0315 article-title: Solution conformations and interactions of α and β subunits of the Oxytricha nova telomere binding protein: investigation by Raman spectroscopy† publication-title: Biochemistry doi: 10.1021/bi970283g – volume: 45 start-page: 6440 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0075 article-title: p53—a natural cancer killer: structural insights and therapeutic concepts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200600611 – volume: 1840 start-page: 1958 year: 2014 ident: 10.1016/j.bbagen.2017.01.022_bb0305 article-title: Interaction of mutant p53 with p73: a surface plasmon resonance and atomic force spectroscopy study publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2014.02.014 – volume: 281 start-page: 20464 year: 2006 ident: 10.1016/j.bbagen.2017.01.022_bb0145 article-title: Mutational analysis of the p53 core domain L1 loop publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603387200 – volume: 8 year: 2012 ident: 10.1016/j.bbagen.2017.01.022_bb0195 article-title: Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002709 – volume: 2 start-page: a000919 year: 2010 ident: 10.1016/j.bbagen.2017.01.022_bb0380 article-title: The tumor suppressor p53: from structures to drug discovery publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000919 – year: 2009 ident: 10.1016/j.bbagen.2017.01.022_bb0050 article-title: When mutants gain new powers: news from the mutant p53 field publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2693 |
SSID | ssj0000595 |
Score | 2.3114107 |
Snippet | Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 910 |
SubjectTerms | Amino Acid Sequence Atomic Force Spectroscopy binding capacity Binding Sites - genetics Cell Line, Tumor Cell penetrating peptide Cell-Penetrating Peptides - metabolism correlation DNA-binding domains DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Docking Humans Hydrophobic and Hydrophilic Interactions hydrophobic bonding hydrophobicity Microscopy, Atomic Force - methods Models, Molecular Molecular Dynamics Simulation mutants Mutation - genetics Mutations neoplasms p53 Peptide Fragments - genetics Peptide Fragments - metabolism point mutation Protein Binding - genetics Protein Structure, Secondary Raman spectroscopy surface plasmon resonance Surface Plasmon Resonance - methods Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
Title | Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies |
URI | https://dx.doi.org/10.1016/j.bbagen.2017.01.022 https://www.ncbi.nlm.nih.gov/pubmed/28126403 https://www.proquest.com/docview/1862764453 https://www.proquest.com/docview/2000382954 |
Volume | 1861 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLltJeSrt9pY9lCj3WjWVZtnxMQ0PaskvodmFvQi9DltQ2iXPYS_9K_2pHkr2lh7DQg8EPyQjPePQNM_MNIe95USqbKpEoiyYw1-inCOHSpBK2NspwbUP7trPzYnmZf73iV0dkPtbC-LTKwfZHmx6s9XBnOnzNabdeTy98UA_hBKeecp0FQsk8L72Wf_z1N80D4QOPkYQ88aPH8rmQ46U1_rSeBZWWkbwzO7Q9HYKfYRtaPCaPBvwIs7jEJ-TINSfkfuwoeXNCHszHBm5Pye9P61CyAm0NMxTaOnQfNjB3mw2s0MYFxlx8vvKZLdZBlwnoW0BDYcH7p6AaC2d7D0ctdJyB2sEu5B1a0DfwXf1UzQeY9b6wGRbt1sQZF_ttrfB8hcAclRx8hMDTejgIZZ2ePrPt0EF_Ri4Xn3_Ml8nQjyExrOJ9UhepFlqoVFSK6dxqrmjhaM1T5QpbMk9154RRNtOac1PXhSsrpTNtBE2Nythzcty0jXtJwDluNFpWVhmb46GLTJfUGY6vpFlaTggbxSDNQFbue2Zs5JiVdi2j8KQXnkypROFNSHI7q4tkHXeML0cJy3-UTuJ-csfMd6NCSJSqD7KoxrX7naToIpYIMjk7PCYLAVkfYZ2QF1GbbtebIeIq8pS9-u-1vSYP_VVML3pDjvvt3r1F5NTr0_BrnJJ7sy_flud_AHJeGX0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6CQ0kvpU1fTl9T6LHCklarx9E1NU4TG9MkkNuyL4GLKwk_Dvk1-audWUkpPZhADwKh3RWLZjT7DTPzDWNfRJopG6o8UBZNYKLRT8lzFwZFbkujjNDWt2-bL9LZTfLjVtwesUlfC0NplZ3tb226t9bdk1H3NUfNajW6oqAewgkREeU6J0LJY2KnEgN2PD6_mC3-GmThm6_Q_IAW9BV0Ps1La_xviQg1ylr-zvjQCXUIgfqTaPqcPesgJIzbXb5gR646ZU_appJ3p-xk0vdwe8nuv6181QrUJYxRbivfgNjAxK3XsEQz50lzcXxJyS3WQRPnsKsBbYUFclFBVRbme0KkFhrBQW1h61MPLeg7-Kl-q-orjHdU2wzTemPaFVf7TanwfonYHPUcKEhAzB4OfGUnMWjWDfror9jN9Pv1ZBZ0LRkCwwuxC8o01LnOVZgXiuvEaqGi1EWlCJVLbcaJ7c7lRtlYayFMWaYuK5SOtcmj0KiYv2aDqq7cWwbOCaPRuPLC2AQvncY6i5wR-MooDrMh470YpOn4yqltxlr2iWm_ZCs8ScKTYSRReEMWPKxqWr6OR-ZnvYTlP3on8Uh5ZOXnXiEkSpXiLKpy9X4rI_QSM8SZgh-eE_uYLAVZh-xNq00P-40RdKVJyM_-e2-f2Mnsen4pL88XF-_YUxpps43es8Fus3cfEEjt9MfuR_kDBHMcLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+of+Amphipathic+Cell+Penetrating+Peptide+p28+to+Wild+Type+and+Mutated+p53+as+studied+by+Raman%2C+Atomic+Force+and+Surface+Plasmon+Resonance+spectroscopies&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Signorelli%2C+Sara&rft.au=Santini%2C+Simona&rft.au=Yamada%2C+Tohru&rft.au=Bizzarri%2C+Anna+Rita&rft.date=2017-04-01&rft.issn=0304-4165&rft.volume=1861&rft.issue=4&rft.spage=910&rft.epage=921&rft_id=info:doi/10.1016%2Fj.bbagen.2017.01.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2017_01_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |