Solving Partially Observable 3D-Visual Tasks with Visual Radial Basis Function Network and Proximal Policy Optimization
Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SR...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 5; no. 4; pp. 1888 - 1904 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
MDPI |
Series | Learning |
Subjects | |
Online Access | Get full text |
ISSN | 2504-4990 2504-4990 |
DOI | 10.3390/make5040091 |
Cover
Loading…
Abstract | Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SRL) has been shown to improve the performance of visual RL by reducing the high-dimensional data into compact representation, but still often relies on deep networks and on the environment. In contrast, we propose a lighter, more generic method to extract sparse and localized features from raw images without training. We achieve this using a Visual Radial Basis Function Network (VRBFN), which offers significant practical advantages, including efficient and accurate training with minimal complexity due to its two linear layers. For real-world applications, its scalability and resilience to noise are essential, as real sensors are subject to change and noise. Unlike CNNs, which may require extensive retraining, this network might only need minor fine-tuning. We test the efficiency of the VRBFN representation to solve different RL tasks using Proximal Policy Optimization (PPO). We present a large study and comparison of our extraction methods with five classical visual RL and SRL approaches on five different first-person partially observable scenarios. We show that this approach presents appealing features such as sparsity and robustness to noise and that the obtained results when training RL agents are better than other tested methods on four of the five proposed scenarios. |
---|---|
AbstractList | Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SRL) has been shown to improve the performance of visual RL by reducing the high-dimensional data into compact representation, but still often relies on deep networks and on the environment. In contrast, we propose a lighter, more generic method to extract sparse and localized features from raw images without training. We achieve this using a Visual Radial Basis Function Network (VRBFN), which offers significant practical advantages, including efficient and accurate training with minimal complexity due to its two linear layers. For real-world applications, its scalability and resilience to noise are essential, as real sensors are subject to change and noise. Unlike CNNs, which may require extensive retraining, this network might only need minor fine-tuning. We test the efficiency of the VRBFN representation to solve different RL tasks using Proximal Policy Optimization (PPO). We present a large study and comparison of our extraction methods with five classical visual RL and SRL approaches on five different first-person partially observable scenarios. We show that this approach presents appealing features such as sparsity and robustness to noise and that the obtained results when training RL agents are better than other tested methods on four of the five proposed scenarios. |
Audience | Academic |
Author | Hautot, Julien Teulière, Céline Azzaoui, Nourddine |
Author_xml | – sequence: 1 givenname: Julien surname: Hautot fullname: Hautot, Julien – sequence: 2 givenname: Céline orcidid: 0000-0002-8857-5524 surname: Teulière fullname: Teulière, Céline – sequence: 3 givenname: Nourddine orcidid: 0000-0002-1543-5440 surname: Azzaoui fullname: Azzaoui, Nourddine |
BackLink | https://hal.science/hal-04505952$$DView record in HAL |
BookMark | eNpVkt1uEzEQhS1UJEroFS9giSuEth3_ZdeXoVBaKaIRFG6tidebOtmsg71JKE9fL1uhIsvy6OjMNzPyvCYnXegcIW8ZnAuh4WKLG6dAAmj2gpzyHBZSazh5Fr8iZymtAYCXWjKQp-T4PbQH363oAmPvsW0f6O0yuXjAZeuo-FT89GmPLb3DtEn06Pt7-qR8wzr76UdMPtGrfWd7Hzr61fXHEDcUu5ouYvjtt9mzCK23Gbzr_db_wcH4hrxssE3u7OmdkB9Xn-8ur4v57Zeby9m8sEKrvmgkQ8UBGy5YDbbUUCpV8VozxRWXqpSOaSdLW9upqKAqtbZ8qms-dUpPkYkJuRm5dcC12cXcT3wwAb35K4S4MsPgtnVGW2ERGp3xlQQmlrmoyCjHmGW1FZn1fmTdY_sf6no2N4MGUoHSih-Guu9G7y6GX3uXerMO-9jlUQ3XIEslqnwn5Hx0rTA34Lsm9BFtPrXbepu_t_FZn5VVHjWjy5zwYUywMaQUXfOvDwZm2ALzbAvEIy3spDk |
Cites_doi | 10.1038/nature14236 10.1109/IJCNN.2012.6252823 10.1109/TG.2018.2877047 10.1201/9781003268581 10.1109/CIG.2016.7860433 10.1177/0278364919887447 10.4108/airo.v2i1.3392 10.1109/ICRA.2016.7487173 10.1016/j.neunet.2018.07.006 10.1609/aaai.v33i01.33014384 10.3390/s23208422 10.1609/aaai.v35i12.17276 10.4108/eai.16-1-2018.153641 10.1016/j.neucom.2014.04.045 10.1109/ICASSP40776.2020.9053819 10.1162/neco.1997.9.8.1735 10.1109/IJCNN48605.2020.9207332 10.1609/aaai.v31i1.10827 10.1109/CVPRW.2017.70 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES DOA |
DOI | 10.3390/make5040091 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2504-4990 |
EndPage | 1904 |
ExternalDocumentID | oai_doaj_org_article_9c3ca0f982d84013bf2339d2e11c1dc3 oai_HAL_hal_04505952v1 A782455057 10_3390_make5040091 |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC K7- MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES PUEGO |
ID | FETCH-LOGICAL-c395t-f41a520af231d0c79075582d9152524574e19e47cdc63808799c269d26e596a13 |
IEDL.DBID | 8FG |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Fri May 09 12:11:55 EDT 2025 Fri Jul 25 23:16:30 EDT 2025 Tue Jun 10 21:15:41 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | state representation learning visual reinforcement learning radial basis function network computer vision |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-f41a520af231d0c79075582d9152524574e19e47cdc63808799c269d26e596a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8857-5524 0000-0002-1543-5440 |
OpenAccessLink | https://www.proquest.com/docview/2904753875?pq-origsite=%requestingapplication% |
PQID | 2904753875 |
PQPubID | 5046881 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9c3ca0f982d84013bf2339d2e11c1dc3 hal_primary_oai_HAL_hal_04505952v1 proquest_journals_2904753875 gale_infotracacademiconefile_A782455057 crossref_primary_10_3390_make5040091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationSeriesTitle | Learning |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lesort (ref_12) 2018; 108 Hautot (ref_14) 2022; Volume 13364 Wydmuch (ref_19) 2018; 11 ref_36 ref_13 ref_35 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_18 Hochreiter (ref_2) 1997; 9 ref_17 ref_39 ref_16 Akimov (ref_20) 2019; 2479 ref_38 ref_15 ref_37 Lisetti (ref_23) 2017; Volume 50 Buessler (ref_43) 2014; 144 ref_25 ref_24 ref_22 ref_21 Mnih (ref_1) 2015; 518 ref_42 ref_41 ref_40 ref_29 ref_28 ref_27 ref_26 Brejl (ref_3) 2018; 5 ref_9 ref_8 ref_4 Moshayedi (ref_5) 2022; 1 ref_6 Durojaye (ref_7) 2023; 2 |
References_xml | – ident: ref_30 – ident: ref_32 – volume: 518 start-page: 529 year: 2015 ident: ref_1 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref_24 doi: 10.1109/IJCNN.2012.6252823 – ident: ref_34 – volume: 11 start-page: 248 year: 2018 ident: ref_19 article-title: ViZDoom Competitions: Playing Doom From Pixels publication-title: IEEE Trans. Games doi: 10.1109/TG.2018.2877047 – ident: ref_6 doi: 10.1201/9781003268581 – volume: Volume 50 start-page: 20 year: 2017 ident: ref_23 article-title: Object-sensitive Deep Reinforcement Learning publication-title: Proceedings of the GCAI 2017. 3rd Global Conference on Artificial Intelligence – ident: ref_15 doi: 10.1109/CIG.2016.7860433 – volume: 1 start-page: e7 year: 2022 ident: ref_5 article-title: Deep learning application pros and cons over algorithm deep learning application pros and cons over algorithm publication-title: EAI Endorsed Trans. AI Robot. – ident: ref_8 doi: 10.1177/0278364919887447 – ident: ref_16 – ident: ref_40 – volume: 2 start-page: e6 year: 2023 ident: ref_7 article-title: Immersive Horizons: Exploring the Transformative Power of Virtual Reality Across Economic Sectors publication-title: Eai Endorsed Trans. Robot. doi: 10.4108/airo.v2i1.3392 – ident: ref_26 doi: 10.1109/ICRA.2016.7487173 – ident: ref_37 – volume: 108 start-page: 379 year: 2018 ident: ref_12 article-title: State representation learning for control: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.07.006 – ident: ref_18 – ident: ref_35 – volume: Volume 13364 start-page: 318 year: 2022 ident: ref_14 article-title: Visual Radial Basis Q-Network publication-title: Proceedings of the Third International Conference Pattern Recognition and Artificial Intelligence, ICPRAI 2022 – ident: ref_21 – ident: ref_39 doi: 10.1609/aaai.v33i01.33014384 – ident: ref_11 doi: 10.3390/s23208422 – ident: ref_25 – ident: ref_4 – ident: ref_31 – ident: ref_29 – ident: ref_33 – ident: ref_22 doi: 10.1609/aaai.v35i12.17276 – ident: ref_27 – volume: 5 start-page: 153641 year: 2018 ident: ref_3 article-title: Exploring Deep Recurrent Q-Learning for Navigation in a 3D Environment publication-title: Eai Endorsed Trans. Creat. Technol. doi: 10.4108/eai.16-1-2018.153641 – volume: 2479 start-page: 3 year: 2019 ident: ref_20 article-title: Deep reinforcement learning with vizdoom first-person shooter? publication-title: Ceur Workshop Proc. – ident: ref_41 – ident: ref_13 – ident: ref_38 – volume: 144 start-page: 258 year: 2014 ident: ref_43 article-title: Image receptive fields for artificial neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.045 – ident: ref_17 – ident: ref_36 – ident: ref_28 doi: 10.1109/ICASSP40776.2020.9053819 – volume: 9 start-page: 1735 year: 1997 ident: ref_2 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_42 doi: 10.1109/IJCNN48605.2020.9207332 – ident: ref_9 doi: 10.1609/aaai.v31i1.10827 – ident: ref_10 doi: 10.1109/CVPRW.2017.70 |
SSID | ssj0002794104 |
Score | 2.239872 |
Snippet | Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1888 |
SubjectTerms | Algorithms Computer Science computer vision Engineering Sciences Image processing Learning Localization Mathematical optimization Neural networks Optimization Radial basis function radial basis function network Reinforcement learning (Machine learning) Representations state representation learning Training Visual observation visual reinforcement learning Visual tasks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gJy4IBIjxUoSQOFVr0qRdjuMxTQjYBBvaLUrTVAy6Da3j9e-x24I2Lly4Rolq2UnsL7U_E3JiRdM2nfM9LqzvCdZMvTgKnGfA3SRYNMACrHe-uQ07A3E1lMOFVl-YE1bSA5eKaygbWOOnCpciFohTHgQq4Y4xyxJb8HyCz1sAU0_F7zQlAGiUBXkw32-MzbOTuGMVW3JBBVP_z328-ojpkL9u5cLVtDfIehUj0lYp2yZZcZMt8n4_zRD80x7KbLLsk3bj4kk1zhwNLryHUf4Kq_omf84pPq_SauQO6QcyembyUU7b4MfQFvS2zP-mZpLQ3mz6MRrDnJIlmHbhHhlXBZrbZNC-7J93vKprgmcDJedeKpiR3DegJ5b4NgL0KyVoT2GnIy5kJBxTTkQ2sXD2_GaklOUhaDR0UoWGBTukNplO3C6hkkWhcg5CxFQKE7KYpxE3oUXOtRjAWx1sXSlSv5TkGBpABepbL-i7Ts5QyT9TkNG6GAA768rO-i8718kpmkjjuZvPjDVV-QBIigxWugWhjijgVp0cgxWXvtZpXWscg_gVwknJ30Cmg28j6-rU5porXwB8Awi39x8i75M1bE5fJr8ckNp89uoOIYSZx0fFbv0CKwzsjw priority: 102 providerName: Directory of Open Access Journals |
Title | Solving Partially Observable 3D-Visual Tasks with Visual Radial Basis Function Network and Proximal Policy Optimization |
URI | https://www.proquest.com/docview/2904753875 https://hal.science/hal-04505952 https://doaj.org/article/9c3ca0f982d84013bf2339d2e11c1dc3 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9sIFgQARKNEKIXFa1fuyvSeUQEKEaBqVFvW2Wq_XENWJS5zyuPDbmbG3gXLg4sPallczszPfjOdByEuvcp-HkDChfMIUzytWZDIwB-amxKIBLrHe-Xiezs7V-wt9EQNubUyrvNGJnaIuG48x8iNhEgXQGuD166uvDKdG4d_VOEJjjxxwsDQo4fn03S7GIkDYwN3oy_IkePdHK3cZNMqt4bcMUdevf6eV975gUuQ_urkzONP75F5EinTUs_YBuRPWD8n3j02NIQC6QJa7uv5JT4ousFrUgcq37NOyvYa3zlx72VIMstK4copNCGo6du2ypVOwZsgROu-zwKlbl3SxaX4sV_BM3yuYnoA2WcUyzUfkfDo5ezNjcXYC89LoLasUd1okrgL8ViY-Ax9YayC_wXlHQulMBW6Cynzp4QQmeWaMF6kpRRq0SR2Xj8n-ulmHJ4RqnqUmBACKlVYu5YWoMuFSj53XCnDhBsDxSEh71bfIsOBaIL3tX_QekDESefcI9rXuFprNZxuPiTVeepdUBgUFPb8C9i9hV4Fzz0svB-QVssji6dtunHexiAB2in2s7AgAj-qcrgF5AVy89bXZ6IPFNUCxACq1-AZ7Orxhso1nt7V_JO3p_28_I3dx-Hyf3HJI9reb6_AcIMq2GHZyOCQH48l8cTrsHH24Hv-a_Abii-fh |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615QAXBAJEoMAKgTit6n3Z2QNCKW1IaZpWkKLelvV6DVGduMQppX-K39gZ2wmUA7de16_R7Lc734x3Zgh55VXXd0OImFA-Yop3c5YmMjAH5ibDpAEuMd_5YBQPjtXHE32yRn4vc2HwWOVyT6w36qz0GCPfEiZSQK2BXr87-8GwaxT-XV220GhgsR8uL8Blq97u7cD8vhaivzt-P2BtVwHmpdELlivutIhcDswmi3wC3qHWIJjBTkBC6UQFboJKfOYBm1E3McaL2GQiDtrEjkt47zq5pSS8DTPT-x9WMR0B4Ab3pkkDhOvR1tSdBo3rxPBrhq_uD7CyAuvf8RDmP7agNnD9e-Ruy0xpr4HSfbIWZg_IxeeywJADPUKIuaK4pIdpHchNi0DlDvsyqc7hqbGrTiuKQV3ajnzCogcF3XbVpKJ9sJ6IADpqTp1TN8vo0bz8NZnCPU1tYnoIu9e0TQt9SI5vRKuPyMasnIXHhGqexCYEIKa5Vi7mqcgT4WKPld5ScBk7gLBWkfasKclhwZVBfdu_9N0h26jk1S1YR7seKOffbLssrfHSuyg3CEz0NFOQX4JUgXPPMy875A1OkcXVvpg779qkBZAU62bZHhAsVTt5HfISZvHa1wa9ocUxYM1AYrX4CTJtLifZtntFZf8g-8n_L78gtwfjg6Ed7o32n5I72Pi-OVizSTYW8_PwDOjRIn1eY5KSrze9CK4AtoIeDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RUJcEAgQgQIrBOJkxfuyvQeEUoJJaUkjaFFv2_V6DVGduMQppX-NX8eM7QTKgVuvaycZzX67881kHoS8cDJxifdhwKULA8mSIshi4QML5ibHogEmsN754zgaHckPx-p4g_xa1cJgWuXqTmwu6rxyGCPvcx1KoNZAr_tFlxYxGaZvzr4HOEEK_2ldjdNoIbLnLy_Afatf7w5hr19ynr47fDsKugkDgRNaLYNCMqt4aAtgOXnoYvAUlQIhNU4F4lLF0jPtZexyBzgNk1hrxyOd88grHVkm4Hs3yY0YnuH0hCR9v47vcAA6uDptSaAQOuzP7KlXeGY0u2IEm1kBa4uw-Q0TMv-xC42xS--Q2x1LpYMWVnfJhp_fIxefqxLDD3SCcLNleUkPsiaom5WeimHwZVqfw6cObX1aUwzw0m7lEzZAKOmOrac1TcGSIhrouM1Ap3ae08mi-jmdwTttn2J6ADfZrCsRvU-OrkWrD8jWvJr7h4QqFkfaeyCphZI2YhkvYm4jh13fMnAfe4C2TpHmrG3PYcCtQX2bv_TdIzuo5PUr2FO7WagWX013RI12wtmw0AhS9DozkF-AVJ4xx3IneuQVbpHBk79cWGe7AgaQFHtomQGQLdk4fD3yHHbxyq-NBvsG14BBA6FV_AfItL3aZNPdG7X5g_JH_3_8jNwE-Jv93fHeY3KLA_Nqc2y2ydZyce6fAFNaZk8bSFJyct1n4Df15SI5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Partially+Observable+3D-Visual+Tasks+with+Visual+Radial+Basis+Function+Network+and+Proximal+Policy+Optimization&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Hautot%2C+Julien&rft.au=Teuli%C3%A8re%2C+C%C3%A9line&rft.au=Azzaoui%2C+Nourddine&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=5&rft.issue=4&rft.spage=1888&rft_id=info:doi/10.3390%2Fmake5040091&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |