A Framework for Inter-Subject Prediction of Functional Connectivity From Structural Networks

Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo magnetic resonance imaging and offer complementary information on brain organization and function. However, imaging only provides noisy measur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 12; pp. 2200 - 2214
Main Authors Deligianni, Fani, Varoquaux, Gael, Thirion, Bertrand, Sharp, David J., Ledig, Christian, Leech, Robert, Rueckert, Daniel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2013
Institute of Electrical and Electronics Engineers
Seriesepub ahead of print
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2013.2276916

Cover

Loading…
Abstract Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo magnetic resonance imaging and offer complementary information on brain organization and function. However, imaging only provides noisy measures, and we lack a good neuroscientific understanding of the links between structure and function. Therefore, inter-subject joint modeling of structural and functional connectivity, the key to multimodal biomarkers, is an open challenge. We present a probabilistic framework to learn across subjects a mapping from structural to functional brain connectivity. Expanding on our previous work [1], our approach is based on a predictive framework with multiple sparse linear regression. We rely on the randomized LASSO to identify relevant anatomo-functional links with some confidence interval. In addition, we describe resting-state functional magnetic resonance imaging in the setting of Gaussian graphical models, on the one hand imposing conditional independences from structural connectivity and on the other hand parameterizing the problem in terms of multivariate autoregressive models. We introduce an intrinsic measure of prediction error for functional connectivity that is independent of the parameterization chosen and provides the means for robust model selection. We demonstrate our methodology with regions within the default mode and the salience network as well as, atlas-based cortical parcellation.
AbstractList Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo magnetic resonance imaging and offer complementary information on brain organization and function. However, imaging only provides noisy measures, and we lack a good neuroscientific understanding of the links between structure and function. Therefore, inter-subject joint modeling of structural and functional connectivity, the key to multimodal biomarkers, is an open challenge. We present a probabilistic framework to learn across subjects a mapping from structural to functional brain connectivity. Expanding on our previous work [1], our approach is based on a predictive framework with multiple sparse linear regression. We rely on the randomized LASSO to identify relevant anatomo-functional links with some confidence interval. In addition, we describe resting-state functional magnetic resonance imaging in the setting of Gaussian graphical models, on the one hand imposing conditional independences from structural connectivity and on the other hand parameterizing the problem in terms of multivariate autoregressive models. We introduce an intrinsic measure of prediction error for functional connectivity that is independent of the parameterization chosen and provides the means for robust model selection. We demonstrate our methodology with regions within the default mode and the salience network as well as, atlas-based cortical parcellation.
Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo magnetic resonance imaging and offer complementary information on brain organization and function. However, imaging only provides noisy measures, and we lack a good neuroscientific understanding of the links between structure and function. Therefore, inter-subject joint modeling of structural and functional connectivity, the key to multimodal biomarkers, is an open challenge. We present a probabilistic framework to learn across subjects a mapping from structural to functional brain connectivity. Expanding on our previous work [1], our approach is based on a predictive framework with multiple sparse linear regression. We rely on the randomized LASSO to identify relevant anatomo-functional links with some confidence interval. In addition, we describe resting-state functional magnetic resonance imaging in the setting of Gaussian graphical models, on the one hand imposing conditional independences from structural connectivity and on the other hand parameterizing the problem in terms of multivariate autoregressive models. We introduce an intrinsic measure of prediction error for functional connectivity that is independent of the parameterization chosen and provides the means for robust model selection. We demonstrate our methodology with regions within the default mode and the salience network as well as, atlas-based cortical parcellation.Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo magnetic resonance imaging and offer complementary information on brain organization and function. However, imaging only provides noisy measures, and we lack a good neuroscientific understanding of the links between structure and function. Therefore, inter-subject joint modeling of structural and functional connectivity, the key to multimodal biomarkers, is an open challenge. We present a probabilistic framework to learn across subjects a mapping from structural to functional brain connectivity. Expanding on our previous work [1], our approach is based on a predictive framework with multiple sparse linear regression. We rely on the randomized LASSO to identify relevant anatomo-functional links with some confidence interval. In addition, we describe resting-state functional magnetic resonance imaging in the setting of Gaussian graphical models, on the one hand imposing conditional independences from structural connectivity and on the other hand parameterizing the problem in terms of multivariate autoregressive models. We introduce an intrinsic measure of prediction error for functional connectivity that is independent of the parameterization chosen and provides the means for robust model selection. We demonstrate our methodology with regions within the default mode and the salience network as well as, atlas-based cortical parcellation.
Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in-vivo MRI and offer complementary information on brain organisation and function. However, imaging only provides noisy measures, and we lack a good neuroscientific understanding of the links between structure and function. Therefore, inter-subject joint modeling of structural and functional connectivity, the key to multimodal biomarkers, is an open challenge. We present a probabilistic framework to learn across subjects a mapping from structural to functional brain connectivity. Expanding on our previous work, our approach is based on a predictive framework with multiple sparse linear regression. We rely on the randomized LASSO to identify relevant anatomo-functional links with some confidence interval. In addition, we describe resting-state (rs)-fMRI in the setting of Gaussian graphical models, on the one hand imposing conditional independences from structural connectivity and on the other hand parameterizing the problem in terms of multivariate autoregressive models. We introduce an intrinsic measure of prediction error for functional connectivity that is independent of the parameterization chosen and provides the means for robust model selection. We demonstrate our methodology with regions within the default mode and the salience network as well as, atlas-based cortical parcellation.
Author Varoquaux, Gael
Thirion, Bertrand
Deligianni, Fani
Sharp, David J.
Leech, Robert
Ledig, Christian
Rueckert, Daniel
Author_xml – sequence: 1
  givenname: Fani
  surname: Deligianni
  fullname: Deligianni, Fani
  email: f.deligianni@ucl.ac.uk
  organization: Inst. of Child Health, Univ. Coll. London, London, UK
– sequence: 2
  givenname: Gael
  surname: Varoquaux
  fullname: Varoquaux, Gael
  organization: Parietal team, INRIA-Saclay, Saclay, France
– sequence: 3
  givenname: Bertrand
  surname: Thirion
  fullname: Thirion, Bertrand
  organization: Parietal team, INRIA-Saclay, Saclay, France
– sequence: 4
  givenname: David J.
  surname: Sharp
  fullname: Sharp, David J.
  organization: Dept. of Med., Imperial Coll. London, London, UK
– sequence: 5
  givenname: Christian
  surname: Ledig
  fullname: Ledig, Christian
  organization: Dept. of Comput., BioMedia Group, Imperial Coll. London, London, UK
– sequence: 6
  givenname: Robert
  surname: Leech
  fullname: Leech, Robert
  organization: Dept. of Med., Imperial Coll. London, London, UK
– sequence: 7
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Dept. of Comput., BioMedia Group, Imperial Coll. London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23934663$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-00852072$$DView record in HAL
BookMark eNp9kc1v1DAQxS3Uim4LdyQklCMcsvgjduzjasXSlbaA1CL1UMlynLFwSeLWcYr63-Owyx44cJrR-PfeyPPO0ckQBkDoDcFLQrD6eHO1XVJM2JLSWigiXqAF4VyWlFe3J2iBaS1LjAU9Q-fjeI8xqThWL9EZZYpVQrAFulsVm2h6-BXiz8KFWGyHBLG8npp7sKn4FqH1NvkwFMEVm2n405uuWIdhyIB_8uk5O4S-uE5xsmmK-fELpNlvfIVOnelGeH2oF-j75tPN-rLcff28Xa92pWWKp9JhaKwxDkBJwFRK51RrXdtUiqlG1VLkIRM1ZrRWhFBDCcmflawGY1rH2QX6sPf9YTr9EH1v4rMOxuvL1U7PM4wlp7imTySz7_fsQwyPE4xJ93600HVmgDCNmkhcSV4JPtu-O6BT00N7dP57vQzgPWBjGMcI7ogQrOeAdA5IzwHpQ0BZIv6RWJ_MfNQUje_-J3y7F3oAOO4RvOZEUfYbPfCcOw
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108626
crossref_primary_10_3389_fnins_2014_00258
crossref_primary_10_3390_brainsci13091297
crossref_primary_10_1016_j_media_2020_101799
crossref_primary_10_1016_j_neuroimage_2022_119037
crossref_primary_10_1016_j_neuroimage_2023_119975
crossref_primary_10_3389_fnimg_2022_850266
crossref_primary_10_1016_j_neuroimage_2018_07_047
crossref_primary_10_1371_journal_pcbi_1005325
crossref_primary_10_1038_s41598_018_23051_9
crossref_primary_10_1038_s41598_018_37300_4
crossref_primary_10_1371_journal_pone_0153404
crossref_primary_10_1016_j_neuroimage_2021_118288
crossref_primary_10_1002_hbm_25447
crossref_primary_10_1016_j_conbuildmat_2022_126408
crossref_primary_10_1109_TMI_2014_2341732
Cites_doi 10.1073/pnas.0811168106
10.1016/j.neuroimage.2010.06.041
10.1007/s00429-009-0208-6
10.2307/2528966
10.1016/S0896-6273(02)00679-7
10.1073/pnas.0913008107
10.1007/s11263-005-3222-z
10.1007/s10444-004-7634-z
10.1093/cercor/10.2.127
10.1111/j.1467-9868.2010.00740.x
10.1002/mrm.10609
10.1007/978-3-642-22092-0_25
10.1109/72.788640
10.1002/hbm.21058
10.1176/appi.ajp.164.3.450
10.1093/med/9780195369779.001.0001
10.1093/cercor/bhn059
10.1109/ISBI.2010.5490188
10.1016/j.neuroimage.2010.02.010
10.1109/TMI.2011.2166083
10.1007/s11682-008-9038-z
10.1098/rstb.2005.1634
10.1109/TMI.2009.2014372
10.1093/brain/awr175
10.1073/pnas.0403743101
10.1002/cpa.20132
10.1152/jn.00338.2011
10.1371/journal.pbio.0060159
10.1016/j.jphysparis.2012.01.001
10.1017/S0140525X04000196
10.1523/JNEUROSCI.2964-08.2008
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2008.05.059
10.1002/hbm.460020104
10.1109/42.796284
10.1016/j.neuroimage.2008.08.044
10.1137/S0895479894278952
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2011.04.010
10.1109/ISBI.2011.5872537
10.1002/hbm.460020107
10.1109/ISBI.2012.6235693
10.1016/j.neuroimage.2010.08.063
10.1111/j.1467-9868.2011.00771.x
10.1007/s004400050210
10.1186/1471-2202-5-42
10.1016/j.neuroimage.2006.02.024
10.1016/j.neuroimage.2007.02.012
10.1038/nrneurol.2009.198
10.1073/pnas.1113455109
10.1109/TMI.2010.2046908
10.1093/oso/9780198522195.001.0001
10.2217/iim.10.21
10.1109/42.906424
10.1016/j.neubiorev.2009.06.002
10.1016/j.neuroimage.2010.05.081
10.1038/nrn2575
10.1007/s10851-006-6897-z
10.1016/j.tins.2011.05.005
10.1073/pnas.1121329109
10.1016/j.neuroimage.2006.05.061
10.1109/MCSE.2011.35
10.1038/nrn893
10.1016/j.neuroimage.2010.01.019
10.1016/S0047-259X(03)00096-4
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1109/TMI.2013.2276916
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 2214
ExternalDocumentID oai_HAL_hal_00852072v1
23934663
10_1109_TMI_2013_2276916
6575192
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0701951
– fundername: Medical Research Council
  grantid: G0701782
– fundername: Department of Health
  grantid: NIHR-RP-011-048
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c395t-f0ebcaafee98e0288ff9dcfdb4939b978602836703279112a211916837eaadf53
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri May 09 12:14:37 EDT 2025
Sun Aug 24 03:53:46 EDT 2025
Mon Jul 21 06:05:13 EDT 2025
Tue Jul 01 03:15:53 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Tue Aug 26 16:42:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords functional brain connectivity
predictive modeling
statistical associations
structural brain connectivity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-f0ebcaafee98e0288ff9dcfdb4939b978602836703279112a211916837eaadf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5801-6318
0000-0003-1076-5122
OpenAccessLink https://inria.hal.science/hal-00852072
PMID 23934663
PQID 1804854655
PQPubID 23479
PageCount 15
ParticipantIDs pubmed_primary_23934663
crossref_primary_10_1109_TMI_2013_2276916
proquest_miscellaneous_1804854655
ieee_primary_6575192
hal_primary_oai_HAL_hal_00852072v1
crossref_citationtrail_10_1109_TMI_2013_2276916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle epub ahead of print
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
robinson (ref25) 2008; 5241
ref51
bach (ref37) 2011
ref50
wang (ref14) 2006; 4191
yeo (ref71) 2011; 106
ref45
ref48
ref42
ref41
ref43
ref49
donoho (ref46) 2006; 59
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
f rstner (ref47) 1999
ref2
ref1
ref39
ref38
lauritzen (ref44) 1996
varoquaux (ref32) 2010
varoquaux (ref72) 2011
ref70
pedregosa (ref61) 2011; 12
ref73
ref68
ref24
ref67
ref23
ref26
ref69
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
References_xml – ident: ref30
  doi: 10.1073/pnas.0811168106
– ident: ref67
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: ref29
  doi: 10.1007/s00429-009-0208-6
– ident: ref43
  doi: 10.2307/2528966
– ident: ref65
  doi: 10.1016/S0896-6273(02)00679-7
– ident: ref7
  doi: 10.1073/pnas.0913008107
– ident: ref48
  doi: 10.1007/s11263-005-3222-z
– ident: ref36
  doi: 10.1007/s10444-004-7634-z
– ident: ref6
  doi: 10.1093/cercor/10.2.127
– ident: ref50
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: ref59
  doi: 10.1002/mrm.10609
– ident: ref1
  doi: 10.1007/978-3-642-22092-0_25
– ident: ref33
  doi: 10.1109/72.788640
– ident: ref12
  doi: 10.1002/hbm.21058
– volume: 4191
  start-page: 340
  year: 2006
  ident: ref14
  article-title: Discriminative analysis of early alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI
  publication-title: Proc MICCAI
– ident: ref11
  doi: 10.1176/appi.ajp.164.3.450
– ident: ref17
  doi: 10.1093/med/9780195369779.001.0001
– ident: ref27
  doi: 10.1093/cercor/bhn059
– ident: ref64
  doi: 10.1109/ISBI.2010.5490188
– ident: ref58
  doi: 10.1016/j.neuroimage.2010.02.010
– ident: ref31
  doi: 10.1109/TMI.2011.2166083
– ident: ref62
  doi: 10.1007/s11682-008-9038-z
– ident: ref21
  doi: 10.1098/rstb.2005.1634
– ident: ref56
  doi: 10.1109/TMI.2009.2014372
– ident: ref15
  doi: 10.1093/brain/awr175
– ident: ref18
  doi: 10.1073/pnas.0403743101
– volume: 59
  start-page: 797
  year: 2006
  ident: ref46
  article-title: For most large underdetermined systems of linear equations the minimal <tex Notation="TeX">$\ell_{1}$</tex> -norm solution is also the sparsest solution
  publication-title: Comm Pure Appl Math
  doi: 10.1002/cpa.20132
– volume: 106
  start-page: 1125
  year: 2011
  ident: ref71
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophys
  doi: 10.1152/jn.00338.2011
– ident: ref22
  doi: 10.1371/journal.pbio.0060159
– ident: ref42
  doi: 10.1016/j.jphysparis.2012.01.001
– ident: ref10
  doi: 10.1017/S0140525X04000196
– ident: ref19
  doi: 10.1002/mrm.10609
– ident: ref28
  doi: 10.1523/JNEUROSCI.2964-08.2008
– ident: ref51
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: ref40
  doi: 10.1016/j.neuroimage.2008.05.059
– ident: ref66
  doi: 10.1002/hbm.460020104
– ident: ref53
  doi: 10.1109/42.796284
– start-page: 562
  year: 2011
  ident: ref72
  article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
  publication-title: Proc IPMI
– ident: ref69
  doi: 10.1016/j.neuroimage.2008.08.044
– ident: ref45
  doi: 10.1137/S0895479894278952
– ident: ref5
  doi: 10.1371/journal.pcbi.0010042
– ident: ref3
  doi: 10.1016/j.neuroimage.2011.04.010
– ident: ref70
  doi: 10.1109/ISBI.2011.5872537
– ident: ref2
  doi: 10.1002/hbm.460020107
– ident: ref57
  doi: 10.1109/ISBI.2012.6235693
– ident: ref41
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: ref35
  doi: 10.1111/j.1467-9868.2011.00771.x
– ident: ref34
  doi: 10.1007/s004400050210
– ident: ref8
  doi: 10.1186/1471-2202-5-42
– ident: ref38
  doi: 10.1016/j.neuroimage.2006.02.024
– ident: ref23
  doi: 10.1016/j.neuroimage.2007.02.012
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref61
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– start-page: 451
  year: 2011
  ident: ref37
  article-title: Non-asymptotic analysis of stochastic approximation algorithms for machine learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref26
  doi: 10.1038/nrneurol.2009.198
– ident: ref16
  doi: 10.1073/pnas.1113455109
– ident: ref52
  doi: 10.1109/TMI.2010.2046908
– year: 1996
  ident: ref44
  publication-title: Graphical Models
  doi: 10.1093/oso/9780198522195.001.0001
– ident: ref39
  doi: 10.2217/iim.10.21
– ident: ref55
  doi: 10.1109/42.906424
– ident: ref13
  doi: 10.1016/j.neubiorev.2009.06.002
– ident: ref9
  doi: 10.1016/j.neuroimage.2010.05.081
– ident: ref4
  doi: 10.1038/nrn2575
– volume: 5241
  start-page: 486
  year: 2008
  ident: ref25
  article-title: Multivariate statistical analysis of whole brain structural networks obtained using probabilistic tractography
  publication-title: Proc MICCAI
– ident: ref49
  doi: 10.1007/s10851-006-6897-z
– ident: ref63
  doi: 10.1016/j.tins.2011.05.005
– start-page: 2334
  year: 2010
  ident: ref32
  article-title: Brain covariance selection: Better individual functional connectivity models using population prior
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref20
  doi: 10.1073/pnas.1121329109
– ident: ref54
  doi: 10.1016/j.neuroimage.2006.05.061
– ident: ref73
  doi: 10.1109/MCSE.2011.35
– start-page: 113
  year: 1999
  ident: ref47
  article-title: A metric for covariance matrices
  publication-title: Qua Vadis Geodesia
– ident: ref68
  doi: 10.1038/nrn893
– ident: ref24
  doi: 10.1016/j.neuroimage.2010.01.019
– ident: ref60
  doi: 10.1016/S0047-259X(03)00096-4
SSID ssj0014509
Score 2.2423532
Snippet Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in vivo...
Functional connections between brain regions are supported by structural connectivity. Both functional and structural connectivity are estimated from in-vivo...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2200
SubjectTerms Bioengineering
Brain models
Cognitive science
Computer Science
Correlation
Covariance matrices
Functional brain connectivity
Life Sciences
Matrix decomposition
Medical Imaging
Neuroscience
predictive modeling
Predictive models
statistical associations
structural brain connectivity
Symmetric matrices
Title A Framework for Inter-Subject Prediction of Functional Connectivity From Structural Networks
URI https://ieeexplore.ieee.org/document/6575192
https://www.ncbi.nlm.nih.gov/pubmed/23934663
https://www.proquest.com/docview/1804854655
https://inria.hal.science/hal-00852072
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SHEpzyGfTOEmDWnIp1Lu2bMur4xK6bEM2FJpADgEjyRKBJuvS7PbQX58ZyTZJaUpvxsjG5o1HT5rnNwAnpaIll6HmLlrFeVrqWOc2ja3LdSpqS7Sc1BYXYnqVn10X1yvwqf8XxlrrxWd2QIe-ll83ZklbZUNfJJCYcFcxzMK_Wn3FIC-CnIOTY2wieFeSTOTwcvaFNFzZgPNSIB0iA-BMZrkQ2bPZaPWWtJC-ycrLfNPPO5NNmHVPHOQm3wfLhR6Y33-YOf7vK23BRktA2ThEzDas2PkOrD-xJdyBV7O24L4LN2M26eRbDPkt8zuIMaYb2r9hX3_SSMKWNY5NcI4MW4vM62dM6EyBd2ju2TdvVEsmH-wiSM8f3sDV5PPl6TRuGzLEJpPFInYJSaeUs1aOLBKTkXOyNq7WucykxvWoILYiMInwEpMoV94-TuAa2CpVuyLbg7V5M7f7wJRTHNlRarmsMYfU2qQGydeIpyZBhsQjGHbAVKZ1K6emGXeVX7UkskJUK0K1alGN4GN_xY_g1PGPsR8Q634YWWxPx-cVnSMOypOS_0oj2CW8-lEtVBG870Kjwk-R6itqbpvlQ5WOMB1Sc_kigrchZvqLu4A7-PtND-E1PV_QyRzBGkJi3yHbWehjH-aPPsD3Hw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1di9QwFL2sK_jx4MeuuvUzii-CnWnTNp08DuIwqzOD4CzsgxCSNEFQp7I748P--r03aYuKim-lpKXl3N6c5J6eC_Cy1rTkstTcxei0zGuTmtLlqfOlyUXjiJaT2mIl5iflu9PqdA9eD__COOeC-MyN6DDU8pvW7mirbByKBBIT7lWc98sq_q011AzKKgo6OHnGZoL3RclMjtfLY1JxFSPOa4GEiCyAC1mUQhS_zEdXPpMaMrRZ-TvjDDPP7DYs-2eOgpMvo93WjOzFb3aO__tSd-BWR0HZNMbMXdhzmwO4-ZMx4QFcW3Yl90P4NGWzXsDFkOGysIeYYsKhHRz24YxGErqs9WyGs2TcXGRBQWNjbwq8Q_uNfQxWtWTzwVZRfH5-D05mb9dv5mnXkiG1hay2qc9IPKW9c3LikJpMvJeN9Y0pZSENrkgF8RWBaYTXmEa5DgZyAlfBTuvGV8V92N-0G3cETHvNkR_ljssGs0hjbG6Rfk14bjPkSDyBcQ-Msp1fObXN-KrCuiWTClFVhKrqUE3g1XDF9-jV8Y-xLxDrYRiZbM-nC0XniIXyrOY_8gQOCa9hVAdVAs_70FD4MVKFRW9cuztX-QQTIrWXrxJ4EGNmuLgPuId_vukzuD5fLxdqcbx6_whu0LNG1cxj2Ed43BPkPlvzNIT8JVZV-mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Inter-Subject+Prediction+of+Functional+Connectivity+From+Structural+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Deligianni%2C+Fani&rft.au=Varoquaux%2C+Gael&rft.au=Thirion%2C+Bertrand&rft.au=Sharp%2C+David+J&rft.date=2013-12-01&rft.eissn=1558-254X&rft.volume=32&rft.issue=12&rft.spage=2200&rft_id=info:doi/10.1109%2FTMI.2013.2276916&rft_id=info%3Apmid%2F23934663&rft.externalDocID=23934663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon