Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference

In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection eff...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 57; no. 9; p. 103670
Main Authors Ryu, Jichang, Cho, Gyuseung, Park, Jungsuk, Han, Wookjin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2025.103670

Cover

Abstract In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry.
AbstractList In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by threeto six-fold over conventional deterministic variable-based nondestructive gamma spectrometry. KCI Citation Count: 0
In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry.
ArticleNumber 103670
Author Park, Jungsuk
Ryu, Jichang
Cho, Gyuseung
Han, Wookjin
Author_xml – sequence: 1
  givenname: Jichang
  orcidid: 0000-0003-3048-5398
  surname: Ryu
  fullname: Ryu, Jichang
  email: jichang.ryu@kins.re.kr
  organization: Korea Institute of Nuclear Safety, Yuseong-gu, Daejeon, Republic of Korea
– sequence: 2
  givenname: Gyuseung
  surname: Cho
  fullname: Cho, Gyuseung
  organization: Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, Yuseong-gu, Daejeon, Republic of Korea
– sequence: 3
  givenname: Jungsuk
  surname: Park
  fullname: Park, Jungsuk
  organization: KEPCO Nuclear Fuel Company, Yuseong-gu, Daejeon, Republic of Korea
– sequence: 4
  givenname: Wookjin
  surname: Han
  fullname: Han, Wookjin
  organization: KEPCO Nuclear Fuel Company, Yuseong-gu, Daejeon, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003220041$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc9uEzEQxleoSKSFB-DmM9IGe-39J06hojRSJRAqEjdr1h6HSRMbbG9RnoWXrZMgxInTyJ7v-81ovsvqwgePVfVa8KXgonu7XXrMy4Y3bXnLrufPqkXTSFXLdvh2US1EL4e67aV8UV2mtOW8U6rni-r35xgmmGhHKZNh-2BxR37DgmPfMWMMG_QY5sQiWApgMj0i-wUpI3MhsjmCp3n_T5fygf2cwWdyZCBT8GxORyJ4tlrXEyS0LM2xkKFATgNLz7L3cMBERUXeYURv8GX13MEu4as_9ar6evPh_vq2vvv0cX29uquNHNtcOz5J10szGjlMapRGqalTrUOrrMIWeolCOtdxqwCVk804KWktB4cNwGTlVfXmzPXR6QdDOgCd6iboh6hXX-7XWvBecilUEa_PYhtgq39E2kM8nBynjxA3GmI55Q614WMzCG44mFaJsmBjTN81wrZTrwbghSXOLBNDShHdX57g-hir3uoSqz7Gqs-xFs-7swfLRR4Jo06GjteyFNHksgX9x_0E1Ziwww
Cites_doi 10.1016/j.apradiso.2021.109803
10.1080/00223131.2023.2275736
10.1007/s41781-021-00056-0
10.1016/j.nima.2021.165887
10.1063/1.1699114
10.1016/S0168-9002(03)01368-8
10.1016/j.nimb.2014.07.042
10.1016/j.apradiso.2023.110691
10.1364/JOSAA.14.001007
10.1002/mp.12903
10.1093/biomet/57.1.97
10.1016/S0168-9002(01)00181-4
10.1109/TNS.2021.3100863
10.1103/PhysRevD.97.014021
10.1103/PhysRevD.108.072014
10.1016/j.nima.2020.164985
10.1109/TNS.2023.3281154
10.1214/20-BA1221
ContentType Journal Article
Copyright 2025 Korean Nuclear Society
Copyright_xml – notice: 2025 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2025.103670
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
ExternalDocumentID oai_kci_go_kr_ARTI_10730314
oai_doaj_org_article_c092810c0ac5413c92cc7621d5b748a0
10_1016_j_net_2025_103670
S1738573325002384
GroupedDBID 0R~
123
4.4
457
5VS
6I.
9ZL
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ACYCR
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c395t-f0b3f73c9c38b493c44b645fed4d4e5a73e13ff60d4ae4f329b43dd0afe2aabd3
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Fri Jul 04 03:53:07 EDT 2025
Mon Sep 08 19:52:25 EDT 2025
Thu Jul 03 08:20:00 EDT 2025
Sat Jul 05 17:12:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Uranium
Heterogeneous radioactive waste
In-situ
Bayesian inference
Nondestructive assay
Gamma spectrometry
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-f0b3f73c9c38b493c44b645fed4d4e5a73e13ff60d4ae4f329b43dd0afe2aabd3
ORCID 0000-0003-3048-5398
OpenAccessLink https://doaj.org/article/c092810c0ac5413c92cc7621d5b748a0
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10730314
doaj_primary_oai_doaj_org_article_c092810c0ac5413c92cc7621d5b748a0
crossref_primary_10_1016_j_net_2025_103670
elsevier_sciencedirect_doi_10_1016_j_net_2025_103670
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
2025-09
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References (bib5) 2024
Sato, Iwamoto, Hashimoto, Ogawa, Furuta, Abe, Kai, Matsuya, Matsuda, Hirata, Sekikawa, Yao, Tsai, Ratliff, Iwase, Sakaki, Sugihara, Shigyo, Sihver, Niita (bib7) 2024; 61
Buhmann, Diefenbacher, Eren, Gaede, Kasieczka, Korol, Kruger (bib20) 2021; 5
Agostinelli, Allison, Amako, Apostolakis, Araujo, Arce, Asai, Axen, Banerjee, Barrand, Behner, Bellagamba, Boudreau, Broglia, Brunengo, Burkhardt, Chauvie, Chuma, Chytracek, Cooperman, Cosmo, Degtyarenko, Dell'Acqua, Depaola, Dietrich, Enami, Feliciello, Ferguson, Fesefeldt, Folger, Foppiano, Forti, Garelli, Giani, Giannitrapani, Gibin, Gómez Cadenas, González, Gracia Abril, Greeniaus, Greiner, Grichine, Grossheim, Guatelli, Gumplinger, Hamatsu, Hashimoto, Hasui, Heikkinen, Howard, Ivanchenko, Johnson, Jones, Kallenbach, Kanaya, Kawabata, Kawabata, Kawaguti, Kelner, Kent, Kimura, Kodama, Kokoulin, Kossov, Kurashige, Lamanna, Lampén, Lara, Lefebure, Lei, Liendl, Lockman, Longo, Magni, Maire, Medernach, Minamimoto, Mora de Freitas, Morita, Murakami, Nagamatu, Nartallo, Nieminen, Nishimura, Ohtsubo, Okamura, O'Neale, Oohata, Paech, Perl, Pfeiffer, Pia, Ranjard, Rybin, Sadilov, Di Salvo, Santin, Sasaki, Savvas, Sawada, Scherer, Sei, Sirotenko, Smith, Starkov, Stoecker, Sulkimo, Takahata, Tanaka, Tcherniaev, Safai Tehrani, Tropeano, Truscott, Uno, Urban, Urban, Verderi, Walkden, Wander, Weber, Wellisch, Wenaus, Williams, Wright, Yamada, Yoshida, Zschiesche (bib8) 2003; 506
Be, Chiste, Dulieu, Mougeot, Chechev, Kuzmenko, Kondev, Luca, Galan, Nichols, Arinc, Pearce, Huang, Wang (bib18) 2011; 6
Phan, Pradhan, Jankowiak (bib30) 2019
Romero, Garcia-Beltran, Hernandez-Andres (bib32) 1997; 14
(bib3) 2007
Hoffman, Gelman (bib28) 2014; 15
Rizescu, Beşliu, Jipa (bib9) 2001; 465
Akiba, Sano, Yanase, Ohta, Koyams (bib31) 2019
Laloy, Rogiers, Bielen, Boden (bib11) 2021; 175
Hua, Shapira, Merchant, Klahr, Yagil (bib34) 2018; 45
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib26) 1953; 21
Bucherl, Rummel, Kalthoff (bib12) 2021; 1019
Kingma, Ba (bib25) 2014
(bib1) 2009
Be, Chiste, Dulieu, Browne, Baglin, Chechev, Kuzmenko, Helmer, Kondev, MacMahon, Lee (bib16) 2006; 3
Heek, Levskaya, Oliver, Ritter, Rondepierre, Steiner, van Zee (bib24) 2023
Carasco (bib15) 2021; 990
Clement, Saurel, Perrin, Gombert (bib10) 2021; 68
Hastings (bib27) 1970; 57
(bib4) 2024
Laloy, Rogiers, Bielen, Borella, Boden (bib14) 2023; 194
Werner, Bull, Solomon, Brown, McKinney, Rising, Dixon, Martz, Hughes, Cox, Zukaitis, Armstrong, Forster, Casswell (bib6) 2018
Ryu, Hong, Park, Cho (bib13) 2023; 70
Amram, Pedro (bib22) 2023; 108
Krause, Shih (bib21) 2021
Detwiler, McConn, Grimes, Upton, Engel (bib35) 2021
Paganini, de Oliveira, Nachman (bib19) 2018; 97
Vehtari, Gelman, Simpson, Carpenter, Burkner (bib29) 2021; 16
Kingma, Welling (bib23) 2013
Be, Chiste, Dulieu, Mougeot, Browne, Chechev, Kuzmenko, Kondev, Luca, Galan, Nicholas, Arinc, Huang (bib17) 2010; 5
(bib2) 2004
Brown, Dimmock, Gillam, Paganin (bib33) 2014; 338
(10.1016/j.net.2025.103670_bib4) 2024
Sato (10.1016/j.net.2025.103670_bib7) 2024; 61
Agostinelli (10.1016/j.net.2025.103670_bib8) 2003; 506
Metropolis (10.1016/j.net.2025.103670_bib26) 1953; 21
Krause (10.1016/j.net.2025.103670_bib21) 2021
Buhmann (10.1016/j.net.2025.103670_bib20) 2021; 5
(10.1016/j.net.2025.103670_bib1) 2009
Hua (10.1016/j.net.2025.103670_bib34) 2018; 45
Bucherl (10.1016/j.net.2025.103670_bib12) 2021; 1019
Carasco (10.1016/j.net.2025.103670_bib15) 2021; 990
Kingma (10.1016/j.net.2025.103670_bib25) 2014
Amram (10.1016/j.net.2025.103670_bib22) 2023; 108
Ryu (10.1016/j.net.2025.103670_bib13) 2023; 70
Laloy (10.1016/j.net.2025.103670_bib11) 2021; 175
Romero (10.1016/j.net.2025.103670_bib32) 1997; 14
Kingma (10.1016/j.net.2025.103670_bib23) 2013
Vehtari (10.1016/j.net.2025.103670_bib29) 2021; 16
(10.1016/j.net.2025.103670_bib3) 2007
Phan (10.1016/j.net.2025.103670_bib30) 2019
Detwiler (10.1016/j.net.2025.103670_bib35) 2021
Paganini (10.1016/j.net.2025.103670_bib19) 2018; 97
Clement (10.1016/j.net.2025.103670_bib10) 2021; 68
Hastings (10.1016/j.net.2025.103670_bib27) 1970; 57
Rizescu (10.1016/j.net.2025.103670_bib9) 2001; 465
Brown (10.1016/j.net.2025.103670_bib33) 2014; 338
Heek (10.1016/j.net.2025.103670_bib24)
Be (10.1016/j.net.2025.103670_bib18) 2011; 6
(10.1016/j.net.2025.103670_bib2) 2004
Werner (10.1016/j.net.2025.103670_bib6) 2018
Laloy (10.1016/j.net.2025.103670_bib14) 2023; 194
Be (10.1016/j.net.2025.103670_bib16) 2006; 3
Be (10.1016/j.net.2025.103670_bib17) 2010; 5
Akiba (10.1016/j.net.2025.103670_bib31) 2019
Hoffman (10.1016/j.net.2025.103670_bib28) 2014; 15
References_xml – volume: 338
  start-page: 77
  year: 2014
  end-page: 88
  ident: bib33
  article-title: A low energy bound atomic electron Compton scattering model for Geant4
  publication-title: Nucl. Instrum. Methods Phys. Res. B.
– year: 2023
  ident: bib24
  article-title: Flax: a neural network library and ecosystem for JAX
– year: 2004
  ident: bib2
  article-title: Application of the Concepts of Exclusion, Exemption and Clearance, IAEA Safety Standards Series No. RS-G-1.7
– volume: 465
  start-page: 584
  year: 2001
  end-page: 599
  ident: bib9
  article-title: Determination of local density and effective atomic number by the dual-energy computerized tomography method with the 192Ir radioisotope
  publication-title: Nucl. Instrum. Methods Phys. Res. A.
– volume: 3
  year: 2006
  ident: bib16
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– year: 2021
  ident: bib21
  article-title: CaloFlow Ⅱ: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows, arXiv Preprint
– volume: 68
  start-page: 2342
  year: 2021
  end-page: 2349
  ident: bib10
  article-title: Bayesian approach for multigamma radionuclide quantification applied on weakly attenuating nuclear waste drums Bayesian approach
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 1019
  year: 2021
  ident: bib12
  article-title: A Bayesian method for the evaluation of segmented gamma scanning measurements – description of the principle
  publication-title: Nucl. Instrum. Methods Phys. Res.
– volume: 175
  year: 2021
  ident: bib11
  article-title: Bayesian inference of 1D activity profiles from segmented gamma scanning of a heterogeneous radioactive waste drum
  publication-title: Appl. Radiat. Isot.
– volume: 14
  start-page: 1007
  year: 1997
  end-page: 1014
  ident: bib32
  article-title: Linear bases for representation of natural and artificial illuminants
  publication-title: JOSA A
– year: 2013
  ident: bib23
  article-title: Auto-encoding Variational Bayes, arXiv Preprint
– volume: 45
  start-page: 2486
  year: 2018
  end-page: 2497
  ident: bib34
  article-title: Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual‐layer dual‐energy computed tomography system
  publication-title: Med. Phys.
– volume: 194
  year: 2023
  ident: bib14
  article-title: Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling
  publication-title: Appl. Radiat. Isot.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bib26
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– year: 2014
  ident: bib25
  article-title: Adam: A Method for Stochastic Optimization, arXiv Preprint
– year: 2018
  ident: bib6
  article-title: MCNP Version 6.2 Release Notes, Los Alamos Natl. Lab., Los Alamos, NM (United States)
– year: 2021
  ident: bib35
  article-title: Compendium of Material Composition Data for Radiation Transport Modeling, Pacific Northwest Natl. Lab., Richland, WA (United States)
– volume: 990
  year: 2021
  ident: bib15
  article-title: Coupling gamma ray spectrometry and tomography in a Bayesian frame
  publication-title: Nucl. Instrum. Methods Phys. Res.
– year: 2019
  ident: bib30
  article-title: Composable Effects for Flexible and Accelerated Probabilistic Programming in Numpyro, arXiv Preprint
– volume: 70
  start-page: 1477
  year: 2023
  end-page: 1489
  ident: bib13
  article-title: Bayesian inference for the quantitative analysis of non- uniformly distributed uranium radioactivity in a waste drum
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 15
  start-page: 1593
  year: 2014
  end-page: 1623
  ident: bib28
  article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 127
  year: 2024
  end-page: 135
  ident: bib7
  article-title: Recent improvements of the particle and heavy ion transport code system - PHITS version 3.33
  publication-title: J. Nucl. Sci. Technol.
– year: 2009
  ident: bib1
  article-title: Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1
– year: 2024
  ident: bib5
  article-title: ISOTOPIC gamma spectrometry waste assay measurement
– volume: 16
  start-page: 667
  year: 2021
  end-page: 718
  ident: bib29
  article-title: Rank-normalization, folding, and localization: an improved Rfor assessing convergence of MCMC (with discussion)
  publication-title: Bayesian analysis
– volume: 506
  start-page: 250
  year: 2003
  end-page: 303
  ident: bib8
  article-title: GEANT4—a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res.
– year: 2007
  ident: bib3
  article-title: Strategy and Methodology for Radioactive Waste Characterization, IAEA-TECDOC-1537
– volume: 5
  year: 2010
  ident: bib17
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– volume: 5
  start-page: 13
  year: 2021
  ident: bib20
  article-title: Getting high: high fidelity simulation of high granularity calorimeters with high speed
  publication-title: Comput. Softw. Big Sci.
– start-page: 2623
  year: 2019
  end-page: 2631
  ident: bib31
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: bib27
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 6
  year: 2011
  ident: bib18
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– volume: 108
  year: 2023
  ident: bib22
  article-title: Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation
  publication-title: Phys. Rev. D
– year: 2024
  ident: bib4
  publication-title: Situ Object Counting System (ISOCS)
– volume: 97
  year: 2018
  ident: bib19
  article-title: CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks
  publication-title: Phys. Rev. D
– volume: 175
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib11
  article-title: Bayesian inference of 1D activity profiles from segmented gamma scanning of a heterogeneous radioactive waste drum
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2021.109803
– year: 2018
  ident: 10.1016/j.net.2025.103670_bib6
– year: 2019
  ident: 10.1016/j.net.2025.103670_bib30
– volume: 61
  start-page: 127
  year: 2024
  ident: 10.1016/j.net.2025.103670_bib7
  article-title: Recent improvements of the particle and heavy ion transport code system - PHITS version 3.33
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2023.2275736
– ident: 10.1016/j.net.2025.103670_bib24
– volume: 15
  start-page: 1593
  year: 2014
  ident: 10.1016/j.net.2025.103670_bib28
  article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J. Mach. Learn. Res.
– year: 2004
  ident: 10.1016/j.net.2025.103670_bib2
– year: 2024
  ident: 10.1016/j.net.2025.103670_bib4
– volume: 5
  start-page: 13
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib20
  article-title: Getting high: high fidelity simulation of high granularity calorimeters with high speed
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-021-00056-0
– volume: 1019
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib12
  article-title: A Bayesian method for the evaluation of segmented gamma scanning measurements – description of the principle
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/j.nima.2021.165887
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.net.2025.103670_bib26
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 3
  year: 2006
  ident: 10.1016/j.net.2025.103670_bib16
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– volume: 506
  start-page: 250
  issue: 3
  year: 2003
  ident: 10.1016/j.net.2025.103670_bib8
  article-title: GEANT4—a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/S0168-9002(03)01368-8
– year: 2021
  ident: 10.1016/j.net.2025.103670_bib35
– year: 2007
  ident: 10.1016/j.net.2025.103670_bib3
– volume: 5
  year: 2010
  ident: 10.1016/j.net.2025.103670_bib17
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– volume: 338
  start-page: 77
  year: 2014
  ident: 10.1016/j.net.2025.103670_bib33
  article-title: A low energy bound atomic electron Compton scattering model for Geant4
  publication-title: Nucl. Instrum. Methods Phys. Res. B.
  doi: 10.1016/j.nimb.2014.07.042
– volume: 194
  year: 2023
  ident: 10.1016/j.net.2025.103670_bib14
  article-title: Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2023.110691
– year: 2021
  ident: 10.1016/j.net.2025.103670_bib21
– start-page: 2623
  year: 2019
  ident: 10.1016/j.net.2025.103670_bib31
  article-title: Optuna: a next-generation hyperparameter optimization framework
– volume: 14
  start-page: 1007
  year: 1997
  ident: 10.1016/j.net.2025.103670_bib32
  article-title: Linear bases for representation of natural and artificial illuminants
  publication-title: JOSA A
  doi: 10.1364/JOSAA.14.001007
– volume: 45
  start-page: 2486
  issue: 6
  year: 2018
  ident: 10.1016/j.net.2025.103670_bib34
  article-title: Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual‐layer dual‐energy computed tomography system
  publication-title: Med. Phys.
  doi: 10.1002/mp.12903
– volume: 57
  start-page: 97
  year: 1970
  ident: 10.1016/j.net.2025.103670_bib27
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 465
  start-page: 584
  issue: 2–3
  year: 2001
  ident: 10.1016/j.net.2025.103670_bib9
  article-title: Determination of local density and effective atomic number by the dual-energy computerized tomography method with the 192Ir radioisotope
  publication-title: Nucl. Instrum. Methods Phys. Res. A.
  doi: 10.1016/S0168-9002(01)00181-4
– volume: 68
  start-page: 2342
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib10
  article-title: Bayesian approach for multigamma radionuclide quantification applied on weakly attenuating nuclear waste drums Bayesian approach
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2021.3100863
– volume: 6
  year: 2011
  ident: 10.1016/j.net.2025.103670_bib18
  article-title: Table of radionuclides
  publication-title: Mono. BIPM-5
– volume: 97
  year: 2018
  ident: 10.1016/j.net.2025.103670_bib19
  article-title: CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.014021
– volume: 108
  year: 2023
  ident: 10.1016/j.net.2025.103670_bib22
  article-title: Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.072014
– year: 2014
  ident: 10.1016/j.net.2025.103670_bib25
– volume: 990
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib15
  article-title: Coupling gamma ray spectrometry and tomography in a Bayesian frame
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/j.nima.2020.164985
– volume: 70
  start-page: 1477
  year: 2023
  ident: 10.1016/j.net.2025.103670_bib13
  article-title: Bayesian inference for the quantitative analysis of non- uniformly distributed uranium radioactivity in a waste drum
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2023.3281154
– year: 2013
  ident: 10.1016/j.net.2025.103670_bib23
– year: 2009
  ident: 10.1016/j.net.2025.103670_bib1
– volume: 16
  start-page: 667
  issue: 2
  year: 2021
  ident: 10.1016/j.net.2025.103670_bib29
  article-title: Rank-normalization, folding, and localization: an improved Rfor assessing convergence of MCMC (with discussion)
  publication-title: Bayesian analysis
  doi: 10.1214/20-BA1221
SSID ssj0064470
Score 2.349093
Snippet In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 103670
SubjectTerms Bayesian inference
Gamma spectrometry
Heterogeneous radioactive waste
In-situ
Nondestructive assay
Uranium
원자력공학
Title Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference
URI https://dx.doi.org/10.1016/j.net.2025.103670
https://doaj.org/article/c092810c0ac5413c92cc7621d5b748a0
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003220041
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2025, 57(9)
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ba9YwFA9zT_NBplP8nErAPQnFtrm0edzEsQuOCQ72Fk5us461Wr8i_i3-s54kX6W-6IsvLTQhJ-R3ci70XAg5YIFLC6EpnLKy4C5UhRICCgXAg21QIqYCpu8v5MkVP7sW14tWXzEmLJcHzgf3xpaqbqvSlmAFClyramvxAldOmIa3kLz1UpWzM5VlMCr5JqdC4nWOFf_m_5kpsgt9fnQMaxETzmXsUrzQSKlw_x-K6V4_hoXKOd4lDza2Ij3Me3xItnz_iNxfVBDcIz8vR7yQMcA11lumqa8NDtAh0E8x0GVA_vDo3NMRXDdAEm70OyC0FK1VOqGm6qa7xSga5fTrBDmEKKFGY2j8DYWeHp4WUek5-m0acWW0UjNBHHP0CH74mJBJuzmF8DG5On738e1Jsem3UFimxLoIpWGhwSO2rDVcMcu5kVwE77jjXkDDfMVCkKXj4HlgtTKcOVdC8DWAcewJ2e6H3j8lVFghIggN1J5L4QGkdAZQIxuHJmW7Iq_nM9dfclkNPcebfdYIkI4A6QzQihxFVH5PjBWx0wfkE73hE_0vPlkRPmOqN8ZFNhpwqe5vtF8h_vrWdolsfN8M-nbU6G6c4hwUkKziz_7HDvfJTiScA9iek-31OPkXaPGszcvE3Pg8_9D-Ah9OAQM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+modeling+of+heterogeneous+radioactive+waste+for+uranium+radioactivity+quantification+using+an+AI-based+surrogate+model+and+Bayesian+inference&rft.jtitle=Nuclear+engineering+and+technology&rft.au=%EB%A5%98%EC%A7%80%EC%B0%BD&rft.au=%EC%A1%B0%EA%B7%9C%EC%84%B1&rft.au=%EB%B0%95%EC%A0%95%EC%84%9D%28%ED%95%9C%EC%A0%84%EC%9B%90%EC%9E%90%EB%A0%A5%EC%97%B0%EB%A3%8C&rft.au=%ED%95%9C%EC%9A%B1%EC%A7%84%28%ED%95%9C%EC%A0%84%EC%9B%90%EC%9E%90%EB%A0%A5%EC%97%B0%EB%A3%8C&rft.date=2025-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9B%90%EC%9E%90%EB%A0%A5%ED%95%99%ED%9A%8C&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016%2Fj.net.2025.103670&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10730314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon