Solving Partially Observable 3D-Visual Tasks with Visual Radial Basis Function Network and Proximal Policy Optimization

Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SR...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 5; no. 4; pp. 1888 - 1904
Main Authors Hautot, Julien, Teulière, Céline, Azzaoui, Nourddine
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
MDPI
SeriesLearning
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make5040091

Cover

Loading…
Abstract Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SRL) has been shown to improve the performance of visual RL by reducing the high-dimensional data into compact representation, but still often relies on deep networks and on the environment. In contrast, we propose a lighter, more generic method to extract sparse and localized features from raw images without training. We achieve this using a Visual Radial Basis Function Network (VRBFN), which offers significant practical advantages, including efficient and accurate training with minimal complexity due to its two linear layers. For real-world applications, its scalability and resilience to noise are essential, as real sensors are subject to change and noise. Unlike CNNs, which may require extensive retraining, this network might only need minor fine-tuning. We test the efficiency of the VRBFN representation to solve different RL tasks using Proximal Policy Optimization (PPO). We present a large study and comparison of our extraction methods with five classical visual RL and SRL approaches on five different first-person partially observable scenarios. We show that this approach presents appealing features such as sparsity and robustness to noise and that the obtained results when training RL agents are better than other tested methods on four of the five proposed scenarios.
AbstractList Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring massive computational power to solve partially observable tasks from high-dimensional data such as images. Using State Representation Learning (SRL) has been shown to improve the performance of visual RL by reducing the high-dimensional data into compact representation, but still often relies on deep networks and on the environment. In contrast, we propose a lighter, more generic method to extract sparse and localized features from raw images without training. We achieve this using a Visual Radial Basis Function Network (VRBFN), which offers significant practical advantages, including efficient and accurate training with minimal complexity due to its two linear layers. For real-world applications, its scalability and resilience to noise are essential, as real sensors are subject to change and noise. Unlike CNNs, which may require extensive retraining, this network might only need minor fine-tuning. We test the efficiency of the VRBFN representation to solve different RL tasks using Proximal Policy Optimization (PPO). We present a large study and comparison of our extraction methods with five classical visual RL and SRL approaches on five different first-person partially observable scenarios. We show that this approach presents appealing features such as sparsity and robustness to noise and that the obtained results when training RL agents are better than other tested methods on four of the five proposed scenarios.
Audience Academic
Author Hautot, Julien
Teulière, Céline
Azzaoui, Nourddine
Author_xml – sequence: 1
  givenname: Julien
  surname: Hautot
  fullname: Hautot, Julien
– sequence: 2
  givenname: Céline
  orcidid: 0000-0002-8857-5524
  surname: Teulière
  fullname: Teulière, Céline
– sequence: 3
  givenname: Nourddine
  orcidid: 0000-0002-1543-5440
  surname: Azzaoui
  fullname: Azzaoui, Nourddine
BackLink https://hal.science/hal-04505952$$DView record in HAL
BookMark eNpVkt1uEzEQhS1UJEroFS9giSuEth3_ZdeXoVBaKaIRFG6tidebOtmsg71JKE9fL1uhIsvy6OjMNzPyvCYnXegcIW8ZnAuh4WKLG6dAAmj2gpzyHBZSazh5Fr8iZymtAYCXWjKQp-T4PbQH363oAmPvsW0f6O0yuXjAZeuo-FT89GmPLb3DtEn06Pt7-qR8wzr76UdMPtGrfWd7Hzr61fXHEDcUu5ouYvjtt9mzCK23Gbzr_db_wcH4hrxssE3u7OmdkB9Xn-8ur4v57Zeby9m8sEKrvmgkQ8UBGy5YDbbUUCpV8VozxRWXqpSOaSdLW9upqKAqtbZ8qms-dUpPkYkJuRm5dcC12cXcT3wwAb35K4S4MsPgtnVGW2ERGp3xlQQmlrmoyCjHmGW1FZn1fmTdY_sf6no2N4MGUoHSih-Guu9G7y6GX3uXerMO-9jlUQ3XIEslqnwn5Hx0rTA34Lsm9BFtPrXbepu_t_FZn5VVHjWjy5zwYUywMaQUXfOvDwZm2ALzbAvEIy3spDk
Cites_doi 10.1038/nature14236
10.1109/IJCNN.2012.6252823
10.1109/TG.2018.2877047
10.1201/9781003268581
10.1109/CIG.2016.7860433
10.1177/0278364919887447
10.4108/airo.v2i1.3392
10.1109/ICRA.2016.7487173
10.1016/j.neunet.2018.07.006
10.1609/aaai.v33i01.33014384
10.3390/s23208422
10.1609/aaai.v35i12.17276
10.4108/eai.16-1-2018.153641
10.1016/j.neucom.2014.04.045
10.1109/ICASSP40776.2020.9053819
10.1162/neco.1997.9.8.1735
10.1109/IJCNN48605.2020.9207332
10.1609/aaai.v31i1.10827
10.1109/CVPRW.2017.70
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
DOA
DOI 10.3390/make5040091
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2504-4990
EndPage 1904
ExternalDocumentID oai_doaj_org_article_9c3ca0f982d84013bf2339d2e11c1dc3
oai_HAL_hal_04505952v1
A782455057
10_3390_make5040091
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c395t-f41a520af231d0c79075582d9152524574e19e47cdc63808799c269d26e596a13
IEDL.DBID 8FG
ISSN 2504-4990
IngestDate Wed Aug 27 01:31:42 EDT 2025
Fri May 09 12:11:55 EDT 2025
Fri Jul 25 23:16:30 EDT 2025
Tue Jun 10 21:15:41 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords state representation learning
visual reinforcement learning
radial basis function network
computer vision
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-f41a520af231d0c79075582d9152524574e19e47cdc63808799c269d26e596a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8857-5524
0000-0002-1543-5440
OpenAccessLink https://www.proquest.com/docview/2904753875?pq-origsite=%requestingapplication%
PQID 2904753875
PQPubID 5046881
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9c3ca0f982d84013bf2339d2e11c1dc3
hal_primary_oai_HAL_hal_04505952v1
proquest_journals_2904753875
gale_infotracacademiconefile_A782455057
crossref_primary_10_3390_make5040091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSeriesTitle Learning
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lesort (ref_12) 2018; 108
Hautot (ref_14) 2022; Volume 13364
Wydmuch (ref_19) 2018; 11
ref_36
ref_13
ref_35
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_18
Hochreiter (ref_2) 1997; 9
ref_17
ref_39
ref_16
Akimov (ref_20) 2019; 2479
ref_38
ref_15
ref_37
Lisetti (ref_23) 2017; Volume 50
Buessler (ref_43) 2014; 144
ref_25
ref_24
ref_22
ref_21
Mnih (ref_1) 2015; 518
ref_42
ref_41
ref_40
ref_29
ref_28
ref_27
ref_26
Brejl (ref_3) 2018; 5
ref_9
ref_8
ref_4
Moshayedi (ref_5) 2022; 1
ref_6
Durojaye (ref_7) 2023; 2
References_xml – ident: ref_30
– ident: ref_32
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_1
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref_24
  doi: 10.1109/IJCNN.2012.6252823
– ident: ref_34
– volume: 11
  start-page: 248
  year: 2018
  ident: ref_19
  article-title: ViZDoom Competitions: Playing Doom From Pixels
  publication-title: IEEE Trans. Games
  doi: 10.1109/TG.2018.2877047
– ident: ref_6
  doi: 10.1201/9781003268581
– volume: Volume 50
  start-page: 20
  year: 2017
  ident: ref_23
  article-title: Object-sensitive Deep Reinforcement Learning
  publication-title: Proceedings of the GCAI 2017. 3rd Global Conference on Artificial Intelligence
– ident: ref_15
  doi: 10.1109/CIG.2016.7860433
– volume: 1
  start-page: e7
  year: 2022
  ident: ref_5
  article-title: Deep learning application pros and cons over algorithm deep learning application pros and cons over algorithm
  publication-title: EAI Endorsed Trans. AI Robot.
– ident: ref_8
  doi: 10.1177/0278364919887447
– ident: ref_16
– ident: ref_40
– volume: 2
  start-page: e6
  year: 2023
  ident: ref_7
  article-title: Immersive Horizons: Exploring the Transformative Power of Virtual Reality Across Economic Sectors
  publication-title: Eai Endorsed Trans. Robot.
  doi: 10.4108/airo.v2i1.3392
– ident: ref_26
  doi: 10.1109/ICRA.2016.7487173
– ident: ref_37
– volume: 108
  start-page: 379
  year: 2018
  ident: ref_12
  article-title: State representation learning for control: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.006
– ident: ref_18
– ident: ref_35
– volume: Volume 13364
  start-page: 318
  year: 2022
  ident: ref_14
  article-title: Visual Radial Basis Q-Network
  publication-title: Proceedings of the Third International Conference Pattern Recognition and Artificial Intelligence, ICPRAI 2022
– ident: ref_21
– ident: ref_39
  doi: 10.1609/aaai.v33i01.33014384
– ident: ref_11
  doi: 10.3390/s23208422
– ident: ref_25
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_22
  doi: 10.1609/aaai.v35i12.17276
– ident: ref_27
– volume: 5
  start-page: 153641
  year: 2018
  ident: ref_3
  article-title: Exploring Deep Recurrent Q-Learning for Navigation in a 3D Environment
  publication-title: Eai Endorsed Trans. Creat. Technol.
  doi: 10.4108/eai.16-1-2018.153641
– volume: 2479
  start-page: 3
  year: 2019
  ident: ref_20
  article-title: Deep reinforcement learning with vizdoom first-person shooter?
  publication-title: Ceur Workshop Proc.
– ident: ref_41
– ident: ref_13
– ident: ref_38
– volume: 144
  start-page: 258
  year: 2014
  ident: ref_43
  article-title: Image receptive fields for artificial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.045
– ident: ref_17
– ident: ref_36
– ident: ref_28
  doi: 10.1109/ICASSP40776.2020.9053819
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_2
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_42
  doi: 10.1109/IJCNN48605.2020.9207332
– ident: ref_9
  doi: 10.1609/aaai.v31i1.10827
– ident: ref_10
  doi: 10.1109/CVPRW.2017.70
SSID ssj0002794104
Score 2.239872
Snippet Visual Reinforcement Learning (RL) has been largely investigated in recent decades. Existing approaches are often composed of multiple networks requiring...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1888
SubjectTerms Algorithms
Computer Science
computer vision
Engineering Sciences
Image processing
Learning
Localization
Mathematical optimization
Neural networks
Optimization
Radial basis function
radial basis function network
Reinforcement learning (Machine learning)
Representations
state representation learning
Training
Visual observation
visual reinforcement learning
Visual tasks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gJy4IBIjxUoSQOFVr0qRdjuMxTQjYBBvaLUrTVAy6Da3j9e-x24I2Lly4Rolq2UnsL7U_E3JiRdM2nfM9LqzvCdZMvTgKnGfA3SRYNMACrHe-uQ07A3E1lMOFVl-YE1bSA5eKaygbWOOnCpciFohTHgQq4Y4xyxJb8HyCz1sAU0_F7zQlAGiUBXkw32-MzbOTuGMVW3JBBVP_z328-ojpkL9u5cLVtDfIehUj0lYp2yZZcZMt8n4_zRD80x7KbLLsk3bj4kk1zhwNLryHUf4Kq_omf84pPq_SauQO6QcyembyUU7b4MfQFvS2zP-mZpLQ3mz6MRrDnJIlmHbhHhlXBZrbZNC-7J93vKprgmcDJedeKpiR3DegJ5b4NgL0KyVoT2GnIy5kJBxTTkQ2sXD2_GaklOUhaDR0UoWGBTukNplO3C6hkkWhcg5CxFQKE7KYpxE3oUXOtRjAWx1sXSlSv5TkGBpABepbL-i7Ts5QyT9TkNG6GAA768rO-i8718kpmkjjuZvPjDVV-QBIigxWugWhjijgVp0cgxWXvtZpXWscg_gVwknJ30Cmg28j6-rU5porXwB8Awi39x8i75M1bE5fJr8ckNp89uoOIYSZx0fFbv0CKwzsjw
  priority: 102
  providerName: Directory of Open Access Journals
Title Solving Partially Observable 3D-Visual Tasks with Visual Radial Basis Function Network and Proximal Policy Optimization
URI https://www.proquest.com/docview/2904753875
https://hal.science/hal-04505952
https://doaj.org/article/9c3ca0f982d84013bf2339d2e11c1dc3
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9sIFgQARKNEKIXFa1fuyvSeUQEKEaBqVFvW2Wq_XENWJS5zyuPDbmbG3gXLg4sPallczszPfjOdByEuvcp-HkDChfMIUzytWZDIwB-amxKIBLrHe-Xiezs7V-wt9EQNubUyrvNGJnaIuG48x8iNhEgXQGuD166uvDKdG4d_VOEJjjxxwsDQo4fn03S7GIkDYwN3oy_IkePdHK3cZNMqt4bcMUdevf6eV975gUuQ_urkzONP75F5EinTUs_YBuRPWD8n3j02NIQC6QJa7uv5JT4ousFrUgcq37NOyvYa3zlx72VIMstK4copNCGo6du2ypVOwZsgROu-zwKlbl3SxaX4sV_BM3yuYnoA2WcUyzUfkfDo5ezNjcXYC89LoLasUd1okrgL8ViY-Ax9YayC_wXlHQulMBW6Cynzp4QQmeWaMF6kpRRq0SR2Xj8n-ulmHJ4RqnqUmBACKlVYu5YWoMuFSj53XCnDhBsDxSEh71bfIsOBaIL3tX_QekDESefcI9rXuFprNZxuPiTVeepdUBgUFPb8C9i9hV4Fzz0svB-QVssji6dtunHexiAB2in2s7AgAj-qcrgF5AVy89bXZ6IPFNUCxACq1-AZ7Orxhso1nt7V_JO3p_28_I3dx-Hyf3HJI9reb6_AcIMq2GHZyOCQH48l8cTrsHH24Hv-a_Abii-fh
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615QAXBAJEoMAKgTit6n3Z2QNCKW1IaZpWkKLelvV6DVGduMQppX-K39gZ2wmUA7de16_R7Lc734x3Zgh55VXXd0OImFA-Yop3c5YmMjAH5ibDpAEuMd_5YBQPjtXHE32yRn4vc2HwWOVyT6w36qz0GCPfEiZSQK2BXr87-8GwaxT-XV220GhgsR8uL8Blq97u7cD8vhaivzt-P2BtVwHmpdELlivutIhcDswmi3wC3qHWIJjBTkBC6UQFboJKfOYBm1E3McaL2GQiDtrEjkt47zq5pSS8DTPT-x9WMR0B4Ab3pkkDhOvR1tSdBo3rxPBrhq_uD7CyAuvf8RDmP7agNnD9e-Ruy0xpr4HSfbIWZg_IxeeywJADPUKIuaK4pIdpHchNi0DlDvsyqc7hqbGrTiuKQV3ajnzCogcF3XbVpKJ9sJ6IADpqTp1TN8vo0bz8NZnCPU1tYnoIu9e0TQt9SI5vRKuPyMasnIXHhGqexCYEIKa5Vi7mqcgT4WKPld5ScBk7gLBWkfasKclhwZVBfdu_9N0h26jk1S1YR7seKOffbLssrfHSuyg3CEz0NFOQX4JUgXPPMy875A1OkcXVvpg779qkBZAU62bZHhAsVTt5HfISZvHa1wa9ocUxYM1AYrX4CTJtLifZtntFZf8g-8n_L78gtwfjg6Ed7o32n5I72Pi-OVizSTYW8_PwDOjRIn1eY5KSrze9CK4AtoIeDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RUJcEAgQgQIrBOJkxfuyvQeEUoJJaUkjaFFv2_V6DVGduMQppX-NX8eM7QTKgVuvaycZzX67881kHoS8cDJxifdhwKULA8mSIshi4QML5ibHogEmsN754zgaHckPx-p4g_xa1cJgWuXqTmwu6rxyGCPvcx1KoNZAr_tFlxYxGaZvzr4HOEEK_2ldjdNoIbLnLy_Afatf7w5hr19ynr47fDsKugkDgRNaLYNCMqt4aAtgOXnoYvAUlQIhNU4F4lLF0jPtZexyBzgNk1hrxyOd88grHVkm4Hs3yY0YnuH0hCR9v47vcAA6uDptSaAQOuzP7KlXeGY0u2IEm1kBa4uw-Q0TMv-xC42xS--Q2x1LpYMWVnfJhp_fIxefqxLDD3SCcLNleUkPsiaom5WeimHwZVqfw6cObX1aUwzw0m7lEzZAKOmOrac1TcGSIhrouM1Ap3ae08mi-jmdwTttn2J6ADfZrCsRvU-OrkWrD8jWvJr7h4QqFkfaeyCphZI2YhkvYm4jh13fMnAfe4C2TpHmrG3PYcCtQX2bv_TdIzuo5PUr2FO7WagWX013RI12wtmw0AhS9DozkF-AVJ4xx3IneuQVbpHBk79cWGe7AgaQFHtomQGQLdk4fD3yHHbxyq-NBvsG14BBA6FV_AfItL3aZNPdG7X5g_JH_3_8jNwE-Jv93fHeY3KLA_Nqc2y2ydZyce6fAFNaZk8bSFJyct1n4Df15SI5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Partially+Observable+3D-Visual+Tasks+with+Visual+Radial+Basis+Function+Network+and+Proximal+Policy+Optimization&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Hautot%2C+Julien&rft.au=Teuli%C3%A8re%2C+C%C3%A9line&rft.au=Azzaoui%2C+Nourddine&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=5&rft.issue=4&rft.spage=1888&rft_id=info:doi/10.3390%2Fmake5040091&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon