Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference
In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection eff...
Saved in:
Published in | Nuclear engineering and technology Vol. 57; no. 9; p. 103670 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
Elsevier 한국원자력학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-5733 2234-358X |
DOI | 10.1016/j.net.2025.103670 |
Cover
Abstract | In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry. |
---|---|
AbstractList | In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by threeto six-fold over conventional deterministic variable-based nondestructive gamma spectrometry. KCI Citation Count: 0 In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry. |
ArticleNumber | 103670 |
Author | Park, Jungsuk Ryu, Jichang Cho, Gyuseung Han, Wookjin |
Author_xml | – sequence: 1 givenname: Jichang orcidid: 0000-0003-3048-5398 surname: Ryu fullname: Ryu, Jichang email: jichang.ryu@kins.re.kr organization: Korea Institute of Nuclear Safety, Yuseong-gu, Daejeon, Republic of Korea – sequence: 2 givenname: Gyuseung surname: Cho fullname: Cho, Gyuseung organization: Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, Yuseong-gu, Daejeon, Republic of Korea – sequence: 3 givenname: Jungsuk surname: Park fullname: Park, Jungsuk organization: KEPCO Nuclear Fuel Company, Yuseong-gu, Daejeon, Republic of Korea – sequence: 4 givenname: Wookjin surname: Han fullname: Han, Wookjin organization: KEPCO Nuclear Fuel Company, Yuseong-gu, Daejeon, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003220041$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc9uEzEQxleoSKSFB-DmM9IGe-39J06hojRSJRAqEjdr1h6HSRMbbG9RnoWXrZMgxInTyJ7v-81ovsvqwgePVfVa8KXgonu7XXrMy4Y3bXnLrufPqkXTSFXLdvh2US1EL4e67aV8UV2mtOW8U6rni-r35xgmmGhHKZNh-2BxR37DgmPfMWMMG_QY5sQiWApgMj0i-wUpI3MhsjmCp3n_T5fygf2cwWdyZCBT8GxORyJ4tlrXEyS0LM2xkKFATgNLz7L3cMBERUXeYURv8GX13MEu4as_9ar6evPh_vq2vvv0cX29uquNHNtcOz5J10szGjlMapRGqalTrUOrrMIWeolCOtdxqwCVk804KWktB4cNwGTlVfXmzPXR6QdDOgCd6iboh6hXX-7XWvBecilUEa_PYhtgq39E2kM8nBynjxA3GmI55Q614WMzCG44mFaJsmBjTN81wrZTrwbghSXOLBNDShHdX57g-hir3uoSqz7Gqs-xFs-7swfLRR4Jo06GjteyFNHksgX9x_0E1Ziwww |
Cites_doi | 10.1016/j.apradiso.2021.109803 10.1080/00223131.2023.2275736 10.1007/s41781-021-00056-0 10.1016/j.nima.2021.165887 10.1063/1.1699114 10.1016/S0168-9002(03)01368-8 10.1016/j.nimb.2014.07.042 10.1016/j.apradiso.2023.110691 10.1364/JOSAA.14.001007 10.1002/mp.12903 10.1093/biomet/57.1.97 10.1016/S0168-9002(01)00181-4 10.1109/TNS.2021.3100863 10.1103/PhysRevD.97.014021 10.1103/PhysRevD.108.072014 10.1016/j.nima.2020.164985 10.1109/TNS.2023.3281154 10.1214/20-BA1221 |
ContentType | Journal Article |
Copyright | 2025 Korean Nuclear Society |
Copyright_xml | – notice: 2025 Korean Nuclear Society |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.net.2025.103670 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-358X |
ExternalDocumentID | oai_kci_go_kr_ARTI_10730314 oai_doaj_org_article_c092810c0ac5413c92cc7621d5b748a0 10_1016_j_net_2025_103670 S1738573325002384 |
GroupedDBID | 0R~ 123 4.4 457 5VS 6I. 9ZL AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ACYCR ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 O9- OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c395t-f0b3f73c9c38b493c44b645fed4d4e5a73e13ff60d4ae4f329b43dd0afe2aabd3 |
IEDL.DBID | DOA |
ISSN | 1738-5733 |
IngestDate | Fri Jul 04 03:53:07 EDT 2025 Mon Sep 08 19:52:25 EDT 2025 Thu Jul 03 08:20:00 EDT 2025 Sat Jul 05 17:12:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Uranium Heterogeneous radioactive waste In-situ Bayesian inference Nondestructive assay Gamma spectrometry |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-f0b3f73c9c38b493c44b645fed4d4e5a73e13ff60d4ae4f329b43dd0afe2aabd3 |
ORCID | 0000-0003-3048-5398 |
OpenAccessLink | https://doaj.org/article/c092810c0ac5413c92cc7621d5b748a0 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10730314 doaj_primary_oai_doaj_org_article_c092810c0ac5413c92cc7621d5b748a0 crossref_primary_10_1016_j_net_2025_103670 elsevier_sciencedirect_doi_10_1016_j_net_2025_103670 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 2025-09-01 2025-09 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear engineering and technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier 한국원자력학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국원자력학회 |
References | (bib5) 2024 Sato, Iwamoto, Hashimoto, Ogawa, Furuta, Abe, Kai, Matsuya, Matsuda, Hirata, Sekikawa, Yao, Tsai, Ratliff, Iwase, Sakaki, Sugihara, Shigyo, Sihver, Niita (bib7) 2024; 61 Buhmann, Diefenbacher, Eren, Gaede, Kasieczka, Korol, Kruger (bib20) 2021; 5 Agostinelli, Allison, Amako, Apostolakis, Araujo, Arce, Asai, Axen, Banerjee, Barrand, Behner, Bellagamba, Boudreau, Broglia, Brunengo, Burkhardt, Chauvie, Chuma, Chytracek, Cooperman, Cosmo, Degtyarenko, Dell'Acqua, Depaola, Dietrich, Enami, Feliciello, Ferguson, Fesefeldt, Folger, Foppiano, Forti, Garelli, Giani, Giannitrapani, Gibin, Gómez Cadenas, González, Gracia Abril, Greeniaus, Greiner, Grichine, Grossheim, Guatelli, Gumplinger, Hamatsu, Hashimoto, Hasui, Heikkinen, Howard, Ivanchenko, Johnson, Jones, Kallenbach, Kanaya, Kawabata, Kawabata, Kawaguti, Kelner, Kent, Kimura, Kodama, Kokoulin, Kossov, Kurashige, Lamanna, Lampén, Lara, Lefebure, Lei, Liendl, Lockman, Longo, Magni, Maire, Medernach, Minamimoto, Mora de Freitas, Morita, Murakami, Nagamatu, Nartallo, Nieminen, Nishimura, Ohtsubo, Okamura, O'Neale, Oohata, Paech, Perl, Pfeiffer, Pia, Ranjard, Rybin, Sadilov, Di Salvo, Santin, Sasaki, Savvas, Sawada, Scherer, Sei, Sirotenko, Smith, Starkov, Stoecker, Sulkimo, Takahata, Tanaka, Tcherniaev, Safai Tehrani, Tropeano, Truscott, Uno, Urban, Urban, Verderi, Walkden, Wander, Weber, Wellisch, Wenaus, Williams, Wright, Yamada, Yoshida, Zschiesche (bib8) 2003; 506 Be, Chiste, Dulieu, Mougeot, Chechev, Kuzmenko, Kondev, Luca, Galan, Nichols, Arinc, Pearce, Huang, Wang (bib18) 2011; 6 Phan, Pradhan, Jankowiak (bib30) 2019 Romero, Garcia-Beltran, Hernandez-Andres (bib32) 1997; 14 (bib3) 2007 Hoffman, Gelman (bib28) 2014; 15 Rizescu, Beşliu, Jipa (bib9) 2001; 465 Akiba, Sano, Yanase, Ohta, Koyams (bib31) 2019 Laloy, Rogiers, Bielen, Boden (bib11) 2021; 175 Hua, Shapira, Merchant, Klahr, Yagil (bib34) 2018; 45 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib26) 1953; 21 Bucherl, Rummel, Kalthoff (bib12) 2021; 1019 Kingma, Ba (bib25) 2014 (bib1) 2009 Be, Chiste, Dulieu, Browne, Baglin, Chechev, Kuzmenko, Helmer, Kondev, MacMahon, Lee (bib16) 2006; 3 Heek, Levskaya, Oliver, Ritter, Rondepierre, Steiner, van Zee (bib24) 2023 Carasco (bib15) 2021; 990 Clement, Saurel, Perrin, Gombert (bib10) 2021; 68 Hastings (bib27) 1970; 57 (bib4) 2024 Laloy, Rogiers, Bielen, Borella, Boden (bib14) 2023; 194 Werner, Bull, Solomon, Brown, McKinney, Rising, Dixon, Martz, Hughes, Cox, Zukaitis, Armstrong, Forster, Casswell (bib6) 2018 Ryu, Hong, Park, Cho (bib13) 2023; 70 Amram, Pedro (bib22) 2023; 108 Krause, Shih (bib21) 2021 Detwiler, McConn, Grimes, Upton, Engel (bib35) 2021 Paganini, de Oliveira, Nachman (bib19) 2018; 97 Vehtari, Gelman, Simpson, Carpenter, Burkner (bib29) 2021; 16 Kingma, Welling (bib23) 2013 Be, Chiste, Dulieu, Mougeot, Browne, Chechev, Kuzmenko, Kondev, Luca, Galan, Nicholas, Arinc, Huang (bib17) 2010; 5 (bib2) 2004 Brown, Dimmock, Gillam, Paganin (bib33) 2014; 338 (10.1016/j.net.2025.103670_bib4) 2024 Sato (10.1016/j.net.2025.103670_bib7) 2024; 61 Agostinelli (10.1016/j.net.2025.103670_bib8) 2003; 506 Metropolis (10.1016/j.net.2025.103670_bib26) 1953; 21 Krause (10.1016/j.net.2025.103670_bib21) 2021 Buhmann (10.1016/j.net.2025.103670_bib20) 2021; 5 (10.1016/j.net.2025.103670_bib1) 2009 Hua (10.1016/j.net.2025.103670_bib34) 2018; 45 Bucherl (10.1016/j.net.2025.103670_bib12) 2021; 1019 Carasco (10.1016/j.net.2025.103670_bib15) 2021; 990 Kingma (10.1016/j.net.2025.103670_bib25) 2014 Amram (10.1016/j.net.2025.103670_bib22) 2023; 108 Ryu (10.1016/j.net.2025.103670_bib13) 2023; 70 Laloy (10.1016/j.net.2025.103670_bib11) 2021; 175 Romero (10.1016/j.net.2025.103670_bib32) 1997; 14 Kingma (10.1016/j.net.2025.103670_bib23) 2013 Vehtari (10.1016/j.net.2025.103670_bib29) 2021; 16 (10.1016/j.net.2025.103670_bib3) 2007 Phan (10.1016/j.net.2025.103670_bib30) 2019 Detwiler (10.1016/j.net.2025.103670_bib35) 2021 Paganini (10.1016/j.net.2025.103670_bib19) 2018; 97 Clement (10.1016/j.net.2025.103670_bib10) 2021; 68 Hastings (10.1016/j.net.2025.103670_bib27) 1970; 57 Rizescu (10.1016/j.net.2025.103670_bib9) 2001; 465 Brown (10.1016/j.net.2025.103670_bib33) 2014; 338 Heek (10.1016/j.net.2025.103670_bib24) Be (10.1016/j.net.2025.103670_bib18) 2011; 6 (10.1016/j.net.2025.103670_bib2) 2004 Werner (10.1016/j.net.2025.103670_bib6) 2018 Laloy (10.1016/j.net.2025.103670_bib14) 2023; 194 Be (10.1016/j.net.2025.103670_bib16) 2006; 3 Be (10.1016/j.net.2025.103670_bib17) 2010; 5 Akiba (10.1016/j.net.2025.103670_bib31) 2019 Hoffman (10.1016/j.net.2025.103670_bib28) 2014; 15 |
References_xml | – volume: 338 start-page: 77 year: 2014 end-page: 88 ident: bib33 article-title: A low energy bound atomic electron Compton scattering model for Geant4 publication-title: Nucl. Instrum. Methods Phys. Res. B. – year: 2023 ident: bib24 article-title: Flax: a neural network library and ecosystem for JAX – year: 2004 ident: bib2 article-title: Application of the Concepts of Exclusion, Exemption and Clearance, IAEA Safety Standards Series No. RS-G-1.7 – volume: 465 start-page: 584 year: 2001 end-page: 599 ident: bib9 article-title: Determination of local density and effective atomic number by the dual-energy computerized tomography method with the 192Ir radioisotope publication-title: Nucl. Instrum. Methods Phys. Res. A. – volume: 3 year: 2006 ident: bib16 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – year: 2021 ident: bib21 article-title: CaloFlow Ⅱ: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows, arXiv Preprint – volume: 68 start-page: 2342 year: 2021 end-page: 2349 ident: bib10 article-title: Bayesian approach for multigamma radionuclide quantification applied on weakly attenuating nuclear waste drums Bayesian approach publication-title: IEEE Trans. Nucl. Sci. – volume: 1019 year: 2021 ident: bib12 article-title: A Bayesian method for the evaluation of segmented gamma scanning measurements – description of the principle publication-title: Nucl. Instrum. Methods Phys. Res. – volume: 175 year: 2021 ident: bib11 article-title: Bayesian inference of 1D activity profiles from segmented gamma scanning of a heterogeneous radioactive waste drum publication-title: Appl. Radiat. Isot. – volume: 14 start-page: 1007 year: 1997 end-page: 1014 ident: bib32 article-title: Linear bases for representation of natural and artificial illuminants publication-title: JOSA A – year: 2013 ident: bib23 article-title: Auto-encoding Variational Bayes, arXiv Preprint – volume: 45 start-page: 2486 year: 2018 end-page: 2497 ident: bib34 article-title: Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual‐layer dual‐energy computed tomography system publication-title: Med. Phys. – volume: 194 year: 2023 ident: bib14 article-title: Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling publication-title: Appl. Radiat. Isot. – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bib26 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. – year: 2014 ident: bib25 article-title: Adam: A Method for Stochastic Optimization, arXiv Preprint – year: 2018 ident: bib6 article-title: MCNP Version 6.2 Release Notes, Los Alamos Natl. Lab., Los Alamos, NM (United States) – year: 2021 ident: bib35 article-title: Compendium of Material Composition Data for Radiation Transport Modeling, Pacific Northwest Natl. Lab., Richland, WA (United States) – volume: 990 year: 2021 ident: bib15 article-title: Coupling gamma ray spectrometry and tomography in a Bayesian frame publication-title: Nucl. Instrum. Methods Phys. Res. – year: 2019 ident: bib30 article-title: Composable Effects for Flexible and Accelerated Probabilistic Programming in Numpyro, arXiv Preprint – volume: 70 start-page: 1477 year: 2023 end-page: 1489 ident: bib13 article-title: Bayesian inference for the quantitative analysis of non- uniformly distributed uranium radioactivity in a waste drum publication-title: IEEE Trans. Nucl. Sci. – volume: 15 start-page: 1593 year: 2014 end-page: 1623 ident: bib28 article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 127 year: 2024 end-page: 135 ident: bib7 article-title: Recent improvements of the particle and heavy ion transport code system - PHITS version 3.33 publication-title: J. Nucl. Sci. Technol. – year: 2009 ident: bib1 article-title: Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1 – year: 2024 ident: bib5 article-title: ISOTOPIC gamma spectrometry waste assay measurement – volume: 16 start-page: 667 year: 2021 end-page: 718 ident: bib29 article-title: Rank-normalization, folding, and localization: an improved Rfor assessing convergence of MCMC (with discussion) publication-title: Bayesian analysis – volume: 506 start-page: 250 year: 2003 end-page: 303 ident: bib8 article-title: GEANT4—a simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res. – year: 2007 ident: bib3 article-title: Strategy and Methodology for Radioactive Waste Characterization, IAEA-TECDOC-1537 – volume: 5 year: 2010 ident: bib17 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – volume: 5 start-page: 13 year: 2021 ident: bib20 article-title: Getting high: high fidelity simulation of high granularity calorimeters with high speed publication-title: Comput. Softw. Big Sci. – start-page: 2623 year: 2019 end-page: 2631 ident: bib31 article-title: Optuna: a next-generation hyperparameter optimization framework publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: bib27 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 6 year: 2011 ident: bib18 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – volume: 108 year: 2023 ident: bib22 article-title: Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation publication-title: Phys. Rev. D – year: 2024 ident: bib4 publication-title: Situ Object Counting System (ISOCS) – volume: 97 year: 2018 ident: bib19 article-title: CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks publication-title: Phys. Rev. D – volume: 175 year: 2021 ident: 10.1016/j.net.2025.103670_bib11 article-title: Bayesian inference of 1D activity profiles from segmented gamma scanning of a heterogeneous radioactive waste drum publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2021.109803 – year: 2018 ident: 10.1016/j.net.2025.103670_bib6 – year: 2019 ident: 10.1016/j.net.2025.103670_bib30 – volume: 61 start-page: 127 year: 2024 ident: 10.1016/j.net.2025.103670_bib7 article-title: Recent improvements of the particle and heavy ion transport code system - PHITS version 3.33 publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2023.2275736 – ident: 10.1016/j.net.2025.103670_bib24 – volume: 15 start-page: 1593 year: 2014 ident: 10.1016/j.net.2025.103670_bib28 article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: J. Mach. Learn. Res. – year: 2004 ident: 10.1016/j.net.2025.103670_bib2 – year: 2024 ident: 10.1016/j.net.2025.103670_bib4 – volume: 5 start-page: 13 year: 2021 ident: 10.1016/j.net.2025.103670_bib20 article-title: Getting high: high fidelity simulation of high granularity calorimeters with high speed publication-title: Comput. Softw. Big Sci. doi: 10.1007/s41781-021-00056-0 – volume: 1019 year: 2021 ident: 10.1016/j.net.2025.103670_bib12 article-title: A Bayesian method for the evaluation of segmented gamma scanning measurements – description of the principle publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/j.nima.2021.165887 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.net.2025.103670_bib26 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 3 year: 2006 ident: 10.1016/j.net.2025.103670_bib16 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – volume: 506 start-page: 250 issue: 3 year: 2003 ident: 10.1016/j.net.2025.103670_bib8 article-title: GEANT4—a simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/S0168-9002(03)01368-8 – year: 2021 ident: 10.1016/j.net.2025.103670_bib35 – year: 2007 ident: 10.1016/j.net.2025.103670_bib3 – volume: 5 year: 2010 ident: 10.1016/j.net.2025.103670_bib17 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – volume: 338 start-page: 77 year: 2014 ident: 10.1016/j.net.2025.103670_bib33 article-title: A low energy bound atomic electron Compton scattering model for Geant4 publication-title: Nucl. Instrum. Methods Phys. Res. B. doi: 10.1016/j.nimb.2014.07.042 – volume: 194 year: 2023 ident: 10.1016/j.net.2025.103670_bib14 article-title: Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2023.110691 – year: 2021 ident: 10.1016/j.net.2025.103670_bib21 – start-page: 2623 year: 2019 ident: 10.1016/j.net.2025.103670_bib31 article-title: Optuna: a next-generation hyperparameter optimization framework – volume: 14 start-page: 1007 year: 1997 ident: 10.1016/j.net.2025.103670_bib32 article-title: Linear bases for representation of natural and artificial illuminants publication-title: JOSA A doi: 10.1364/JOSAA.14.001007 – volume: 45 start-page: 2486 issue: 6 year: 2018 ident: 10.1016/j.net.2025.103670_bib34 article-title: Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual‐layer dual‐energy computed tomography system publication-title: Med. Phys. doi: 10.1002/mp.12903 – volume: 57 start-page: 97 year: 1970 ident: 10.1016/j.net.2025.103670_bib27 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 465 start-page: 584 issue: 2–3 year: 2001 ident: 10.1016/j.net.2025.103670_bib9 article-title: Determination of local density and effective atomic number by the dual-energy computerized tomography method with the 192Ir radioisotope publication-title: Nucl. Instrum. Methods Phys. Res. A. doi: 10.1016/S0168-9002(01)00181-4 – volume: 68 start-page: 2342 year: 2021 ident: 10.1016/j.net.2025.103670_bib10 article-title: Bayesian approach for multigamma radionuclide quantification applied on weakly attenuating nuclear waste drums Bayesian approach publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2021.3100863 – volume: 6 year: 2011 ident: 10.1016/j.net.2025.103670_bib18 article-title: Table of radionuclides publication-title: Mono. BIPM-5 – volume: 97 year: 2018 ident: 10.1016/j.net.2025.103670_bib19 article-title: CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.014021 – volume: 108 year: 2023 ident: 10.1016/j.net.2025.103670_bib22 article-title: Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.072014 – year: 2014 ident: 10.1016/j.net.2025.103670_bib25 – volume: 990 year: 2021 ident: 10.1016/j.net.2025.103670_bib15 article-title: Coupling gamma ray spectrometry and tomography in a Bayesian frame publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/j.nima.2020.164985 – volume: 70 start-page: 1477 year: 2023 ident: 10.1016/j.net.2025.103670_bib13 article-title: Bayesian inference for the quantitative analysis of non- uniformly distributed uranium radioactivity in a waste drum publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2023.3281154 – year: 2013 ident: 10.1016/j.net.2025.103670_bib23 – year: 2009 ident: 10.1016/j.net.2025.103670_bib1 – volume: 16 start-page: 667 issue: 2 year: 2021 ident: 10.1016/j.net.2025.103670_bib29 article-title: Rank-normalization, folding, and localization: an improved Rfor assessing convergence of MCMC (with discussion) publication-title: Bayesian analysis doi: 10.1214/20-BA1221 |
SSID | ssj0064470 |
Score | 2.349093 |
Snippet | In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 103670 |
SubjectTerms | Bayesian inference Gamma spectrometry Heterogeneous radioactive waste In-situ Nondestructive assay Uranium 원자력공학 |
Title | Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference |
URI | https://dx.doi.org/10.1016/j.net.2025.103670 https://doaj.org/article/c092810c0ac5413c92cc7621d5b748a0 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003220041 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Engineering and Technology, 2025, 57(9) |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ba9YwFA9zT_NBplP8nErAPQnFtrm0edzEsQuOCQ72Fk5us461Wr8i_i3-s54kX6W-6IsvLTQhJ-R3ci70XAg5YIFLC6EpnLKy4C5UhRICCgXAg21QIqYCpu8v5MkVP7sW14tWXzEmLJcHzgf3xpaqbqvSlmAFClyramvxAldOmIa3kLz1UpWzM5VlMCr5JqdC4nWOFf_m_5kpsgt9fnQMaxETzmXsUrzQSKlw_x-K6V4_hoXKOd4lDza2Ij3Me3xItnz_iNxfVBDcIz8vR7yQMcA11lumqa8NDtAh0E8x0GVA_vDo3NMRXDdAEm70OyC0FK1VOqGm6qa7xSga5fTrBDmEKKFGY2j8DYWeHp4WUek5-m0acWW0UjNBHHP0CH74mJBJuzmF8DG5On738e1Jsem3UFimxLoIpWGhwSO2rDVcMcu5kVwE77jjXkDDfMVCkKXj4HlgtTKcOVdC8DWAcewJ2e6H3j8lVFghIggN1J5L4QGkdAZQIxuHJmW7Iq_nM9dfclkNPcebfdYIkI4A6QzQihxFVH5PjBWx0wfkE73hE_0vPlkRPmOqN8ZFNhpwqe5vtF8h_vrWdolsfN8M-nbU6G6c4hwUkKziz_7HDvfJTiScA9iek-31OPkXaPGszcvE3Pg8_9D-Ah9OAQM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+modeling+of+heterogeneous+radioactive+waste+for+uranium+radioactivity+quantification+using+an+AI-based+surrogate+model+and+Bayesian+inference&rft.jtitle=Nuclear+engineering+and+technology&rft.au=%EB%A5%98%EC%A7%80%EC%B0%BD&rft.au=%EC%A1%B0%EA%B7%9C%EC%84%B1&rft.au=%EB%B0%95%EC%A0%95%EC%84%9D%28%ED%95%9C%EC%A0%84%EC%9B%90%EC%9E%90%EB%A0%A5%EC%97%B0%EB%A3%8C&rft.au=%ED%95%9C%EC%9A%B1%EC%A7%84%28%ED%95%9C%EC%A0%84%EC%9B%90%EC%9E%90%EB%A0%A5%EC%97%B0%EB%A3%8C&rft.date=2025-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9B%90%EC%9E%90%EB%A0%A5%ED%95%99%ED%9A%8C&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016%2Fj.net.2025.103670&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10730314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |